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On the semiprimitivity of cyclic codes

We prove, without assuming the Generalized Riemann Hypothesis, but with at most one exception, that an irreducible cyclic code c(p, m, v) with v prime and p of index 2 modulo v is a two-weight code if and only if it is a semiprimitive code or it is one of the six sporadic known codes. The result is proved without any exception for index-two irreducible cyclic c(p, m, v) codes with v prime not congruent to 3 modulo 8. Finally, we prove that these two results hold true in fact for irreducible cyclic code c(p, m, v) such that there is three p-cyclotomic cosets modulo v.

Introduction

Irreducible cyclic codes are extensively studied in the literature. They can be defined by three parameters p, m and v and are denoted c(p, m, v) (see section 2 for a precise definition). Such codes with only few different (Hamming) weights are highly appreciated, especially those with exactly two non-zero weights, called two-weight codes. The classification of two-weight codes is a classical problem in coding theory (see [START_REF] Calderbank | The geometry of two-weight codes[END_REF]); it is still an open problem but recent progress has been made. An infinite family, namely the semiprimitive codes (i.e. when -1 is a power of p modulo v), and eleven sporadic examples are known. Schmidt and White in [START_REF] Schmidt | All two-weight irreducible cyclic codes ?[END_REF] provided evidence to conjecture that this is the whole story: Conjecture 1. An irreducible cyclic code c(p, m, v) is a two-weight code if and only if it is a semiprimitive code or it is one of the eleven sporadic known codes.

They proved their conjecture, conditional on the Generalized Riemann Hypothesis (G.R.H.), for index-two codes, that is when p has index 2 modulo v. Note that semiprimitive codes have two non-zero weights and thus only the "only if" part had to be proved.

We considered in [START_REF] Aubry | On the weights of binary irreducible cyclic codes, Coding and Cryptography[END_REF] the conjecture in the binary case and we proved it in a particular case without assuming G.R.H.. Our main result here is a proof of this conjecture without assuming G.R.H. but with at most one exception in the case where p has index 2 and v is prime. We prove before, using near-primitive root densities and conditionally on G.R.H., that for any prime number p there are infinitely many such codes namely index-two irreducible cyclic codes c(p, m, v) with v prime.
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We prove the conjecture without any exception (and without assuming G.R.H.) in the case where p has index 2 and v is a prime not congruent to 3 modulo 8. Finally, we remark that the results hold true in fact for irreducible cyclic codes c(p, m, v) with v an integer such that there is three p-cyclotomic cosets modulo v.

Irreducible cyclic codes and McEliece weight-formula

Let us introduce irreducible cyclic codes over a prime finite field (indeed, it is enough for our purpose, namely the classification of twoweight irreducible cyclic codes, to consider such codes over prime fields, as remarked in [START_REF] Schmidt | All two-weight irreducible cyclic codes ?[END_REF]).

Let p be a prime number and consider the finite field K with p elements. Let L be the extension of degree m of K, consider a divisor n of p m -1 and write v = (p m -1)/n (thus v and p are coprime). Let ζ be a primitive n-th root of unity in L (i.e. ζ is a generator of the cyclic subgroup of order n of the multiplicative group L * ). We define the c(p, m, v) code to be the image of the following map Φ m :

Φ m : L -→ K n t -→ Tr L/K (tζ -i ) n-1 i=0
where Tr L/K is the trace of the field L over K.

It is a code of length n and dimension ord n (p), the multiplicative order of p modulo n. Every irreducible cyclic code over K can be viewed as a c(p, m, v) code (see [START_REF] Schmidt | All two-weight irreducible cyclic codes ?[END_REF]), so we can take c(p, m, v) as the definition of irreducible cyclic codes over K of length n. The c(p, m, v) codes are known to be projective or saturated according to whether gcd(n, p -1) = 1 or gcd(n, p -1) = p -1. As remarked in [START_REF] Schmidt | All two-weight irreducible cyclic codes ?[END_REF], we may assume the saturated situation. Now we are interested in the weight w(t) of a codeword Φ m (t) of such a code, for t ∈ L * . Let χ be a character of the multiplicative group L * and let [START_REF] Aubry | On the weights of binary irreducible cyclic codes, Coding and Cryptography[END_REF] τ

L (χ) = - x∈L * χ(x)e 2iπ p Tr L/K (x)
be the Gauss sum associated with χ.

Let V be the subgroup of L * of index v and let Γ be the subgroup of characters of L * which are trivial both on V and K * . Note that the order of Γ is equal to v gcd(n, p -1)/(p -1) which is just equal to v in the saturated situation. We have the following McEliece formula: Proposition 2. For any t ∈ L * , the weight w(t) of the codeword Φ m (t) is given by:

(2) w(t) = p -1 pv p m + χ∈Γ\{1} τ L (χ) χ(t) .
And, conversely by Fourier inversion

(3) τ L (χ) = p p -1 t∈L * /V w(t)χ(t).
One says that p is semiprimitive modulo v when -1 is in the group generated by p in (Z/vZ) * , i.e. when ord v (p) is even. Note that in this case all the Gauss sums are rational and a c(p, m, v) code is a two-weight code. In the paper we investigate the reciprocal: besides some sporadic known examples, is any two-weight irreducible cyclic code semiprimitive ?

The case v small

Before going further let us treat the case where v is small, i.e. v = 2 or 3. We know that a c(p, m, 2) code is a two-weight code, and that the weights can be expressed in term of quadratic Gauss sum (see [START_REF] Berndt | Gauss and Jacobi Sums[END_REF]). In the same way, the weights of a c(p, m, 3) code can be expressed by means of cubic Gauss sums. However, it is hard to give the exact values of the cubic Gauss sums (see [START_REF] Matthews | Gauss sums and elliptic functions I. The Kummer sums[END_REF]), and thus also the weights of such a code. Nevertheless, we have the following characterization:

Proposition 3. A c(p, m, 3

) code has two weights if and only if it is semiprimitive (that is here, if and only if p ≡ 2 mod 3).

Proof. Let χ be a multiplicative character of L of order 3. The number of weights of a c(p, m, 3) code is equal to the number of distincts values taken by the mapping:

L * ∋ t → f (t) = τ L (χ)χ(t) + τ L ( χ) χ(t).
Let 1 = j be a cubic root of unity. Let t be such that

χ(t) = j. It is easy to see that f (1) = f (t) implies τ L ( χ) = jτ L (χ), that f (t) = f (t 2 ) implies τ L ( χ) = τ L (χ) and that f (1) = f (t 2 ) implies τ L ( χ) = j 2 τ L (χ).
Therefore, the code has two weights if and only if there exists a cubic root of unity ω such that

(4) τ L ( χ) = ωτ L (χ).
In particular, since τ L (χ) 3 is an algebraic integer of degree 2 and norm p 3m , we deduce that τ L (χ) 6 = τ L ( χ) 6 = p 6m . Hence the Gauss sums τ L (χ) are pure Gauss sums (see [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] for a definition of a pure Gauss sum). It follows by a theorem of Baumert, Mills and Ward (see Theorem 11.6.4 of [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] for example) that p is semiprimitive modulo 3.

Infinitely many index-two c(p, m, v) codes with v prime

For the study of c(p, m, v) codes with v prime and p of index two modulo v, we are interested in primitive and near-primitive root densities.

In 1927, Emil Artin made the following conjecture (called now the Artin's primitive root conjecture): for any integer α = ±1 not a square, the natural density

lim x→+∞ ♯{v prime | v ≤ x and α generates F * v } ♯{v prime | v ≤ x}
exists and is positive. In 1967, Hooley proved this conjecture under the assumption of G.R.H.. In particular, he proved that if α is neither ±1 nor a perfect square, then there are infinitely many primes v for which α is a primitive root modulo v.

If we ask α to generate only the squares of F * v and not the whole group F * v , i.e. to have index 2 and not index 1 modulo v, we come to the notion of near-primitive roots. Precisely, fix α = ±1 not a perfect power and let v be a prime and t be an integer such that v ≡ 1 (mod t). Consider

N α,t (x) = ♯{v prime | v ≤ x and v |α and ind v (α) = t}.
Notice that for t = 1 this quantity is just the previous one studied by Artin and Hooley. In 2000, Moree introduced in [8] a weighting function depending on α and t and gave an estimation of N α,t (x) assuming G.R.H.. In particular, for α = p a prime number and t = 2, he proved that

N p,2 (x) = v odd prime v≤x ϕ( v-1 2 ) v -1 + O( x log log x log 2 x ).
This implies that there exist infinitely many primes v such that p has index 2 modulo v.

In particular, we have:

Proposition 4. Conditionally on G.R.H., for any prime number p there are infinitely many index-two irreducible cyclic codes c(p, m, v) with v prime.

Necessary conditions on two-weight codes

The irreducible cyclic codes c(p, m, v), with v a prime number and with p of index 2 modulo v, range in two families: the first one with v ≡ 1 (mod 4) and the second one with v ≡ 3 (mod 4). If v ≡ 1 (mod 4), then -1 is a square modulo v and since p generates the squares modulo v, we are reduced to the semiprimitive case. This lead us to consider the second case, where -1 is not a square modulo v. Moreover, in view of Proposition 3, we can suppose that v is greater than 3.

Hence, let us consider a prime number p and an integer v satisfying the following (♯) conditions:

(a) v is a prime greater than 3, (b) ord v (p) = (v -1)/2 i.e. p has index 2 modulo v, (c) v ≡ 3 (mod 4).

Let f be the multiplicative order of p modulo v. Note that f divides m, and we set s = m/f . It is shown in [START_REF] Ph | A new class of two weight codes, Finite fields and their applications[END_REF] that if a c(p, m, v) code with v satisfying the (♯) conditions has two weights then: [START_REF] Louboutin | Simple proofs of the Siegel-Tatuzawa and Brauer-Siegel theorems[END_REF] v + 1 4 = p hs .

We give, now, a more precise result:

Theorem 5. If a c(p, m, v) code with v satisfying the (♯) conditions is a two-weight code then we have:

m = ord v (p).
Proof. Since p has index 2 modulo v, then p is a square modulo v, and

(p) = P P ′ splits in the extension Q( √ -v)/Q. We have that the norm

N Q( √ -v)/Q (P ) = p and that P h = (α) is a principal ideal (since h is the ideal class number of Q( √ -v)), with α = (a + b √ -v)/2 (with a, b ∈ Z) an algebraic integer of Q( √ -v).
Taking norms, we obtain p h = (a 2 + vb 2 )/4 and since a and b cannot be zero in this situation, we conclude that v + 1 4 ≤ p h .

But by (5) a c(p, m, v) code with v satisfying the (♯) conditions has two weights if and only if [START_REF] Matthews | Gauss sums and elliptic functions I. The Kummer sums[END_REF] v + 1 4 = p hs .

Thus, p hs ≤ p h and s = 1.

Then, the previously defined parameter s appearing in [START_REF] Ph | A new class of two weight codes, Finite fields and their applications[END_REF] and [START_REF] Schmidt | All two-weight irreducible cyclic codes ?[END_REF] is equal to 1 under the (♯) conditions. In particular, we have: Corollary 6. If a c(p, m, v) code with v satisfying the (♯) conditions is a two-weight code then

(7) v + 1 4 = p h .
where h is the class number of the imaginary quadratic number field

Q( √ -v).
In particular, such a code is completely defined by the parameter v.

Furthermore, we have the following necessary condition on p for twoweight c(p, m, v) code with v satisfying the (♯) conditions: Corollary 7. If a c(p, m, v) code with v satisfying the (♯) conditions has two weights, then p is the least prime which totally splits in the extension Q( √ -v)/Q, i.e. p is the least prime which is a square modulo v.

Proof. Indeed, if ℓ is a prime which totaly splits in Q( √ -v)/Q, then the previous proof implies that ℓ h ≥ v+1 4 = p h which gives ℓ ≥ p.

Main results

Using the previous section, we can state the following result which can also be derived from the proof of lemma 4.1. of [START_REF] Ph | A new class of two weight codes, Finite fields and their applications[END_REF].

Theorem 8. There is no two-weight c(p, m, v) code with v satisfying the (♯) conditions and with v ≡ 7 (mod 8). Hence, Conjecture 1 holds true for index-two irreducible cyclic c(p, m, v) codes with v a prime not congruent to 3 modulo 8.

Proof. Since v ≡ 7 (mod 8), it follows that 2 is a square modulo v, and the ideal (2) splits in the extension Q( √ -v)/Q. By Corollary 7, we conclude that p = 2. But we proved in [START_REF] Aubry | On the weights of binary irreducible cyclic codes, Coding and Cryptography[END_REF] that there exists no two-weight binary c(p, m, v) code with v satisfying the (♯) conditions, so we get the non-existence of such codes. Hence, this proves the conjecture since the case v ≡ 1 (mod 4) is trivial, as quoted in the previous section, and the last case v ≡ 3 (mod 4) is divided in two subcases : when v ≡ 7 (mod 8), which is now solved, and when v ≡ 3 (mod 8) which is the remainder case.

Actually, we will consider now a more general approach using the identity of Corollary 6 but with at most one exception.

If a c(p, m, v) code with v satisfying the (♯) conditions has two weights then we have the following relation

v + 1 4 = p h ,
where h is the class number of the imaginary quadratic number field Q( √ -v) (see Corollary 6). In 1935, Siegel gave a non-effective lower bound on the residue at s = 1 of the L-function L(s, χ v ) associated to the primitive odd Dirichlet character χ v of Q( √ -v). Tatuzawa, in 1951, proved an effective lower bound of L(1, χ v ) but with at most one exception (see [START_REF] Tatuzawa | On a theorem of Siegel[END_REF] and see also [START_REF] Louboutin | Simple proofs of the Siegel-Tatuzawa and Brauer-Siegel theorems[END_REF] for a simple proof): if 0 < ε < 1/2 and v ≥ max(e 1/ε , e 11.2 ), then

L(1, χ v ) ≥ 0.655εv -ε . Since the class number h of Q( √ -v) with -v ≡ 1 (mod 4
) is linked to L(1, χ v ) by the following Dirichlet class number formula:

L(1, χ v ) = πh √ v ,
we can use Tatuzawa theorem to get an upper bound on v.

Proposition 9. There exists at most one two-weight c(p, m, v) code with v ≥ 10 8 satisfying the (♯) conditions. Proof. Let ε = 1/ log(10 8 ) ∈ (0, 1/2). For v ≥ max(e 1/ε , e 11.2 ) = 10 8 , we have, with at most one exception:

L(1, χ v ) ≥ 0.655εv -ε = 0.035v -0.054 . Now, v+1 4 = p h ≥ 2 h implies that log v+1 4 ≥ h log 2.
By the Dirichlet class number formula, we get:

log v + 1 4 ≥ √ vL(1, χ v ) π log 2.
But, for v ≥ 10 8 , we have on one hand log v+1
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≥ 17.03 and on the other hand √ vL(1,χv) π log 2 > 28.55 by Tatuzawa theorem. Thus, there exists no v ≥ 10 8 such that v+1 4 = p h , with at most one exception. Now, we make an exhaustive research of the primes v ≤ 10 8 such that (v + 1)/4 is a power of a prime p. Then, for such primes v, we check whether (v + 1)/4 = p h(v) holds true or not, with h(v) the class number of Q( √ -v). Actually, we recover the following sporadic known examples of Table 1.

Thus, we have proved the following theorem: 

Cyclotomic cosets

Let p be a prime. For any integer v prime to p, consider on the ring Z/vZ the equivalence relation given by: for a, b ∈ Z/vZ, we set a ∼ b if and only if there exists t ∈ Z such that a = bp t . The equivalence classes for this equivalence relation are the so-called p-cyclotomic cosets modulo v.

Recall that the order ord v (g) of an element g of the multiplicative group (Z/vZ) * divides the order ϕ(v) of this group, where ϕ is the Euler function. We denote by ind v (g) the index of g modulo v i.e. ind v (g) = ϕ(v) ord v (g) .

Then ind v (g) = [(Z/vZ) * : g ] where g denotes the subgroup of (Z/vZ) * generated by g. But the number γ(p, v) of p-cyclotomic cosets modulo v is also equal to the number of irreducibles polynomials in the decomposition of the polynomial X v -1 over F p , thus it is equal to [START_REF] Moree | Asymptotically exact heuristics for (near) primitive roots[END_REF] γ(p, v)

= d|v ϕ(d) ord d (p) = d|v ind d (p)
with the convention that ind 1 (p) = 1. For example, the condition Proof. The result is in fact much general: the number of weights is less or equal than the number of cyclotomic cosets. It follows from the fact that the weight of a codeword of a c(p, m, v) code is invariant under t → tζ and under t → t p ; see Theorem 2.5 of [START_REF] Fitzgerald | Sums of Gauss sums and weights of irreducible codes[END_REF] for a detailed proof.

γ(p, v) = 2 is equivalent to ind v (p) = 1,
The case (ii) of Proposition 11 falls into the semiprimitive case since p generates the whole group (Z/vZ) * and thus contains -1.

Finally, we have proved the following result:

Theorem 13. If v is an integer such that there is three p-cyclotomic cosets modulo v then any two-weight irreducible cyclic code c(p, m, v) which is not one of the six sporadic examples of Table 1 is semiprimitive, with at most one exception. Hence, Conjecture 1 holds true, with at most one exception, for all c(p, m, v) codes with v an integer such that there is three p-cyclotomic cosets modulo v.

Proof. If a binary irreducible cyclic code with three-cyclotomic cosets has two weights then it is semiprimitive. Indeed, by Proposition 11, an irreducible cyclic code with three-cyclotomic cosets leads to two cases. The first one leads c(p, m, v) codes with v a square of a prime and p of index 1 modulo v which gives a semiprimitive code.

The other case leads to c(p, m, v) codes with v a prime and p of index 2 modulo v (the so-called index-two codes). When v ≡ 1 (mod 4), we saw that we obtain a semiprimitive code. When v ≡ 3 (mod 4), we obtain c(p, m, v) codes with v satisfying the (♯) conditions. In the case where p = 2, i.e. the binary case, we found in [START_REF] Aubry | On the weights of binary irreducible cyclic codes, Coding and Cryptography[END_REF] that there is no two-weight codes. When p = 2, theorem 10 gives the result.

Table 1 .

 1 Sporadic c(p, m, v) codes with v satisfying the (♯) conditions and v ≤ 10 8 .

	v 11 19 67 107 163 499
	p 3 5 17 3	41	5
	h 1 1 1	3	1	3

  that is p is a primitive root modulo v.Proposition 11. Let v be an integer. The ring Z/vZ contains exactly 3 p-cyclotomic cosets if and only if one of the following holds:(i) v is a prime and p has index 2 mod v;(ii) v is the square of a prime and p has index 1 mod v.

Proof. By

[START_REF] Moree | Asymptotically exact heuristics for (near) primitive roots[END_REF] 

we have γ(p, v) = 3 if and only if ind v (p) = 2 and v has no proper divisor, or ind v (p) = 1 and v has a unique proper divisor. The proposition is then proved.

Proposition 12. Let v be an integer. If the ring Z/vZ contains exactly three p-cyclotomic cosets then any c(p, m, v) code has at most three nonzero weights.