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Abstract: Mercury (Hg) contamination poses potential threats to ecosystems worldwide. 

In order to study Hg bioavailability in the poorly documented southern Indian Ocean, 

Hg exposure was investigated in the large avian community of Kerguelen Islands. 

Adults of 27 species (480 individuals) showed a wide range of feather Hg 

concentrations, from 0.4 ± 0.1 to 16.6 ± 3.8 µg g-1 dry weight in Wilson’s storm petrels 

and wandering albatrosses, respectively. Hg concentrations increased roughly in the 

order crustacean- < fish- ≤ squid- ≤ carrion-consumers, confirming that diet, rather than 

taxonomy, is an important driver of avian Hg exposure. Adults presented higher Hg 

concentrations than chicks, due to a longer duration of exposure, with the only 

exception being the subantarctic skua, likely because of feeding habits’ differences of 

the two age-classes in this species. High Hg concentrations were reported for three 

species of the poorly known gadfly petrels, which merit further investigation. 

 

Key words: Feeding ecology; Kerguelen; Procellariiformes; seabirds; Southern Ocean. 

 

Capsule: Mercury concentrations in feathers of sympatric subantarctic birds (27 species) 

are driven mainly by feeding habits and exposure duration. 

 

Highlights 

 Feather Hg concentrations were measured in 27 sympatric subantarctic bird species. 

 Inter-specific variation in Hg exposure depends on feeding habits, not taxonomy. 

 Hg concentrations were higher in adults than chicks due to longer exposure duration. 

 Hg is highly bioavailable in the Southern Ocean, which merits further investigation. 
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1. Introduction 

 

Mercury (Hg) is a pervasive non-essential metal affecting ecosystem health. Despite its 

natural origin, Hg has been mobilized by human activities such as mining and fossil-

fuel combustion (UNEP 2013), thus resulting in a significant increase in Hg available 

for cycling among land, air and the ocean since pre-industrial times (Selin 2009). Hg 

emissions are transported through the atmosphere on a hemispheric-to-global scale, 

allowing for transport to remote locations such as sub-polar and polar regions 

(Fitzgerald et al. 1998). After atmospheric deposition and through biotic and abiotic 

mechanisms, Hg is readily transformed in methyl-Hg, the highly toxic form that 

bioaccumulates in the tissues of living organisms and biomagnifies up food webs, 

especially in aquatic environments (Fitzgerald et al. 2007). Top predators are thus 

exposed to significant quantities of Hg via their diet, providing information on Hg 

bioavailability within their food webs (Morel et al. 1998). Among consumers, birds 

have varied levels of ecological, spatial and temporal integration of contaminants 

depending on species, and they have been identified as effective indicators of Hg 

bioavailability in both terrestrial and marine environments (Burger and Gochfeld 2004, 

Solonen and Lodenius 1990). 

The Kerguelen Islands are a remote subantarctic archipelago in the southern 

Indian Ocean, where the level of Hg bioavailability is poorly documented (Bocher et al. 

2003, Bustamante et al. 2003, Cipro et al. 2014, Cossa et al. 2011). This archipelago 

hosts a large and highly diverse avian assemblage (35 different breeding species). The 

community includes a few terrestrial species and many seabirds, with Sphenisciformes 

(penguins) and Procellariiformes (albatrosses and petrels) dominating by mass and 

numbers, respectively (Guinet et al. 1996, Weimerskirch et al. 1989). Overall Kerguelen 
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seabirds feed on a few key species of marine organisms, including some crustaceans 

(euphausiids, hyperiids), fish (myctophids, notothenioids) and cephalopods (oceanic 

squids) (Bocher et al. 2001, Cherel et al. 2010, Cherel and Hobson 2005, Guinet et al. 

1996), with some seabirds relying extensively on carrion. This biological richness can 

be related to the large and productive shelf surrounding the archipelago (Blain et al. 

2001). Kerguelen seabirds show a wide range of contrasted feeding strategies, with 

species foraging in the benthic and pelagic environments and ranging from neritic to 

oceanic waters. Noticeably, the oceanic species forage over a large latitudinal gradient, 

from subtropical to Antarctic waters (Supplementary Table S1). Kerguelen seabirds 

therefore offer a unique opportunity to study Hg bioavailability over diverse water 

masses of the Southern Ocean. 

The present study aims to assess Hg bioavailability in the southern Indian Ocean 

by using birds from the Kerguelen Islands as bioindicators. Hg exposure was evaluated 

by using body feathers, because feathers are the main route of Hg excretion in birds 

(Braune and Gaskin 1987). Importantly, this work complements a recent investigation 

on Hg in chicks (Blévin et al. 2013) by focusing on breeding adults and by including 

more species. While Hg concentrations in chick feathers are representative of a well-

defined, relatively short period of exposure (the chick-rearing period), adult feathers 

provide a wider perspective on Hg exposure of the species over their whole life cycles 

(Evers et al. 2005). Thus adult feather Hg concentrations were determined in 27 

representative species, including the only two terrestrial birds of the assemblage, in 

order to: (i) describe Hg exposure in a large number of sympatric bird species from the 

poorly documented southern Indian Ocean; (ii) compare the exposure pattern to that of 

avian communities from other subantarctic and oceanic remote locations worldwide; (iii ) 

test the effect of age-class on feather Hg concentrations by using the recently published 
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Hg data on chicks (Blévin et al. 2013), and (iv) investigate the influence of various 

factors (taxonomy, diet, feeding habitats, moulting patterns) on Hg exposure. 

Taxonomy, which was not tested in Blévin et al. (2013), was expected to play a minor 

role in explaining feather Hg concentrations when compared to feeding strategies, since 

diet is considered to be the main factor driving Hg variation in birds (Becker et al. 2002, 

Blévin et al. 2013, Bocher et al. 2003, Monteiro et al. 1998, Stewart et al. 1999). In 

addition, adult birds were expected to show higher feather Hg concentrations than 

chicks, as they are exposed over a longer period to Hg via their diet and moulting 

patterns (Catry et al. 2008, Stewart et al. 1997). 

 

2. Materials and methods 

 

Fieldwork was carried out from 2003 to 2011 on the Kerguelen Islands (49°21’S, 

70°18’E, Fig. 1), which are located in the southern part of the Polar Frontal Zone, in the 

immediate vicinity of the Polar Front (Orsi et al. 1995, Park and Gambéroni, 1997). 

Breeding adults from 27 bird species belonging to 5 orders and 10 families were 

sampled (n = 5 to 33 individuals per species, Supplementary Table S2). Sampling was 

conducted at different locations of the archipelago, depending on the species breeding 

sites. Resident neritic seabird species (Kerguelen shag and gentoo penguin) were 

sampled at colonies close to the open sea, while terrestrial species (lesser sheathbill and 

Kerguelen pintail) were sampled on islands of the large Morbihan Bay (closed sea). 

Birds were non-destructively captured by mist net or by hand, depending on species, 

and released immediately after sampling. A few whole body feathers (6-10) were pulled 

out from the lower back of the birds and then stored dry in sealed plastic bags until 

analysis at the University of La Rochelle, France. 
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Depending on bird and hence feather size, 1 to 5 whole feathers per individual 

were cleaned, oven-dried to a constant mass and homogenised as described in Blévin et 

al. (2013). An Advanced Mercury Analyzer spectrophotometer (Alted AMA 254) was 

used to measure total Hg, which approximates the amount of methyl-Hg in feathers 

(Bond and Diamond 2009, Thompson and Furness 1989a). For each individual, 

analyses were run in duplicate-triplicate by taking sub-samples of the homogenised 

feathers (relative standard deviation < 10% for each individual). Accuracy was checked 

using certified reference material (Tort-2 Lobster Hepatopancreas, NRC, Canada; 

certified Hg concentration: 0.27 ± 0.06 µg g-1 dry weight). Our measured values were 

0.24 ± 0.01 µg g-1 dry weight, n = 22. Blanks were analysed at the beginning of each set 

of samples and the detection limit of the method was 0.005 µg g-1 dry weight. Hg 

concentrations are presented µg g-1 dry weight (dw). 

Statistical analyses were performed using R 2.15.1 (R Core Team 2012). Data 

exploration was performed mainly following Zuur et al. (2010). The influence of taxa 

(species, genus, family and order) on adult feather Hg concentrations was tested by 

using generalized linear models (GLM) with a gamma distribution and an inverse link 

function. Model selection was based on Akaïke's Information Criteria adjusted for small 

sample sizes (AICc) (Burnham & Anderson 2002). The sampling year was not included 

in the models because most species were sampled in only one year (Supplementary 

Table S2) and thus the year effect would be confounded by the species effect. 

Nonetheless, no inter-annual differences in feather Hg concentrations were found on the 

six species that were sampled in two different years (light-mantled sooty albatross, soft-

plumaged and Kerguelen petrels, black-bellied storm petrel, South Georgia diving petrel 

and lesser sheathbill, data not shown). As biometric measurements were not performed 

on individual birds during the sampling procedure, the effect of size and mass on feather 
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Hg concentrations could not be incorporated in the models. However, mean values of 

size and mass were obtained for each species from the literature (Supplementary Table 

S1) and their correlations with mean feather Hg concentrations were tested. Finally, the 

effect of age-class on feather Hg concentrations was investigated on 21 out of the 27 

species by comparing adult data from the present study with chick data from the same 

Kerguelen locations (Blévin et al. 2013). A significance level of α < 0.05 was used for 

all statistical tests. Results are means ± SD. 

General information on the feeding ecology of Kerguelen birds was based on 

published and unpublished data obtained using various methods (stomach content and 

stable isotope analyses and tracking devices), and is summarized in Supplementary 

Table S1. Importantly, dietary information was restricted to the chick food, because 

parent birds carry significant amounts of food in their stomach at that time only. By 

contrast, adult diet is poorly known both during and outside the breeding period. The 

relationship between Hg contamination and trophic ecology was not studied here using 

stable isotopes, because of the uncoupled temporal integration of Hg and stable isotopes 

in feathers of adult birds (Bond 2010, Thompson et al. 1998). 

 

3. Results 

 

Feather Hg concentrations were measured in a total of 480 adult birds from the 

Kerguelen Islands (details in Supplementary Table S2). Feather Hg concentrations 

varied widely within the avian community, with means ranging from 0.42 ± 0.13 to 16.6 

± 3.8 µg g-1 dw in Wilson’s storm petrels and wandering albatrosses, respectively (Fig. 

2). The lowest feather Hg concentration occurred in a South-Georgian diving petrel and 

the highest in a northern giant petrel (0.10 and 32.1 µg g-1, respectively). Model 
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selection showed that species was the most important factor explaining feather Hg 

concentrations when compared to other taxonomic levels (Table 1). Coefficients of 

variations (CV) also varied considerably between species, ranging from 13 to 109% 

(Supplementary Table S2). Mean feather Hg concentration was significantly related to 

species size (Pearson correlation, r = 0.50, p = 0.008, n = 27), but not to species mass (r 

= 0.23, p = 0.256, n = 27). 

By combining feather Hg data of adults from this study with those of chicks 

from Blévin et al. (2013), a total of 654 individuals from 21 seabird species were 

analysed. The model including species, age-class and their interaction as explaining 

factors of feather Hg concentrations showed the best fit to the data (Table 1). Feather 

Hg concentrations were significantly higher in adults than in chicks in all but two 

species: the blue petrel (no statistical difference) and subantarctic skua (higher chick 

level) (Fig. 3). The ratio of adult to chick feather Hg concentrations varied between 

species, ranging from 0.5 to 20.7 in the subantarctic skua and South-Georgian diving 

petrel, respectively (Supplementary Table S2). 

 

4. Discussion 

 

To the best of our knowledge, this study is the first to report feather Hg concentrations 

for such a large number of adult sympatric birds, including representative species of all 

the four families of the order Procellariiformes, namely albatrosses, petrels, storm 

petrels and diving petrels. Hg exposure varied widely within the community, showing a 

remarkable 40-fold difference between the species with the lowest and highest Hg 

concentrations. The community exposure pattern agrees with results on chicks (Blévin 

et al. 2013): small petrels, penguins and terrestrial species generally showed low levels 
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of exposure (< 2.5 µg g-1 dw), coastal seabirds, Procellaria petrels and small albatrosses 

had intermediate concentrations (< 10 µg g-1 dw), while Pterodroma petrels, northern 

giant petrels and wandering albatrosses were the species having the highest 

concentrations (> 10 µg g-1 dw).  

 

4.1 Comparisons with other avian communities 

The pattern of Hg concentrations among members of the Kerguelen avian community 

fits well with that of other subantarctic sites, such as South Georgia, southern Atlantic 

Ocean (Fig. 4). Feather Hg concentrations were comparable in seabirds from the two 

localities, with the exception of the northern giant petrel and wandering albatross 

(Anderson et al. 2009, Becker et al. 2002). This could be related to inter-site dietary 

differences of these two top predators. Moreover, similar feather Hg concentrations 

were reported for some species of albatrosses and petrels from the southern Pacific 

Ocean (Thompson et al. 1990, 1993). Hg bioavailability thus seems to be similar within 

the three sectors of the Southern Ocean, which agrees well with its circumpolar annular 

oceanographic structure (Sokolov and Rintoul 2007). At lower latitudes of the Southern 

Hemisphere, only the tropical seabird communities from the western Indian Ocean have 

been investigated, revealing much lower feather Hg concentrations (~ 0.05–1.5 µg g-1; 

Catry et al. 2008, Kojadinovic et al. 2007) than in Kerguelen birds. This trend could 

result from differences in the physical and biological factors driving methyl-Hg 

production and food web transfer in the two regions (i.e., the atmospheric deposition of 

inorganic Hg, the rate of primary productivity, the abundance of sinking organic matter 

and the structure of the microbial community, Mason et al. 2012). The wide range of Hg 

exposure of Kerguelen birds compares well with avian communities of remote 

archipelagos of the Northern Hemisphere, namely the tropical Midway Atoll, North 
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Pacific Ocean and the subtropical Azores Islands, North Atlantic Ocean (both ~ 1–20 

µg g-1; Burger and Gochfeld 2000a, Gochfeld et al. 1999, Monteiro et al. 1998). These 

wide ranges of contamination are related to the presence of highly contaminated species 

of albatrosses and gadfly petrels within the communities (see below). Indeed, the avian 

assemblage of the temperate Machias Seal Island, North Atlantic Ocean, which includes 

neither albatrosses nor gadfly petrels, had lower feather Hg concentrations (0.7–7 µg g-1; 

Bond and Diamond 2009). Therefore, the specific composition of the avian 

communities rather than the proximity to highly industrialized countries seems to be a 

key factor driving the level of Hg exposure within avian assemblages from open sea 

regions. In this context, the range of Hg exposure within the Kerguelen avian 

community is remarkable, as it encompasses the concentrations reported worldwide in 

remote oceanic locations (Blévin et al. 2013). 

 

4.2 Influence of taxonomy 

The best taxonomic explanatory variable of feather Hg concentrations in the Kerguelen 

community was species, as it integrates a large range of ecological, behavioural, 

physiological and life-history traits that are susceptible to drive variation in feather Hg 

concentrations (Anderson et al. 2009, Bond and Diamond 2009). Although inter-

specific differences in avian Hg exposure have often been investigated, taxonomic-

related variations were rarely tested in a large number of species (Anderson et al. 2009, 

Ochoa-Acuña et al. 2002). Here, statistical models including genus, family or order as 

explanatory variables had a poor fit to feather Hg data. Indeed, closely-related species at 

Kerguelen often showed very different levels of exposure. For example, black-bellied 

storm petrels displayed higher Hg concentrations than the other two Hydrobatidae 

species, despite similar size and life-history traits. The same pattern was highlighted for 
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Sphenisciformes, with the gentoo penguins having higher feather Hg concentrations 

than the other three penguin species (Carravieri et al. 2013). Therefore, the effect of 

taxonomy seems to play a minor role in avian Hg exposure when compared to other 

ecological factors (Becker et al. 2002, Lock et al. 1992, Stewart et al. 1999). 

Nevertheless, the present study provides new and interesting results regarding a 

particular taxonomic group: the gadfly petrels (genus Pterodoma, Warham 1990), 

which were amongst the species with the highest Hg concentrations (Fig. 2). Our data 

together with a review of the scientific literature (Table 2) point out the high level of Hg 

contamination of almost all the Pterodroma petrels so far investigated, including 

species living in different marine ecosystems. Nevertheless, the Barau’s Petrel P. baraui 

from La Réunion Island, western Indian Ocean, showed surprisingly low feather Hg 

concentrations (1.0 µg g-1), suggesting again a regional trend of low Hg bioavailability 

at tropical latitudes of the Indian Ocean (see subsection 4.1). 

4.3 Influence of diet and feeding habitat 

Inter-specific variability in Hg contamination is typically attributed to diet (Arcos et al. 

2002, Monteiro et al. 1998, Stewart et al. 1999). Since Hg is efficiently biomagnified up 

food webs (Atwell et al. 1998, Campbell et al. 2005, Jarman et al. 1996), high trophic 

level prey, such as fish and cephalopods show higher Hg concentrations than 

crustaceans and other planktonic organisms (Bustamante et al. 2006, Kojadinovic et al. 

2006, Stewart et al. 1997). This is consistent with feather Hg concentrations of 

Kerguelen birds increasing roughly in the order crustacean- < fish- ≤ squid- ≤ carrion-

consumers (Fig. 2b), as previously shown in chicks (Blévin et al. 2013). This confirms 

that Hg is efficiently biomagnified and that diet plays a key role in explaining Hg 

exposure. Accordingly, the positive correlation highlighted between bird size and 

feather Hg concentrations is likely explained by a trophic effect, as larger avian species 
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tend to occupy higher trophic positions and/or to consume larger prey items (Burger and 

Gochfeld 2000a). 

Differences in dietary exposure over diverse habitats within and outside the 

breeding period can also account for important variability in feather Hg concentrations 

(Anderson et al. 2009, Blévin et al. 2013). Here, inshore non-migratory species 

(Kerguelen shag, kelp gull, gentoo penguin), which feed on benthic organisms, showed 

intermediate to high Hg concentrations. This agrees with high Hg bioavailability in 

benthic environments due to methyl-Hg production in coastal marine sediments 

(Bustamante et al. 2006, Fitzgerald et al. 2007). In the oceanic domain, methyl-Hg 

concentration reaches a maximum in mesopelagic waters (Driscoll et al. 2013, 

Fitzgerald et al. 2007), resulting in enhanced contamination of mesopelagic prey 

(Chouvelon et al. 2013, Choy et al. 2009). This could explain the high feather Hg 

concentrations of oceanic species relying extensively on mesopelagic fish and 

cephalopods (e.g. gadfly petrels, Ochoa-Acuña et al. 2002, Ridoux 1994). On the other 

hand, migratory seabirds can travel thousands of kilometres away from their breeding 

sites after reproduction (e.g., Warham 1990), being potentially exposed to different 

quantities of Hg. Here, species visiting northern subtropical and neritic waters during 

the non-breeding period (e.g. the wandering albatross) tended to have higher feather Hg 

concentrations than those that forage predominantly within the limits of the Southern 

Ocean year-round (e.g. the light-mantled sooty albatross) (Cherel et al. 2013). However, 

further investigations on i) the poorly known feeding strategies outside the breeding 

season and ii) Hg distribution and speciation in the Southern Ocean could elucidate the 

rationale of this latitudinal trend (see Blévin et al. 2013). 

 

4.4 Influence of moulting patterns 
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Feather Hg concentrations reflect blood Hg levels at the time of moult (Bearhop et al 

2000, Evers et al 2008). This means dietary Hg but also Hg accumulated over the inter-

moult period and remobilized during feather synthesis (Furness et al. 1986, Thompson 

et al. 1998). Another important intrinsic driver of Hg concentrations in feathers is 

therefore the timing, duration and frequency of moult. For instance, the irregular and 

infrequent moulting patterns of large albatrosses are believed to contribute significantly 

to high Hg concentrations in their feathers (Anderson et al. 2009, Becker et al. 2002). 

However, enhanced feather Hg concentrations were also reported in Kerguelen species 

with annual moult cycles, like great-winged and white-chinned petrels. This indicates 

that moulting patterns alone cannot explain all the inter-specific variation in Hg 

contamination. In Procellariiformes, demethylation of Hg in the liver appears to be a 

significant detoxification strategy (Thompson and Furness 1989b, Thompson et al. 

1993). The efficiency of demethylation mechanisms is species-dependent and could 

contribute to explain the inter-specific differences in feather Hg concentrations among 

members of the Kerguelen avian community. 

 

4.5 Adults and chicks 

As previously shown by several other studies (e.g., Burger and Gochfeld 2000b, Catry 

et al. 2008), feather Hg concentrations were higher in adults than in chicks in almost all 

Kerguelen species (Fig. 3). Indeed, adults have more time to bioaccumulate Hg in their 

tissues during the long inter-moult period (≥ one year) before excreting it in feathers 

(Monteiro et al. 1995, Thompson et al. 1991). By contrast, chick feather Hg 

concentrations represent the dietary exposure over the chick-rearing period (Ackerman 

et al. 2011, Becker et al. 1993), which ranges from several weeks to several months in 

Kerguelen species (Supplementary Table S2). Assuming a similar rate of Hg intake of 
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adults and chicks, species with short and long chick-rearing periods should show high 

and low adult-to-chick ratios in feather Hg concentrations, respectively. The hypothesis 

was verified in the two diving petrels (high ratios, ≥ 9) and in the wandering albatross 

and northern giant petrel (low ratios, ~ 2-4), respectively. Exceptions to this pattern are 

likely indicative of differential relative Hg exposures in the two age-classes, as observed 

in blue petrels and subantarctic skuas (ratios: 1.3 and 0.5, respectively). Adult blue 

petrels from the Kerguelen Islands feed at the same low trophic level in cold Antarctic 

waters both during the breeding and moulting periods (Cherel et al. 2002a, Cherel et al. 

2006). By contrast, chick food includes a significant proportion of mesopelagic fish 

(Cherel et al. 2002a, Connan et al. 2008), which is consistent with their enhanced Hg 

exposure over adults. At Kerguelen, subantarctic skua chicks are mainly fed with blue 

petrels (Mougeot et al. 1998), thus explaining their high feather Hg concentrations. The 

chick data are in accordance with previous results on chicks of the closely-related great 

skua that feeds on bird meat (Stewart et al. 1997). The low Hg contamination of adult 

subantarctic skuas is puzzling and it strongly suggests that moulting adults do not rely 

on small petrels for feeding. Indeed, previous findings on subantarctic skuas from South 

Georgia suggest that they have a mixed diet of zooplankton and low trophic-level prey 

over the wintering grounds (Phillips et al. 2007). Therefore, both the duration of Hg 

exposure and feeding habits are key factors explaining differences in feather Hg 

concentrations between seabird chicks and adults. 

 

5. Conclusions 

Results from this study reinforce previous findings showing that taxonomy plays a 

minor role in determining avian Hg exposure when compared to feeding strategies 

(Stewart et al. 1999). Our results confirm that Hg concentrations are very high in some 
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subantarctic birds, with many species showing levels of potential concern. The most 

common used toxic threshold of feather Hg concentration in birds is 5 µg g-1 (e.g., 

Evers et al. 2008). Here, this level was exceeded by some individuals of 11 seabird 

species and by all individuals of wandering albatross, northern giant petrel, and white-

headed and great-winged petrels. Although subantarctic species may have evolved to 

cope with high Hg exposure in their environment (Blévin et al. 2013, Thompson et al. 

1993), there is an urgent need to investigate the inter- and intra-specific physiological 

differences of Hg metabolism, excretion and toxicity, in order to establish whether some 

species, or some particular individuals, could be at risk. Evidence of Hg consequences 

on breeding, hatchling and fledging success has been reported in polar birds (Goutte et 

al. in press, Tartu et al. 2013). Such investigations on risk related to Hg exposure are 

even more relevant in the context of global warming that would favour the methylation 

rate of Hg in the Ocean (Cossa 2013). Finally, the present study enables selecting the 

white-headed petrel as a good bioindicator species of Hg bioavailability in the Southern 

Ocean, considering its high level of exposure and low intra-specific variation. The 

white-headed petrel adds to the list of Kerguelen bioindicator species recently identified 

according to their foraging ecology and exposure patterns, i.e. the gentoo and king 

penguins, the black-browed, light-mantled sooty and wandering albatrosses (Blévin et al. 

2013, Carravieri et al. 2013). The periodic examination of feather Hg concentrations in 

species from these remote regions over the long-term will make it possible to monitor 

temporal trends of Hg bioavailability to predators in the open ocean in relation to global 

trends of Hg emissions. 
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Table 1 

AICc model ranking for adult feather Hg concentrations within the Kerguelen avian 

community. Models are GLM with a gamma distribution and an inverse link function. 

Abbreviations: AICc, Akaike’s Information Criteria adjusted for small sample-sizes 

values; wi, AICc weights. 

Models N° parameters AICc ΔAICc
a wi

b 

     
Adults (N = 480)     
Species 28 1698 0 1 
Genus 22 1719 20 0 
Family 11 2226 528 0 
Order 6 2422 723 0 
Null 2 2459 760 0 
     
Adults and chicks (N = 654)     
Species * Age-class 43 1684 0 1 
Species + Age-class 23 2276 592 0 
Species 22 2471 787 0 
Age-class 3 2915 1231 0 
Null 2 3037 1353 0 

     
a Scaled ΔAICc; ΔAICc = 0.00 is interpreted as the best fit to the data among the models 
b Weight of evidence interpreted as a proportion. Weights across all models sum to 1.00 
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Table 2 

An overall synthesis of Hg concentrations in body feathers of adult gadfly petrels. Values are means ± SD with ranges in parentheses. 

Species Site Ocean Breeding region n Hg (µg g-1 dw) Reference 

Atlantic petrel (Pterodroma incerta) Gough Island South Atlantic Subantarctic 23 13.9 ± 3.6a Thompson et al. (1990) 
 Gough Island South Atlantic Subantarctic 15 13.5 ± 4.1 (3.9 - 20.1)a Thompson et al. (1993) 

Barau’s petrel (Pterodroma baraui) La Réunion Indian Tropical 20 1.0 ± 0.3 Kojadinovic et al. (2007) 

Bonin petrel (Pterodroma hypoleuca) Midway Atoll North Pacific Subtropical 27 19.7 ± 1.1b 
Gochfeld et al. (1999), Burger 

and Gochfeld 2000a 

Great-winged petrel (Pterodroma macroptera) 
Kerguelen 

Archipelago 
South Indian Subantarctic 14 15.8 ± 4.4 (9.8 - 27.1) This study 

Juan Fernandez petrel (Pterodroma externa) Juan Fernandez  South Pacific Subtropical 5 (M) 4.2 ± 0.3 Ochoa-Acuña et al. (2002) 
 Archipelago   11 (F) 3.9 ± 0.2  

Soft-plumaged petrel (Pterodroma mollis) Gough Island South Atlantic Subantarctic 21 10.3 ± 2.3a Thompson et al. (1990) 
 Gough Island South Atlantic Subantarctic 17 9.8 ± 2.3 (5.4 - 13.4)a Thompson et al. (1993) 

 
Kerguelen 

Archipelago 
South Indian Subantarctic 19 12.2 ± 4.2 (4.7 - 25.5) This study 

White-headed petrel (Pterodroma lessonii) Kerguelen 
Archipelago 

South Indian Subantarctic 10 12.4 ± 2.0 (9.2 - 17.1) This study 

Studies with too low numbers of sampled individuals (n < 4) were excluded. 
a Values are in µg g-1 wet weight. 
b Values are means ± SE. 
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Fig. 1. Map and location of the Kerguelen Islands and of the main oceanic fronts and zones within the southern Indian Ocean. 
Abbreviations: STF, Subtropical Front; PF, Polar Front; STZ, Subtropical Zone; SAZ, Subantarctic Zone; AZ, Antarctic Zone. 
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Fig. 2. Inter-specific differences in adult feather Hg concentrations within the Kerguelen avian 
community. Species are presented according to a) taxonomic groups: penguins (grey), procellariiform 
seabirds (white) and other species (black); and b) dietary groups: terrestrial species and crustacean- (dark 
grey), fish- (grey), squid- (black) and carrion- (white) consumers. Species sharing the same letter are not 
statistically different (Tukey HSD, p < 0.05). Values are means ± SD. Species abbreviations: WSP, Wilson’s 
storm petrel; GBSP, grey-backed storm petrel; TBP, thin-billed prion; BP, blue petrel; CDP, common diving 
petrel; SGDP, South Georgian diving petrel; LS, lesser sheathbill; KPi, Kerguelen pintail; AP, Antarctic 
prion; SRP, southern rockhopper penguin; KP, king penguin; MP, macaroni penguin; KeP, Kerguelen petrel; 
SS, subantarctic skua; BBA, black-browed albatross; BBSP, black-bellied storm petrel; KS, Kerguelen shag; 
WCP, white-chinned petrel; GP, gentoo penguin; KG, kelp gull; GrP, grey petrel; LMSA, light-mantled 
sooty albatross; SPP, soft-plumaged petrel; WHP, white-headed petrel; GWP, great-winged-petrel; NGP, 
northern giant petrel; WA, wandering albatross. 
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Fig. 3. Age-class differences in feather Hg concentrations within the Kerguelen seabird community. * 

Statistically different (Wilcoxon, p < 0.05); NS: not significant. Values are means ± SD. Species 

abbreviations: TBP, thin-billed prion; BP, blue petrel; CDP, common diving petrel; SGDP, South Georgian 

diving petrel; AP, Antarctic prion; SRP, southern rockhopper penguin; KP, king penguin; MP, macaroni 

penguin; KeP, Kerguelen petrel; SS, subantarctic skua; BBA, black-browed albatross; KS, Kerguelen shag; 

WCP, white-chinned petrel; GP, gentoo penguin; KG, kelp gull; GrP, grey petrel; LMSA, light-mantled 

sooty albatross; WHP, white-headed petrel; GWP, great-winged-petrel; NGP, northern giant petrel; WA, 

wandering albatross. 
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Fig. 4. Comparison of feather Hg concentrations between the same seabird species breeding in the 

southern Indian Ocean (Kerguelen Islands, present study) and in the southern Atlantic Ocean 

(South Georgia, Anderson et al. 2009, Becker et al. 2002). Species abbreviations: BP, blue petrel; 

CDP, common diving petrel; SGDP, South Georgian diving petrel; AP, Antarctic prion; BBA, 

black-browed albatross; WCP, white-chinned petrel; NGP, northern giant petrel; WA, wandering 

albatross. 
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Appendix A – Supplementary material 

Supplementary Table S1.  Species, biometric data, foraging habitats and dietary habits of marine and terrestrial birds breeding at the Kerguelen Islands. 

    Foraging habitat   

Species Abb. Size 
(cm)a 

Mass 
(kg)a 

Breeding 
(horizontal, 

vertical) 

Moulting  

(non-breeding) 

Isotopes 

(adult 
feathers) 

Chick food References 

      

Spheniscidae         

King penguin (Aptenodytes patagonicus) KP 90 13.3 oceanic; epi-
mesopelagic 

unknown (likely 
oceanic) 

Polar Front mesopelagic fish Bost el al. (2002), Cherel et al. 
(2010) 

Gentoo penguin (Pygoscelis papua) GP 83 6.5 neritic (open sea); 
benthic, pelagic 

resident all year Neritic waters benthic fish (pelagic 
crustaceans) 

Lescroël et Bost (2005) 

Macaroni penguin (Eudyptes chrysolophus) MP 71 4.9 neritic, oceanic; 
epipelagic 

Polar Frontal Zone, 
oceanic 

Subantarctic pelagic crustaceans 
(fish) 

Cherel et al. (2010), Thiebot et 
al. (2011a,b) 

Southern rockhopper penguin (Eudyptes chrysocome filholi ) SRP 50 2.9 neritic (closed sea); 
epipelagic 

Subantarctic and 
Polar Frontal Zone, 

oceanic 

Subantarctic  pelagic crustaceans 
(fish) 

Tremblay and Cherel (2000, 
2003); Cherel et al. (2010); 

Thiebot et al. (2012) 
Diomedeidae         

Wandering albatross (Diomedea exulans) WA 123 8.8 oceanic, sea surface subtropical waters, 
oceanic 

Subtropics  fish and cephalopods Cherel et al. (2013) 

Black-browed albatross (Thalassarche melanophrys) BBA 88 3.8 neritic (open sea); 
sea surface 

subtropical waters 
(southern Australia), 

neritic 

Subtropics benthopelagic fish 
(cephalopods) 

Cherel et al. (2000a,b); Cherel 
et al. (2013) 

Light-mantled sooty albatross (Phoebetria palpebrata) LMSA 84 3.1 oceanic; sea surface subantarctic waters; 
oceanic 

Subantarctic, 
Antarctic 

cephalopods 
(crustaceans, carrion) 

Ridoux (1994)a; Cherel et al. 
(2013) 

Procellariidae         

Northern giant petrel (Macronectes halli) NGP 88 4.4 on land and at sea 
surface 

subantarctic to 
subtropical waters, 

oceanic 

Subantarctic carrion/seabirds Ridoux (1994)a; Thiers et al. 
(2014) 

Grey petrel (Procellaria cinerea) GrP 50 1.1 oceanic; sea surface unknown Subtropical 
Front 

fish (cephalopods) Ridoux (1994)a 

White-chinned petrel (Procellaria aequinoctialis) WCP 55 1.3 oceanic; sea surface northern waters 
(Benguela current), 

neritic 

Subtropics 
(Benguela) 

fish (cephalopods, 
crustaceans) 

Delord et al. (2010); Péron et 
al. (2010) 

Great-winged petrel (Pterodroma macroptera) GWP 39 0.56 oceanic; sea surface unknown Subtropics cephalopods 
(crustaceans) 

Ridoux (1994)a 

White-headed petrel (Pterodroma lessonii) WHP 43 0.70 oceanic; sea surface unknown Subantarctic fish (cephalopods) Zotier (1990) 
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Soft-plumaged petrel (Pterodroma mollis) SPP 35 0.30 oceanic; sea surface unknown Subtropics fish (cephalopods, 
crustaceans) 

Unpublished data 

Kerguelen petrel (Aphrodroma brevirostris) KeP 35 0.36 oceanic; sea surface Unknown High Antarctic crustaceans Ridoux (1994)a 

Blue petrel (Halobaena caerulea) BP 29 0.20 oceanic; sea surface Antarctic waters, 
oceanic 

High Antarctic crustaceans 
(mesopelagic fish) 

Cherel et al. (2002a); Cherel et 
al. (2006) 

Antarctic prion (Pachyptila desolata) AP 26 0.16 oceanic; sea surface subtropical waters, 
oceanic 

Subtropics crustaceans Cherel et al. (2002b) ; Cherel et 
al. (2006) 

Thin-billed prion (Pachyptila belcheri) TBP 26 0.15 oceanic; sea surface Antarctic waters, 
oceanic 

High Antarctic crustaceans Cherel et al. (2002b) ; Cherel et 
al. (2006) 

Hydrobatidae         

Wilson’s storm petrel (Oceanites oceanicus) WSP 17 0.039 neritic; sea surface unknown Subtropics crustaceans Ridoux (1994)a 

Black-bellied storm petrel (Fregetta tropica) BBSP 20 0.053 neritic, oceanic; sea 
surface 

unknown Subtropics crustaceans and carrion 
(squid, fish) 

Ridoux (1994)a 

Grey-backed storm petrel (Garrodia nereis) GBSP 18 0.033 neritic; sea surface unknown Subtropics crustaceans  Ridoux (1994)a 

Pelecanoididae         

Common diving petrel (Pelecanoides urinatrix) CDP 23 0.14 neritic (closed sea); 
epipelagic 

unknown Subantarctic, 
low Antarctic 

crustaceans Bocher et al. (2000) 

South Georgian diving petrel (Pelecanoides georgicus) SGDP 20 0.12 oceanic; epipelagic unknown Subantarctic, 
low Antarctic 

crustaceans Bocher et al. (2000) 

Phalacrocoracidae         

Kerguelen shag (Phalacrocorax verrucosus) KS 65 1.9 neritic (open sea); 
benthic 

resident all year Neritic waters benthic fish Watanabe et al. (2011) 

Stercoraridae         

Subantarctic skua (Catharacta antarctica lönnbergi) SS 58 1.9 on land and at sea 
surface 

unknown Subtropics small petrels Mougeot et al. (1998) 

Laridae         

Kelp gull (Larus dominicanus) KG 60 1.1 on land and at sea 
surface 

resident all year Coastal carrion/seabirds 
(limpets) 

Stahl and Mougin (1986)a 

Chionididae         

Lesser sheathbill (Chionis minor) LS 40 0.83 on land resident all year Terrestrial/coas
tal 

carrion, eggs, 
invertebrates, algae 

Jouventin et al. (1996) 

Anatidae         

Kerguelen Pintail (Anas eatoni eatoni) KPi 40 0.48 on land resident all year Terrestrial vegetation unpublished data 

         

a Species average for size (length from the tip of the bill to the end of the tail) and mass (body weight) from Shirihai et al (2002). 
b Stahl and Mougin (1986) and Ridoux (1994) refer to the related Crozet Islands. 
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Supplementary Table S2. Adult feather Hg concentrations within the Kerguelen avian community. Abbreviations: Abb., species name abbreviation; Ad:Ch 
ratio, Adult to chick feather Hg ratio using Hg data from the present work and from Blévin et al. (2013). 

    Feather Hg (µg g-1 dw)  

Species Abb. Year n Mean ± SD Median Min–Max CV (%) Ad:Ch ratio 

         

Spheniscidae         

King penguin (Aptenodytes patagonicus) KP 2007 12 2.22 ± 0.59 2.04 1.45–3.21 26.58 2.0 

Gentoo penguin (Pygoscelis papua) GP 2007 12 5.85 ± 3.00 6.15 1.28–9.43 51.33 2.4 

Macaroni penguin (Eudyptes chrysolophus) MP 2007 12 2.24 ± 0.29 2.26 1.87–2.75 12.78 6.3 

Southern rockhopper penguin (Eudyptes chrysocome filholi) SRP 2007 12 1.96 ± 0.41 1.96 1.22–2.62 20.91 7.3 

Diomedeidae         

Wandering albatross (Diomedea exulans) WA 2006 12 16.59 ± 3.78 16.99 9.84–24.13 22.81 3.7 

Black-browed albatross (Thalassarche melanophrys) BBA 2005 33 4.07 ± 1.78 3.20 1.71–7.75 43.76 1.6 

Light-mantled sooty albatross (Phoebetria palpebrata) LMSA 2005, 2007 16 9.47 ± 3.78 10.12 2.31–14.22 39.92 3.6 

Procellariidae         

Northern giant petrel (Macronectes halli) NGP 2008 18 16.26 ± 7.27 14.61 7.99–32.11 44.72 3.1 

Grey petrel (Procellaria cinerea) GrP 2005 16 8.71 ± 6.47 6.48 2.22–25.56 74.29 2.8 

White-chinned petrel (Procellaria aequinoctialis) WCP 2005 14 5.54 ± 2.24 4.92 2.82–9.38 40.36 3.0 

Great-winged petrel (Pterodroma macroptera) GWP 2005 14 15.82 ± 4.44 15.00 9.76–27.13 28.09 9.6 

White-headed petrel (Pterodroma lessonii) WHP 2002 10 12.43 ± 2.01 12.56 9.22–17.06 16.21 8.1 

Soft-plumaged petrel (Pterodroma mollis) SPP 2010, 2011 19 12.21 ± 4.23 12.44 4.67–25.48 34.63 - 

Kerguelen petrel (Aphrodroma brevirostris) KeP 2007, 2008 24 2.27 ± 2.11 1.67 0.62–10.89 93.13 2.9 

Blue petrel (Halobaena caerulea) BP 2003 25 1.05 ± 0.72 0.86 0.43–3.32 68.01 1.3 

Antarctic prion (Pachyptila desolata) AP 2008 10 1.73 ± 0.50 1.53 1.28–2.61 28.94 8.3 

Thin-billed prion (Pachyptila belcheri) TBP 2003 20 0.63 ± 0.55 0.41 0.24–2.49 87.05 2.9 

Hydrobatidae         

Wilson’s storm petrel (Oceanites oceanicus) WSP 2005 12 0.42 ± 0.13 0.40 0.27–0.68 31.42 - 

Black-bellied storm petrel (Fregetta tropica) BBSP 2005, 2010 10 4.22 ± 2.53 3.78 1.46–9.53 59.91 - 

Grey-backed storm petrel (Garrodia nereis) GBSP 2006 23 0.51 ± 0.44 0.37 0.22–2.39 87.16 - 

Pelecanoididae         
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Common diving petrel (Pelecanoides urinatrix) CDP 2003 29 1.06 ± 0.54 0.95 0.35–2.43 51.10 9.4 

South-Georgian diving petrel (Pelecanoides georgicus) SGDP 2009, 2010 24 1.07 ± 0.69 0.99 0.10–3.05 64.18 20.7 

Phalacrocoracidae         

Kerguelen shag (Phalacrocorax verrucosus) KS 2005 30 5.30 ± 2.33 4.83 1.80–9.71 44.00 2.4 

Stercorariidae         

Subantarctic skua (Catharacta antarctica lönnbergi) SS 2009 26 2.65 ± 2.87 1.84 0.39–13.38 108.62 0.5 

Laridae         

Kelp gull (Larus dominicanus) KG 2010 5 6.33 ± 5.07 7.63 0.68–12.32 80.00 6.7 

Chionididae         

Lesser sheathbill (Chionis minor) LS 2009, 2010 26 1.49 ± 0.92 1.29 0.32–3.56 61.35 - 

Anatidae         
Kerguelen pintail (Anas eatoni eatoni) KPi 2010 16 1.69 ± 1.04 1.52 0.36–4.13 61.32 - 

a References: Marchant and Higgins (1990), Shirihai et al. (2002). 

 


