
HAL Id: hal-00978860
https://hal.science/hal-00978860v1

Submitted on 19 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocation adaptative de registres en utilisant un
nombre linéaire de registres

Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Leslie Lamport

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Leslie Lamport. Allocation adaptative de
registres en utilisant un nombre linéaire de registres. ALGOTEL 2014 – 16èmes Rencontres Fran-
cophones sur les Aspects Algorithmiques des Télécommunications, Jun 2014, Le Bois-Plage-en-Ré,
France. pp.1-4. �hal-00978860�

https://hal.science/hal-00978860v1
https://hal.archives-ouvertes.fr

Allocation adaptative de registres en utilisant

un nombre linéaire de registres †

Carole Delporte-Gallet1 ‡ and Hugues Fauconnier1 § and Eli Gafni3 and

Leslie Lamport4

1 LIAFA, U. Paris Diderot, France
2Computer Science Department, UCLA, USA
3Microsoft Research

On présente un algorithme adaptatif dans lequel les processus utilisent des registres multi écrivains multi lecteurs. Cet

algorithme permet à chaque processus d’obtenir un accès exclusif à un registre dont il sera l’écrivain unique et que

tous les processus pourront lire. L’algorithme est adaptatif : il ne connait pas a priori le nombre de processus qui vont

demander un accès exclusif en écriture à un registre. C’est le premier algorithme permettant d’obtenir ce résultat en

utilisant des registres dont le nombre est une fonction linéaire du nombre de participants. Les précédents algorithmes

adaptatifs utilisent au moins Θ(n3/2) registres.

Keywords: shared memory, read/write registers, distributed algorithms, wait-free, space complexity, renaming.

1 Introduction

One way to implement multiprocess synchronization is by providing each process with a single-writer,

multi-reader atomic register (SWMR) that it can write and other processes can read. We present an adap-

tive algorithm to implement such a system of registers with an array of multi-writer multi-reader atomic

(MWMR) registers whose length is linear in the number of participating processes. The algorithm is non-

blocking unless an unbounded number of processes initiate operations.

An adaptive algorithm, also called a uniform algorithm [Gaf02], is one that does not know the number

of potentially participating processes. Equivalently, it is an algorithm whose cost is a function not of the

total number of processes but of the number of processes that actually participate in the algorithm. For the

SWMR registers, this is the number of processes that actually perform a read or write operation. Our goal is

to minimize the number of MWMR registers, and our algorithm uses a number that is linear in the number

of participants. No a priori bound on this number is assumed.

Why do we find this algorithm interesting ? There are simpler algorithms that assume stronger communi-

cation primitives—for example, test and set registers—but MWMR registers are the weakest ones for which

we know that an adaptive algorithm is possible. More efficient randomized algorithms are possible, but our

algorithm is always correct, not just correct with high probability. There is a trivial way to implement a

collection of SWMR registers with an array C of MWMR registers. The i th process simply uses C [i] as

its register. Of course, this algorithm uses an unbounded number of registers. The obvious way to make

the number of registers linear in the number of participating processes is by having the processes first exe-

cute an adaptive renaming algorithm [ABND+90, BG93] in which each participating process is assigned

a unique number from 0 to M for some M that depends linearly on the number of participants. A process

assigned the number j then uses C [j] as its register. However, we know of few renaming algorithms that do

not assume a collection of SWMR registers already allocated to processes [Asp10, AF02, MA95]. Those al-

gorithms are all based on the grid-network of “splitters” proposed by Anderson and Moir [MA95]. Of these,

†This work has been accepted for publication at DISC2013 [DGFGL13].
‡Supported by ANR DISPLEXITY.
§Supported by ANR DISPLEXITY.

Carole Delporte-Gallet and Hugues Fauconnier and Eli Gafni and Leslie Lamport

--algorithm GFX

{ variables A1 = [i ∈ Nat 7→ {}], result = [p ∈ Proc 7→ {}] ;

process (Pr ∈ Proc)
variables known = {self }, notKnown = {} ;

{ a : known := known ∪ NUnion(A1) ;

notKnown := {i ∈ 0 . . (Cardinality(known)) : known 6=A1[i]} ;

if (notKnown 6= {})
{ b : with (i ∈ notKnown) {A1[i] := known} ;

goto a

}
else {result [self] := known} ;

}
}

FIGURE 1: Algorithm GFX.

the more space-efficient is an improvement of Aspnes [Asp10] that requires Θ(k3/2) MWMR registers for

k participating processes. Even though the renaming algorithm is used only to determine the assignment

of processes to elements of the array C , the values in those Θ(k3/2) registers must be maintained forever

because additional processes may enter the system at any time. (Reclaiming the space requires knowing

an a priori bound on the number of processes that might participate.) Thus, our algorithm is the first that

implements a collection of SWMR registers with O(k) MWMR registers.

Almost all previous methods for making an algorithm adaptive start by using one of several renaming al-

gorithms [AAD+93, AST99, And94, ABND+90, BG93]. It has generally been assumed that this is the only

way to implement an adaptive algorithm [AW98]. Based on an idea in [DGFGR13], our implementation

avoids the use of a renaming algorithm to begin reliable communication. Instead, participating processes

first announce their presence by using a non-blocking one-shot limited-snapshot algorithm that we call

the GFX (Generalized Fast eXclusion) protocol, which can be viewed as generalizing [Lam87] from 1-

concurrency to k -concurrency. The snapshot is limited to having the property that two snapshots of the

same size coincide. It need not ensure that snapshots of different sizes are related by containment. To per-

form a read or write operation to a register, a process first reads the posted snapshots to find the number n

of participants that have announced their presence, and it executes an algorithm [DGFGR13] that assumes

at most n processes. It then reads the number of participants again, finishing the operation if that number

still equals n . Otherwise, the process repeats the n-process algorithm for the new value of n . While we use

this approach to implement renaming, it can be used to provide an adaptive implementation of any task.

By using our adaptive algorithm for implementing a collection of SWMR registers, we can solve any task

under the assumption of finite arrival [GMT01]. In particular, using existing algorithms, we can implement

adaptive renaming with a linear range [ABND+90, BG93]. This in turn allows us to allocate unique registers

to processes with a number of registers linear in the number of participants. With register allocation, we

can implement a collection of SWMR registers with wait-free read and write operations rather than just

non-blocking ones. For many tasks of high read-write complexity, doing renaming first may reduce the step

complexity of an adaptive algorithm.

We ignore time complexity—the number of steps taken by the algorithm. Our algorithm is executed just

once, to assign SWMR registers to processes ; it adds nothing to the cost of using those registers. Since space

used by an adaptive algorithm cannot be reclaimed, it is perhaps more important than time complexity. Still,

optimal time complexity is an interesting problem that remains unsolved.

In the non-adaptive case, it has been shown that at least n registers are required to implement n SWMR

registers [DGFGR13], so the linear number of registers used by our algorithms is optimal up to a constant

factor. We originally believed that adaptive algorithms required more than a linear number of registers,

and we tried to derive such a lower bound on the number of registers, independent of their size. When the

difficulty is caused by processes stepping on each other because of the lack of a priori coordination, size of

the registers is not a factor. (See the lower bound for consensus [FHS98].) We were therefore surprised to

discover our algorithm.

We precisely describe our algorithms in the PlusCal algorithm language [Lam09]. A PlusCal expres-

sion can be any TLA+ formula [Lam02], and a PlusCal algorithm is automatically translated to a TLA+

specification that defines the algorithm’s formal meaning.

We have written formal, mechanically-checked TLA+ correctness proofs of the safety properties of the

Allocation adaptative de registres

GFX and SnapShot algorithms. The complete proofs are available on the Web [Lam].

2 Algorithms

--algorithm SnapShot

{ variables result = [p ∈ Proc 7→ {}],
A2 = [i ∈ Nat 7→ {}], A3 = [i ∈ Nat 7→ {}] ;

process (Pr ∈ Proc)
variables myVals = {}, known = {}, notKnown = {},

lnbpart = 0, nbpart = 0, nextout = {}, out = {} ;

{ a : with (P ∈ {Q ∈ SUBSETProc : /*Specification of Algorithm GFX*/

∧ self ∈ Q

∧ ∀p ∈ Proc \{self } :

∨Cardinality(result [p]) 6=Cardinality(Q)
∨Q = result [p]

})

{ result [self] := P } ;

A2[Cardinality(result [self])−1] := result [self] ;

b : while (TRUE)

{ with (v ∈ Val) {myVals :=myVals ∪{v} } ; /* snap(v) */

known :=myVals ∪known ;

nbpart :=Cardinality(NUnion(A2)) ;

c : lnbpart := nbpart ;

known := known ∪NUnion(A3) ;

notKnown := {i ∈ 0 . . (nbpart −1) : known 6=A3[i]} ;

if (notKnown 6= {}) { d : with (i ∈ notKnown)
{ A3[i] := known } ;

goto c }
e : nbpart :=Cardinality(NUnion(A2)) ;

if (lnbpart = nbpart) {out := known} /*returned value */

else {goto c}
}

}
}

FIGURE 2: Algorithm SnapShot.

A sequence of SWMR registers is implemented using an algorithm we call SnapShot . This algorithm

begins with Algorithm GFX that we describe below.

Algorithm GFX

Algorithm GFX , described in Figure 1, solves the following weaker version of the snapshot task [AAD+93] :

A process p that executes the algorithm must return a set Fp of participants such that

— p ∈ Fp for any p.

— |Fp |= |Fq | implies Fp = Fq for any p and q , where |F | is the cardinality of the set F .

The variables known and notKnown are local to self (the current process) and cannot be read or written

by other processes. Variable known stores the set of processes known to process self , and unKnown stores

a set of array indices (natural numbers). The values of these process-local variables are arrays indexed by

the set Proc. The other new notations used in this algorithm are : Nat is the set of natural numbers, i . . j is

the set of integers k with i ≤ k ≤ j , the statement with (x ∈ S){Σ} executes Σ with an arbitrary element

of S substituted for x and the operator NUnion is defined by NUnion(A)
∆

= UNION{A[i] : i ∈ Nat}.

Evaluation of that expression is implemented by atomically reading the array A. Observe that although

result is a global variable, result [p] is accessed only by process p.

Algorithm Snapshot

The SnapShot algorithm maintains a set S of values that is initially empty. It provides a snap operation

whose argument is a value v . Executing snap(v) atomically adds v to S and returns the current value of S .

This allow to simulate for each process a SWMR register.

Let’s suppose that there is a count operation that a process p can call to learn the number of participants

that can be executing a snap operation. To perform a snap operation, a process p first executes count to

Carole Delporte-Gallet and Hugues Fauconnier and Eli Gafni and Leslie Lamport

obtain a bound n on the number of participants. It then writes in the first n registers of A3. If a read of A3

obtains a value F such that A3[0] = · · ·= A3[n−1] = F , process p executes the count operation again. If

that execution returns the same number n of participants, then the snap operation completes and returns the

value F . Otherwise, the process continues the procedure, replacing n with the new value returned by count.

We still have to implement the count operation. We do that by using algorithm GFX and a second array

A2 of registers. When a participant p arrives, before performing any snap operation it (i) executes GFX

to obtain a set S of participants, which includes itself, and (ii) writes (the processes in) S in A2[|S |− 1].
The correctness property of GFX implies that no other value can ever be written in A2[|S |−1]. Since the

processes written in A2 are all participants and every participant is written in A2, the set of all processes in

A2 includes all participants that can write to A3. The count operation is then performed by reading A2 and

counting the number of (distinct) processes read.

Algorithm SnapShot appears in Figure 2. We have represented the code of GFX in SnapShot by the

corresponding code of its specification in TLA+.

Références
[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snapshots of shared

memory. Journal of the ACM, 40(4) :873–890, 1993.

[ABND+90] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming in an asynchronous envi-

ronment. J. ACM, 37(3) :524–548, 1990.

[AF02] Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J. Comput.,

31(2) :642–664, February 2002.

[And94] James H. Anderson. Multi-writer composite registers. Distributed Computing, 7(4) :175–195, 1994.

[Asp10] James Aspnes. Slightly smaller splitter networks. CoRR, abs/1011.3170, 2010.

[AST99] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived adaptive collect with applications. In FOCS, pages 262–272.

IEEE Computer Society, 1999.

[AW98] Hagit Attiya and Jennifer Welch. Distributed Computing. Fundamentals, Simulations, and Advanced Topics. McGraw-

Hill, 1998.

[BG93] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages 41–51. ACM

Press, 1993.

[DGFGL13] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Leslie Lamport. Adaptive register allocation with a linear

number of registers. In DISC, volume 8205 of Lecture Notes in Computer Science, pages 269–283. Springer, 2013.

[DGFGR13] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Rajsbaum. Linear space bootstrap communication

schemes. In ICDCN, volume 7730 of Lecture Notes in Computer Science, pages 363–377. Springer, 2013.

[FHS98] Faith Ellen Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized synchronization. J. ACM,

45(5) :843–862, 1998.

[Gaf02] Eli Gafni. A simple algorithmic characterization of uniform solvability. In FOCS, pages 228–237. IEEE Computer

Society, 2002.

[GMT01] Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierarchy, and algorithms for unbounded concur-

rency. In PODC, pages 161–169. ACM, 2001.

[Lam] Leslie Lamport. Proofs for adaptive register allocation with a linear number of registers.

http ://research.microsoft.com/en-us/um/people/lamport/tla/snapshot.html.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems, 5(1) :1–11, February

1987.

[Lam02] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-

Wesley, 2002.

[Lam09] Leslie Lamport. The pluscal algorithm language. In Martin Leucker and Carroll Morgan, editors, ICTAC, volume 5684

of Lecture Notes in Computer Science, pages 36–60. Springer, 2009.

[MA95] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci. Comput. Program.,

25(1) :1–39, 1995.

