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Abstract

We give a formula for the number of rational points of projective algebraic curves
defined over a finite field, and a bound “à la Weil” for connected ones. More precisely,
we give the characteristic polynomials of the Frobenius endomorphism on the étale
ℓ-adic cohomology groups of the curve. Finally, as an analogue of Artin’s holomorphy
conjecture, we prove that, if Y −→ X is a finite flat morphism between two varieties
over a finite field, then the characteristic polynomial of the Frobenius morphism on
Hi

c(X,Qℓ) divides that of H
i
c(Y,Qℓ) for any i. We are then enable to give an estimate

for the number of rational points in a flat covering of curves.

1 Introduction

Absolutely reducible projective curves arise naturally in different ways in Arithmetic and
Geometry. For example when we reduce, modulo a prime, a projective curve defined over
a number field, or when we consider intersections of projective varieties.
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We are interested in this paper in the number of rational points of such a curve X
defined over a finite field k. It is convenient to introduce the zeta function of X, denoted
by Zk,X(T ) or simply ZX(T ), as:

ZX(T ) = exp

(
∞∑

n=1

♯X(kn)
Tn

n

)
,

where kn denotes the finite field extension of degree n of k. Let q be the order of k,
and F be the endomorphism on the ℓ-adic étale cohomology groups H i

et(X,Qℓ) (for some
prime ℓ different from the characteristic of k and X a geometric model of X) induced by
the endomorphism x 7→ xq of X. The Grothendieck-Lefschetz formula expresses this zeta
function as a rational fraction in terms of the (reciprocal) characteristic polynomials of F
on the H i’s:

ZX(T ) =
det(I − TF | H1

et(X,Qℓ))

det(I − TF | H0
et(X,Qℓ)) det(I − TF | H2

et(X,Qℓ))
.

In other words, the number of kn-rational points of X equals

♯X(kn) =
∑

αn
2,j −

∑
αn
1,j +

∑
αn
0,j ,

where the αi,j ’s are the eigenvalues of F on H i
et(X,Qℓ). The aim of this paper is to

determine them. Consider for instance a k-irreducible projective curve X having two
absolutely irreducible componentsX1 andX2 defined over k2, conjugated under Gal(k2/k).
It is easily seen that X1∩X2 is defined over k, and an elementary counting argument shows
that

♯X(kn) =

{
♯X1(kn) + ♯X2(kn)− ♯X1 ∩X2(kn) if n is even,
♯X1 ∩X2(kn) if n is odd.

It is not clear what could be these numbers αi,j (whose existence follows from the above
Grothendieck-Lefschetz formula) summing-up this two-cases formula into a closed one (see
example 2). This will be done in the general case.

In the general reducible case, if X = X1 ∪ · · · ∪ Xr is a decomposition of X into its
k-irreducible components, it is enticing to compute ♯X(kn) using the well-known inclusion-
exclusion formula in terms of the j-th intersections Xi1 ∩ · · · ∩Xij . In fact, this approach
is not effective. Indeed, we obtain the eigenvalues αi,j ’s unfortunately only up to roots of
unity (theorem 1). However, this is sufficient to deduce a Weil inequality (corollary 3).

Then, we push further our investigation in the next section to raise the indetermination
by roots of unity. Here, we determine the eigenvalues of the Frobenius onX in terms of: the
eigenvalues of the Frobenius of the normalizations of the absolutely irreducible components
of X, the (finite) set of singular points of these absolutely irreducible components, and the
(finite) set of intersection points of these components (theorems 9, 10 and 11). In view
of these results, we point out that the contributions of these finite sets are very easy to
handle, as shown by lemma 8. Moreover, the multiple intersections between the absolutely
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irreducible components don’t appear in the results (see example 3), which is nice, both
for theoretical and computational approaches.

Finally, we consider in the final section the behaviour of the eigenvalues of the Frobenius
in a covering Y −→ X of d-dimensional (d ≥ 1) non proper varieties. In analogy with a
conjecture of Artin, we prove a divisibility result for such finite flat morphisms (corollary
13). Together with the results of the preceding section, this enables us to derive some
upper bound for the number of points if X and Y are projective curves in a surjective flat
morphism (theorem 14), including the known results as special cases.

Because the cohomology groups of a disjoint union of varieties is the direct sum as
F -modules of those of its connected components, the characteristic polynomial of the
Frobenius is the product of those on each component. Hence we will restrict ourselves to
connected curves.

Let us fix some notations. If V is a scheme over a field k, we denote by |V | the set of
closed points of V , by k(P ) the residue field of a point P ∈ |V |, and by dP = [k(P ) : k]
the degree of P over k. In this paper, k will always be the finite field with q elements and
k an algebraic closure of k. The normalization map is denoted by νV : Ṽ −→ V and we
denote by V = V ×k k the extension of V to k. We set πV for the arithmetic genus of V ,

gV for its geometric genus and ∆V = ♯
(
Ṽ (k)− V (k)

)
.

For simplicity, we denote by H i(V ) (respectively H i
c(V )) the i-th ℓ-adic étale cohomol-

ogy group (resp. with compact support) H i
et(V ,Qℓ) (resp. H i

c(V ,Qℓ)) of V . Then, we
denote by

Pk,Hi(V )(T )

the characteristic polynomial det(I − TF | H i(V )) of the Frobenius endomorphism F of
the variety V over the field k. We use the same notation, but with a subscript “c”, when
we deal with cohomology with compact support.

Some varieties V will naturally be introduced over k. They will be denoted with an
overline. When it will be proved that they can be defined over the finite field extension kn
of k, we will denote by V (without overline) the variety over kn such that V = V ×kn k.

2 A counting approach

Let us remark that if {Vi} is a finite covering of a variety V defined over k by subvarieties
defined over k, then the following inclusion-exclusion formula:

♯V (kn) =
∑

j≥1

(−1)j+1
∑

i1<···<ij

♯(Vi1 ∩ . . . ∩ Vij )(kn)

gives
Zk,V (T ) =

∏

j≥1

∏

i1<···<ij

ZVi1
∩...∩Vij

(T )(−1)
j+1

.
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Theorem 1 Let X be a connected projective curve defined over k and X = X1 ∪ · · · ∪Xr

be its decomposition into its k-irreducible components. Then the number of rational points
of X over kn is of the form:

♯X(kn) =
r∑

i=1

ρni −
r∑

i=1

2g
Xi∑

j=1

ωn
ij −

∆X−r∑

i=1

βn
i

for some algebraic integers ρi of modulus q, some algebraic integers ωij of modulus
√
q

and some roots of unity βi in C.

Proof. Let us assume to begin with that all absolutely irreducible components of X, so
as all its singular points and the points above them by the normalization map, are rational
over k. We set Z =

⋃
i<j(Xi ∩Xj) and Zi = Z ∩Xi as k-varieties (overlines for Xi’s can

be dropped thanks to the last paragraph of the introduction).
Then, the inclusion-exclusion formula applied, at first to X =

⋃
iXi gives:

Zk,X(T ) =
∏

j≥1

∏

i1<···<ij

ZXi1
∩...∩Xij

(T )(−1)
j+1

,

and, in next to Z =
⋃

i Zi gives:

Zk,Z(T ) =
∏

j≥1

∏

i1<···<ij

ZZi1
∩...∩Zij

(T )(−1)
j+1

.

Remarking that Zi1 ∩ . . . ∩ Zij = Xi1 ∩ . . . ∩Xij for j ≥ 2, we obtain

Zk,X(T ) =
r∏

i=1

Zk,Xi
(T )× Zk,Z(T )∏

i Zk,Zi
(T )

.

Since the Xi’s are absolutely irreducible curves, we know by [1] that their zeta function
are given by:

Zk,Xi
(T ) =

P
Xi/X̃i

(T )P
k,H1(X̃i)

(T )

(1− T )(1− qT )

where the polynomial P
k,H1(X̃i)

(T ) has degree 2gXi
i.e. twice the geometric genus of Xi

and has root of modulus
√
q by the Riemann hypothesis and P

Xi/X̃i
(T ) is the following

polynomial of degree ∆Xi
whose roots have modulus 1:

P
Xi/X̃i

(T ) =
∏

P∈|X|

(∏
P̃∈ν−1

X
(P )

(1− T
d
P̃ )

1− T dP

)
.

Under our assumptions on rationality, we have here: P
Xi/X̃i

(T ) = (1− T )∆Xi .
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Moreover, for any zero-dimensional algebraic set V defined over k all of whose closed
points are rational over k, we have clearly:

ZV (T ) =
1

(1− T )♯V (k)
.

Thus Zk,X(T ) can be written as:

Zk,X(T ) =

∏r
i=1 (PXi/X̃i

(T )P
k,H1(X̃i)

(T ))× (1− T )(
∑r

i=1
♯Zi(k))−♯Z(k)−r

(1− qT )r
.

Hence

Zk,X(T ) =
(
∏r

i=1 Pk,H1(X̃i)
(T ))× (1− T )∆X−r

(1− qT )r
,

since

∆X = (
r∑

i=1

∆Xi
) + (

r∑

i=1

♯Zi(k))− ♯Z(k).

This means that

♯X(kn) = rqn −
r∑

i=1

2g
Xi∑

j=1

ωn
ij −

∆X−r∑

i=1

1n,

so that the theorem is proved in this case.
In the general case, the well-known formula:

∏

ζm=1

Zk,X(ζT ) = Zkm,X×kkm(T
m),

holding for any m ∈ N∗, proves that the absolute values of the zeros and poles of Zk,X(T )
are some m-th roots of the zeros and poles of Zkm,X×kkm(T ). Hence, the general case
follows from the particular one after a suitable base-field extension km of k, and the
theorem is proved.

Lemma 2 Let X be a connected projective curve defined over k of arithmetic genus πX ,
and X = X1 ∪ · · · ∪ Xr be its decomposition into k-irreducible projective curves Xi of
geometric genus gXi

. Let c be the number of absolutely connected components of X. Then,
we have:

∆X ≤ πX −
r∑

i=1

gXi
+ r − c.

Proof. Since the problem is geometric, we can work on the algebraic closure k of k. If P
is a closed point of X, let OP,X be the local ring of X at P , Frac(OP,X) be the localization
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of OP,X at the multiplicative set of non-zero divisors of OP,X and OP,X be its integral
closure in Frac(OP,X). Define

δ(P,X) = dimk

OP,X

OP,X

.

We have the following short exact sequence

0 −→ OX −→ (νX)∗O
X̃

−→ (νX)∗O
X̃
/OX −→ 0

where OX is the structure sheaf of X and (νX)∗O
X̃

the direct image sheaf.

Then the long exact sequence in cohomology associated implies, taking into account that
dimH0(OX) = c, that dimH0((νX)∗O

X̃
) = r and finally that dimH1((νX)∗O

X̃
/OX) = 0:

πX =
r∑

i=1

gXi
+
∑

P∈X

δ(P,X)− r + c.

We are then reduced to prove the following inequality:

∆X ≤
∑

P∈X

δ(P,X).

If P ∈ X(k), let α(P,X) be the number of closed points in ν−1
X

(P ). We have to prove
that

α(P,X)− 1 ≤ δ(P,X).

The total fraction ring of OP,X is isomorphic to the direct product k(X1)×· · ·×k(Xr)

of the function fields of the irreducible components of X. The integral closure OP,X in

it is then isomorphic to the direct product of the integral closures OP,Xi
of the domains

OP,Xi
⊂ k(Xi). But each OP,Xi

is a semi local ring

OP,Xi
=

⋂

P←P̃ij
∈X̃i

O
P̃ij

,Xi
.

Let 1 ≤ i ≤ r be fixed. We introduce the evaluation map on the points of X̃i lying
over P :

φi : OP,Xi
−→ k

α(P,Xi)

f 7−→
(
f(P̃i1), . . . , f(P̃i

α(P,Xi)
)
)
.

Note that if P 6∈ Xi then OP,Xi
= k(Xi) = OP,Xi

and α(P,Xi) = 0, so that the map

φi : k(Xi) −→ k
0
= {0} is the zero map.
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This is a k-linear map which is surjective thanks to the weak approximation theorem

for the global field k(X̃i). They fit together in a surjective k-linear map

Φ : OP,X = OP,X1
× · · · × OP,Xr

−→
r∏

i=1

k
α(P,Xi) = k

∑
α(P,Xi) = k

α(P,X)

sending f = (f1, . . . , fr) to

(
f1(P̃11), . . . , f1(P̃1

α(P,X1)
), . . . , fr(P̃r1), . . . , fr(P̃r

α(P,Xr)
)

)
,

which sends OP,X onto the diagonal line. The inequality is then proved and so is the
lemma.

Theorem 1 together with lemma 2 admit for example the following corollary:

Corollary 3 Let X be an absolutely connected projective curve defined over k and X =
X1 ∪ · · · ∪Xr be its decomposition into k-irreducible projective curves which are absolutely
irreducible. Then:

|♯X(k)− (rq + 1)| ≤ 2
r∑

i=1

gXi

√
q +∆X − r + 1 ≤ 2πX

√
q.

Proof. We write the formula of theorem 1 for the number of k-rational points with
ρi = q for any i. Then, taking modulus we get the first inequality, and the second
inequality follows from lemma 2.

Remark that we can improve as in [10] the inequalities of the preceding corollary by
replacing 2

√
q by its integer part.

3 Frobenius on the cohomology

Let us begin by some lemmas, which will be useful later.

3.1 Two lemmas

Lemma 4 Let X be a projective curve defined over k, and Z ⊂ X be a non-empty zero-
dimensional subvariety defined over k. Let U = X − Z. Then

Pk,H1
c (U)(T ) = Pk,H1(X)(T )

Pk,H0(Z)(T )

Pk,H0(X)(T )
.
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Proof. Since H1(Z) = 0 for a zero-dimensional scheme, and H0
c (U) = 0 for a non-proper

variety U , the following long exact sequence of F -modules (see remark 1.30 p.94 of [9]):

· · · −→ H i−1
c (Z) −→ H i

c(U) −→ H i
c(X) −→ H i

c(Z) −→ · · · (1)

becomes

0 −→ H0(X) −→ H0(Z) −→ H1
c (U) −→ H1(X) −→ 0.

The lemma follows taking characteristic polynomials of the Frobenius.

Lemma 5 Let V be an irreducible (respectively connected) k-variety, and suppose that

V = V 1 ∪ . . . ∪ V m

for some disjoint absolutely irreducible (respectively absolutely connected) subvarieties V i

over k. Then, V 1, . . . , V m are defined over km, are conjugated under Gal(km/k), and

Pk,Hi
c(V )(T ) = Pkm,Hi

c(V1)(T
m).

Proof. Let kn be the smallest extension of k, in which each Vi, 1 ≤ i ≤ m, are defined.
Then Gal(kn/k) acts on the set {V1, · · · , Vm}. The union of those Vi’s in an orbit for this
action is defined over k, and is irreducible (resp. connected) over k. Since V is irreducible
(resp. connected) by assumption, this action is transitive, so that n ≥ m. On the other
side, each Vi is defined over the fixed field of kn by the common stabilizer. By minimality
of n, this stabilizer is trivial, hence n = m, which proves the first and the second assertions
of the lemma.

Now, the disjointness of the Vi’s implies that

H i
c(V ) = H i

c(V1)⊕ . . .⊕H i
c(Vm)

as vector spaces. We just saw that, up to a labelling, F cyclically permutes V1, . . . , Vm.
Let B1 = {e1, · · · , eb} be a basis of H i

c(V1), so that Bk = {F k−1(e1), · · · , F k−1(eb)} is a
basis of H i

c(Vk). In the basis B = B1 ∪ · · · ∪ Bm of H i
c(V ), the matrix of F is

MatB(F | H i
c(V )) =




0 0 · · · · · · A
I 0 · · · · · · 0
0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0




for some matrix A ∈ Mb(Qℓ). Hence,
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MatB(ϕqm | H i
c(V )) = MatB(F | H i

c(V ))m =




A 0 · · · 0

0 A
. . .

...
...

. . .
. . . 0

0 · · · 0 A


 ;

but the matrix MatB(ϕqm | H i
c(V )) also equals




MatB1(ϕqm | H i
c(V1)) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 MatBm(ϕqm | H i

c(Vm))



,

so that A = MatB1(F
m | H i

c(V1)). Now, the lemma follows from the easy fact that, if
A ∈ Mb(Qℓ) and I is the identity matrix in Mb(Qℓ) then

det




I 0 · · · 0 −TA

−TI I
. . . 0

0 −TI
. . . 0

...
...

. . .
. . . I 0

0 · · · 0 −TI I




= det(I − TmA).

3.2 The zero-th and second cohomology groups

Proposition 6 Let X be a connected projective algebraic curve defined over k. Let c be
the number of connected components of X. Then these connected components are defined
over kc, are conjugate under Gal(kc/k), and

Pk,H0(X)(T ) = 1− T c.

Proof. This follows immediately from lemma 5 and the fact that

Pkc,H
0(X1)(T ) = 1− T

for an absolutely connected component X1 of X, defined over kc.

Proposition 7 Let X be a connected projective curve defined over k, and let

X = X 1 ∪ · · · ∪ X c
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be the decomposition of X into its absolutely connected components. The X i’s are defined
over kc and conjugated under Gal(kc/k). Let

X1 = X1 ∪ . . . ∪Xr

be the decomposition of X1 into its kc-irreducible components and let

Xi = Xi,1 ∪ . . . ∪Xi,ri

be the decomposition of Xi into absolutely irreducible components Xi,j, 1 ≤ i ≤ r, 1 ≤ j ≤
ri.

Then, Xi,1, . . . , Xi,ri are defined over kc.ri, are conjugate under Gal(kc.ri/k), and

Pk,H2(X)(T ) =
r∏

i=1

(1− (qT )c.ri).

Proof. Lemma 5 says that the X i’s are defined over kc and conjugated under Gal(kc/k)
and that:

Pk,H2(X)(T ) = Pkc,H
2(X1)(T

c). (2)

Let
Zi =

⋃

1≤j<k≤ri

(Xi,j ∩Xi,k).

This variety is the extension to k of a (zero-dimensional)-variety Zi defined over kc, so that
Xi − Zi is defined over kc. Let Zi,j = Xi,j ∩ Zi. Lemma 5 for the disjoint decomposition

Xi − Zi =
ri⋃

j=1

(Xi,j − Zi,j)

proves that the Xi,j−Zi,j are defined over kc.ri and conjugated under Gal(kc.ri/k). Hence,
this is also the case for their completions Xi,j .

Let Z ′ be the algebraic set

Z ′ =
⋃

i 6=j

(Xi ∩Xj),

and Z ′i = Z ′ ∩Xi. Then Z ′ and Z ′i are obviously defined over kc.
Now, the exact sequence (1) for closed subschemes, together with Mayer-Vietoris se-

quence and the fact that H1(Z ′) = 0 for the finite subscheme of intersections points of the
Xi’s, imply that H2(X1) = H2(X1 − Z ′) = ⊕r

i=1H
2
c (Xi − Z ′i) = ⊕r

i=1H
2(Xi) as a direct

sum of F -modules. Thus,

Pkc,H
2(X1)(T ) =

r∏

i=1

Pkc,H
2
c (Xi)(T ).



11

The last part of the proposition follows from (2) and the fact that

Pkc,H
2
c (Xi)(T ) = 1− (qcT )ri .

3.3 The first cohomology group

We will give in this section the characteristic polynomial on the first cohomology group
of a connected projective curve X over k depending only on the characteristic polynomial
for the smooth models of the absolutely irreducible components of X, the singular points
of the absolutely irreducible components of X, and on the 0-dimensionnal subvariety of
pairwise intersections of the irreducible components of X.

This will be done by successive reductions, starting from the smooth absolutely ir-
reducible case to the absolutely irreducible one (theorem 9), then from the absolutely
irreducible case to the irreducible one (theorem 10), and finally from the irreducible case
to the connected one (theorem 11). Let us begin with the following trivial consequence of
lemma 5:

Lemma 8 Let Z be a 0-dimensional algebraic set defined over k. Then

Pk,H0(Z)(T ) =
∏

P∈|Z|

(1− T dP ).

Theorem 9 Let X be an absolutely irreducible projective curve defined over k, with nor-
malization map νX : X̃ → X. Then, we have

Pk,H1(X)(T ) = P
k,H1(X̃)

(T )
∏

P∈|X|

∏
νX(P̃ )=P

(1− T
d
P̃ )

(1− T dP )
.

Proof. We can assume that X is singular, because otherwise there is nothing to prove.
We apply lemma 4 to both situations SingX ⊂ X and ν−1X (SingX) ⊂ X̃. We obtain

P
k,H1(X̃)

(T )
Pk,H0(ν−1

X
(SingX))(T )

P
k,H0(X̃)

(T )
= P

k,H1
c (X̃−ν

−1
X

(SingX))
(T )

= Pk,H1
c (X−SingX)(T )

= Pk,H1(X)(T )
P
k,H0(SingX)(T )

P
k,H0(X)(T ) ,

where the middle equality follows from the fact that the normalization map νX is an
isomorphism from X̃−ν−1X (SingX) to X−SingX. Then, lemma 8 applied to SingX and
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ν−1X (SingX) and proposition 6 applied to X and X̃ gives the result.

Note that an elementary proof for theorem 9 can be found in [1].

Theorem 10 Let X be an irreducible projective curve defined over k with c absolutely
connected components, and let

X = X1 ∪ . . . ∪Xr

be the decomposition of X into its absolutely irreducible components. Let Z be the algebraic
set

Z =
⋃

i 6=j

Xi ∩Xj ,

and Zi = Z ∩Xi. Then:

- Z is defined over k;
- Zi are defined over kr;
- Xi are defined over kr, and are conjugated under Gal(kr/k), and

Pk,H1(X)(T ) = Pkr,H
1(X1)(T

r)
Pkr,H

0(Z1)(T
r)/Pk,H0(Z)(T )

(1− T r)/(1− T c)
.

Proof. The assertions on the field of definition follow from lemma 5 in the same way as
in the proof of proposition 7 for the decomposition X − Z = ∪r

i=1(Xi − Zi). Lemma 4
applied to Z ⊂ X as k-varieties implies that

Pk,H1
c (X−Z)(T ) = Pk,H1(X)(T )

Pk,H0(Z)(T )

Pk,H0(X)(T )
.

Now, lemma 4 applied to Z1 ⊂ X1 as kr-varieties says that

Pkr,H
1
c (X1−Z1)(T ) = Pkr,H

1(X1)(T )
Pkr,H

0(Z1)(T )

Pkr,H
0(X1)(T )

.

But lemma 5 applied to the variety U = U1∪ · · ·∪Ur where U = X−Z and Ui = Xi−Zi,
proves that

Pk,H1
c (U)(T ) = Pkr,H

1
c (U1)(T

r),

hence the theorem follows thanks to proposition 6 applied to X over k and to X1 over kr.
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Theorem 11 Let X be a connected projective curve defined over k, and let

X = X 1 ∪ · · · ∪ X c

be the decomposition of X into its absolutely connected components. The X i’s are defined
over kc and conjugated under Gal(kc/k). Let

X1 = X1 ∪ . . . ∪Xr

be the decomposition of X1 into its kc-irreducible components and let ci be the number of
absolutely connected components of Xi. Let Z be the algebraic set

Z =
⋃

i 6=j

Xi ∩Xj ,

and Zi = Z ∩Xi. Then Z and Zi are defined over kc, and

Pk,H1(X)(T ) =
r∏

i=1

Pkc,H
1(Xi)(T

c)×
∏r

i=1 Pkc,H
0(Zi)(T

c)

Pkc,H
0(Z)(T

c)
× (1− T c)∏r

i=1(1− T c.ci)
.

Proof. Lemma 5 implies that the X i’s are defined over kc and conjugated under Gal(kc/k)
and that:

Pk,H1(X)(T ) = Pkc,H
1(X1)(T

c).

Since the Xi’s are, by definition, defined over kc, this implies obviously that Z and Zi are
also defined over kc. Now, lemma 4 applied to Z ⊂ X1, and to Zi ⊂ Xi, together with the
fact that X1−Z is equal to the disjoint union of the (Xi−Zi)’s and with lemma 6 enables
us to conclude.

Note that it can happen for the Xi’s to be absolutely disconnected as shown by the
example of the curve X1 in P2 with equation (X2+Z2)(Y 3+Y Z2+Z3) over a finite field
k for which both factors are k-irreducible. In this case, X1 has two connected components,
and X2 has three connected components.

4 Examples

Let us now look at some examples:

Example 1. Let X be the projective plane curve with equation x2 + y2 = 0 over the
field k with q elements, where q ≡ 3 (mod 4). Then X is the union of two projective lines
meeting at the k-rational point [0 : 0 : 1], and X = X1 ∪X2, where X1 is the k2-rational
projective line whose equation is x − ıy = 0 (ı beeing a primitive root of −1), and X2 is
the Gal(k2/k)-conjugate of X1.



14

Propositions 6, 7 and theorem 10 give us the spectrums of the Frobenius on the étale
cohomology groups:

- Spec(F | H0(X)) = {1};
- Spec(F | H1(X)) = {0};
- Spec(F | H0(X)) = {q,−q}.

Indeed, theorem 10 with r = 2, Z = {[0 : 0 : 1]} and Z1 = Z ∩X1 says that

Pk,H1(X) =
(1− T 2)/(1− T )

(1− T 2)/(1− T )
= 1.

The Grothendieck-Lefschetz formula then gives, for any n ∈ N∗:

♯X(kn) = qn + (−q)n − 0n + 1n

=

{
2qn + 1 if n is even,
1 if n is odd,

which is the expected value.

Example 2. More generaly, let X be an irreducible and absolutely connected projective
curve defined over k, having exactly two absolutely irreducible components X1 and X2

over k. By lemma 5, the Xi’s are extension to k of two curves X1 and X2 defined over
k2, and congugated under Gal(k2/k) = Z/2Z. Moreover, X1 ∩ X2 is defined over k by
theorem 10. In particular, we have

X(kn) =

{
X1(kn) ∪X2(kn) if n is even,
X1 ∩X2(kn) if n is odd.

Hence,

♯X(kn) =

{
♯X1(kn) + ♯X2(kn)− ♯X1 ∩X2(kn) if n is even,
♯X1 ∩X2(kn) if n is odd.

Let us verify that propositions 6, 7 and theorem 10 are in accordance with this naive
counting. Indeed, theorem 10 says, since Z = Z1, that

Pk,H1(X)(T ) = Pk2,H1(X1)(T
2)

P
k2,H

0(Z1)
(T 2)/P

k,H0(Z)(T )

(1−T 2)/(1−T )

= Pk2,H1(X1)(T
2)

P
k2,H

0(Z)(T
2)/P

k,H0(Z)(T )

1+T .

Let ω1, · · · , ωa be the eigenvalues of the Frobenius F 2 = F ◦ F on H1(X1) with mul-
tiplicities, and α1, · · · , αb be those of the Frobenius F on H0(Z) with multiplicities. Note
that X1 being defined over k2 and beeing eventually singular, some ωi’s have modulus
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√
q2 = q and the others have modulus

√
1 = 1. Note also that 1 is always an eigenvalue

on H0(Z), so that we can assume that α1 = 1. We have then

♯X1(kn) = qn −
a∑

i=1

ωn
i + 1

for n even, and

♯X1 ∩X2(kn) =
b∑

i=1

αn
i = 1 +

b∑

i=2

αn
i

for any n. The above formula for Pk,H1(X) implies that the eigenvalues of the Frobenius
on H1(X) with multiplicities are

√
ω1,−

√
ω1 · · · ,

√
ωa,−

√
ωa,−α2, · · · ,−αb.

Moreover, propositions 6 and 7 implies that the eigenvalue of the Frobenius on H0(X)
is just 1 and the eigenvalues on H2(X) are q and −q. Then, we have by the Grothendieck-
Lefschetz formula:

♯X(kn) = qn + (−q)n −



a∑

i=1

(1 + (−1)n)
√
ω
n
i +

b∑

j=2

(−αj)
n


+ 1

=

{
2qn − (2(qn + 1− ♯X1(kn)) + ♯X1 ∩X2(kn)− 1) + 1 if n is even;
− (−(♯X1 ∩X2(kn)− 1)) + 1 if n is odd

=

{
♯X1(kn) + ♯X2(kn)− ♯X1 ∩X2(kn) if n is even;
♯X1 ∩X2(kn) if n is odd,

as promised in the introduction (note that ♯X1(kn) = ♯X2(kn) if n is even).

Example 3. The aim of this example is to show that on the contrary to what may be
thought, formulas of theorems 10 and 11 really took into account the multiple intersections
between the Xi’s and not just the pairwise intersections. Indeed, let X be an absolutely
connected projective curve, union of r absolutely irreducible components defined over k:

X = X1 ∪ · · · ∪Xr.

Suppose for simplicity that all intersection points of the Xi’s are also defined over k,
that is to say that Z(k) = Z(k). Then, theorem 11, together with proposition 6 and 7
and with the Grothendieck-Lefschetz formula, imply:

♯X(k) = rq −



r∑

i=1

∑

ω∈Spec(F |H1(Xi))

ω +
r∑

i=1

♯Zi − ♯Z − (r − 1)


+ 1
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= rq −
(

r∑

i=1

(q + 1− ♯Xi(k)) +
r∑

i=1

♯Zi − ♯Z − (r − 1)

)
+ 1

=
r∑

i=1

♯Xi(k)− (
r∑

i=1

♯Zi − ♯Z).

Since

♯Z =
r∑

i=1

♯Zi

−
∑

1≤i1<i2≤r

♯Xi1(k) ∩Xi2(k)

+
∑

1≤i1<i2<i3≤r

♯Xi1(k) ∩Xi2(k) ∩Xi3(k)

− · · · ,

we obtain the well-known inclusion-exclusion formula for ♯X(k) !

5 Analogue of an Artin conjecture for algebraic varieties

For a finite extension of number fields E/F , Artin’s holomorphy conjecture asserts that
the quotient ζE(s)/ζF (s) of their Dedekind zeta functions is an entire function of the
complex variable s (this conjecture was proved independently by Aramata and Brauer in
the Galois case (see [5] for instance).

Let Y −→ X be a surjective morphism between algebraic varieties defined over k.
One can ask whether the quotient ZY (T )/ZX(T ) of their zeta function (which are rational
fractions thanks to Dwork’s theorem) is a polynomial in T . The Grothendieck-Lefschetz
formula gives, as in section 1 in the one dimensional case, the following form for the zeta
function of an algebraic variety X defined over a finite field k:

ZX(T ) =
2 dimX∏

i=0

(det(1− TF | H i
c(X)))(−1)

i+1

=
2 dimX∏

i=0

(Pk,Hi
c(X)(T ))

(−1)i+1

.

Therefore, the real question becomes whether the polynomials Pk,Hi
c(X)(T ) divide the

polynomials Pk,Hi
c(Y )(T ) (see [3] for a detailled discussion).

The following proposition, whose proof has been communicated to the authors by N.
Katz, gives an answer to this question.

Proposition 12 Let f : Y −→ X be a finite flat morphism between varieties over k and
G be a constructible Qℓ-sheaf on X. Then the compact cohomology group H i

c(X,G) is a
direct factor of H i

c(Y , f∗(G)) for any i ≥ 0 has a F -module.
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Without hypothesis on the morphism, this turns to be false as shown by the example
of the normalization map of a nodal singular curve.

This proposition was proved by Kleiman in [7] if both Y and X are smooth projective
algebraic varieties, and by the authors in [3] for absolutely irreducible projective curves.

Proof. Since f is finite, we have H i
c(Y , f∗(G)) = H i

c(X, f∗f
∗(G)). Since f is flat, there

is a Trace morphism f∗f
∗(G) −→ G, such that the composite with the natural morphism

G −→ f∗f
∗(G) is the multiplication by deg(f) on G (see [6], Exposé XVIII, Théorème

2.9). If we choose ℓ prime to deg(f), then deg(f) is invertible in Qℓ, so that G injects in
f∗f
∗(G) and f∗f

∗(G) surjects in G. Hence, we get by elementary linear algebra that G is
a direct factor of f∗f

∗(G), which gives the desired result.

When G is the constant sheaf Qℓ, we obtain:

Corollary 13 Let f : Y −→ X be a finite flat map between varieties defined over the finite
field k. Then, for any positive i, the reciprocal polynomial of the characteristic polynomial
of the Frobenius morphism Pk,Hi

c(X)(T ) on H i
c(X) divides that of H i

c(Y ) in the polynomial
ring Z[T ].

Note that there is no completness or dimensional assumption on X and Y in this
corollary.

Propositions 6, 7 and theorems 9, 10 and 11, together with corollary 13, imply:

Theorem 14 Let f : Y −→ X be a surjective flat morphism between absolutely connected
projective curves defined over the finite field k with q elements, having respectively rY and
rX k-irreducible components Y i and Xi of geometric genus gY i

and gXi
. We have:

|♯Y (k)− ♯X(k)| ≤ (rY − rX)q + 2(
rY∑

i=1

gY i
−

rX∑

i=1

gXi
)
√
q +∆Y −∆X − (rY − rX).

For X = P1 and an absolutely irreducible smooth curve Y , this is nothing else than
Weil’s bound. In this case, the flatness hypothesis is always satisfied. Without the smooth-
ness assumption on Y , this is the bound for singular curves proved in [1] (see also [4] and
[8]). For absolutely irreducible curves X and Y , we recover the bound given in [2].
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6 Remark

In the particular case of absolutely connected curves X defined over k for which the k-
irreducible components X1, . . . , Xr are absolutely irreducible, we can have the following
approach for Pk,H1(X)(T ). Consider the jacobian JX of X which is the group scheme
defined as the identity component of the Picard scheme PicX of X. This is a semi-abelian
variety: JX is an extension of the abelian variety J

X̃
(the jacobian of the desingularization

X̃ of X) by a smooth connected linear algebraic group LX , and the latter can be written
as the product of a unipotent group UX by a torus TX . We have quoted in [3], using a
result of Deligne, that the polynomial Pk,H1(X)(T ) is related to the Tate module Tℓ(JX)
of the jacobian of X by:

Pk,H1(X)(T ) = det(1− TF | Tℓ(JX)⊗Zℓ
Qℓ).

Moreover, this polynomial can be viewed as the product

Pk,H1(X)(T ) = P
k,H1(X̃)

(T )× P
X/X̃

(T ) (3)

where the last polynomial corresponds to the following weight-zero part (see [3]):

P
X/X̃

(T ) = det(1− TF | Tℓ(TX)⊗Zℓ
Qℓ). (4)

The (absolutely) irreducible components of X̃ are the normalizations X̃i of the (abso-
lutely) irreducible components Xi. The following exact sequence of sheaves:

1 −→ O∗X −→ νX,∗O∗X̃ −→ νX,∗O∗X̃/O∗X −→ 1

gives the following long exact sequence:

1 −→ H0(X,O∗X) −→
r∏

i=1

H0(X̃i,O∗X̃i
) −→

N∏

i=1

(
ni∏

j=1

k(P̃ij ))/k(Pi)

−→ JX −→
r∏

i=1

J
X̃i

−→ 1

where Pi, i = 1, . . . , N are the singular points of X and Pij , j = 1, . . . , ni the points of X̃

lying above Pi and where k(Pi) and k(P̃ij ) are theirs residue field.
Thus, the kernel of JX −→ ∏r

i=1 JX̃i
is a torus of rank equal to ∆X −r+1. This kernel

is equal to the toric part TX of the jacobian of X which gives, by (4), the weight-zero part
P
X/X̃

(T ) of Pk,H1(X)(T ). So, by (3), we get

Pk,H1(X)(T ) = P
X/X̃

(T )×
r∏

i=1

P
k,H1(X̃)

(T )
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where P
X/X̃

(T ) is a polynomial of degree ∆X − r + 1.

Acknowledgment. The authors would like to thank Nicholas Katz for the proof of
proposition 12.
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