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ON THE FRACTIONAL LANE-EMDEN EQUATION

Introduction

Fix an integer n ≥ 1 and let p S (n) denote the classical Sobolev exponent:

p S (n) =    +∞ if n ≤ 2 n + 2 n -2 if n ≥ 3
A celebrated result of Gidas and Spruck [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] asserts that there is no positive solution to the Lane-Emden equation

(1.1) -∆u = |u| p-1 u in R n ,
whenever p ∈ (1, p S (n)). For p = p S (n), the same equation is known to have (up to translation and rescaling) a unique positive solution, which is radial and explicit (see Caffarelli-Gidas-Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]). Let now p c (n) > p S (n) denote the Joseph-Lundgren exponent:

p c (n) =    +∞ if n ≤ 10 (n -2) 2 -4n + 8 √ n -1 (n -2)(n -10) if n ≥ 11
This exponent can be characterized as follows: for p ≥ p S (n), the explicit singular solution u s (x) = A|x| -2 p-1 is unstable if and only if p < p c (n). It was proved by Farina [18] that (1.1) has no nontrivial finite Morse index solution whenever 1 < p < p c (n), p = p S (n).

Through blow-up analysis, such Liouville-type theorems imply interior regularity for solutions of a large class of semilinear elliptic equations: they are known to be equivalent to universal estimates for solutions of (1.2)

-Lu = f (x, u, ∇u) in Ω,
where L is a uniformly elliptic operator with smooth coefficients, the nonlinearity f scales like |u| p-1 u for large values of u, and Ω is an open set of R n . For precise statements, see the work of Polacik, Quittner and Souplet [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF] in the subcritical setting, as well as its adaptation to the supercritical case by Farina and two of the authors [START_REF] Dávila | Partial regularity of finite Morse index solutions to the Lane-Emden equation[END_REF].

In the present work, we are interested in understanding whether similar results hold for equations involving a nonlocal diffusion operator, the simplest of which is perhaps the fractional laplacian. Given s ∈ (0, 1), the fractional version of the Lane-Emden equation 1 reads

(1.3) (-∆) s u = |u| p-1 u in R n .
Here we have assumed that u ∈ C 2σ (R n ), σ > s and

(1.4) ˆRn |u(y)| (1 + |y|) n+2s dy < +∞, so that the fractional laplacian of u (-∆) s u(x) := A n,s ˆRn u(x) -u(y) |x -y| n+2s dy is well-defined (in the principal-value sense) at every point x ∈ R n . The normalizing constant A n,s = 2 2s-1

π n/2 Γ( n+2s 2 
) |Γ(-s)| is of the order of s(1 -s) as s converges to 0 or 1. The aforementioned classification results of Gidas-Spruck and Caffarelli-Gidas-Spruck have been generalized to the fractional setting (see Y. Li [START_REF] Yan | Remark on some conformally invariant integral equations: the method of moving spheres[END_REF] and Chen-Li-Ou [START_REF] Chen | Classification of solutions for an integral equation[END_REF]). The corresponding fractional Sobolev exponent is given by

p S (n) =    +∞ if n ≤ 2s n + 2s n -2s if n > 2s
Our main result is the following Liouville-type theorem for the fractional Lane-Emden equation.

Theorem 1.1. Assume that n ≥ 1 and 0 < s < σ < 1. Let u ∈ C 2σ (R n ) ∩ L 1 (R n , (1 + |y|) n+2s
dy) be a solution to (1.3) which is stable outside a compact set i.e. there exists R 0 ≥ 0 such that for every

ϕ ∈ C 1 c (R n \ B R0 ), (1.5) p ˆRn |u| p-1 ϕ 2 dx ≤ ϕ 2 Ḣs (R n ) . • If 1 < p < p S (n) or if p S (n) < p and (1.6) p Γ( n 2 -s p-1 )Γ(s + s p-1 ) Γ( s p-1 )Γ( n-2s 2 -s p-1 ) > Γ( n+2s 4 ) 2 Γ( n-2s 4 ) 2 , then u ≡ 0; • If p = p S (n), then u has finite energy i.e. u 2 Ḣs (R n ) = ˆRn |u| p+1 < +∞.
If in addition u is stable, then in fact u ≡ 0.

Remark 1. For p > p S (n), the function

u s (x) = A|x| -2s p-1 (1.7)
where

A p-1 = λ n -2s 2 - 2s p -1
1 Unlike local diffusion operators, local elliptic regularity for equations of the form (1.2) where this time L is the generator of a general Markov diffusion, cannot be captured from the sole understanding of the fractional Lane-Emden equation. For example, further investigations will be needed for operators of Lévy symbol ψ(ξ) = ´Sn-1 |ω • ξ| 2s µ(dω), where µ is any finite symmetric measure on the sphere S n-1 . and where

(1.8) λ(α) = 2 2s Γ( n+2s+2α 4 )Γ( n+2s-2α 4 ) Γ( n-2s-2α 4 )Γ( n-2s+2α

4

) is a singular solution to (1.3) (see the work by Montenegro and two of the authors [START_REF] Dávila | The extremal solution of a boundary reaction problem[END_REF] for the case s = 1/2, and the work by Fall [START_REF] Moustapha | Semilinear elliptic equations for the fractional Laplacian with Hardy potential[END_REF]Lemma 3.1] for the general case). In virtue of the following Hardy inequality (due to Herbst [START_REF] Herbst | Spectral theory of the operator (p 2 + m 2 ) 1/2 -Ze 2 /r[END_REF])

Λ n,s ˆRn φ 2 |x| 2s dx ≤ φ 2 Ḣs (R n )
with optimal constant given by (1.6) holds. Let us also mention that regular radial solutions in the case s = 1/2 were constructed by Chipot, Chlebik ad Shafrir [START_REF] Chipot | Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition[END_REF]. Recently, Harada [START_REF] Harada | Positive solutions to the Laplace equation with nonlinear boundary conditions on the half space[END_REF] proved that for s = 1/2, condition (1.6) is the dividing line for the asymptotic behavior of radial solutions to (1.3), extending thereby the classical results of Joseph and Lundgren [START_REF] Joseph | Quasilinear Dirichlet problems driven by positive Arch[END_REF] to the fractional Lane-Emden equation in the case s = 1/2. A similar technique as in [START_REF] Chipot | Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition[END_REF] allows us to show that the condition (1.6) is optimal. Indeed we have: Theorem 1.2. Assume p > p S (n) and that (1.6) fails. Then there are radial smooth solutions u > 0 with u(r) → 0 as r → ∞ of (1.3) that are stable.

Λ n,s = 2 2s Γ( n+2s 4 ) 2 Γ( n-2s 4 ) 2 , u s is unstable if only if
It is by now standard knowledge that the fractional laplacian can be seen as a Dirichlet-to-Neumann operator for a degenerate but local diffusion operator in the higher-dimensional half-space R n+1 + : [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF][START_REF] Molčanov | Symmetric stable processes as traces of degenerate diffusion processes[END_REF][START_REF] Spitzer | Some theorems concerning 2-dimensional Brownian motion[END_REF]). Take s ∈ (0, 1), σ > s and u

Theorem 1.3 ([
∈ C 2σ (R n ) ∩ L 1 (R n , (1 + |y|) n+2s dy). For X = (x, t) ∈ R n+1 + , let ū(X) = ˆRn P (X, y)u(y) dy,
where

P (X, y) = p n,s t 2s |X -y| -(n+2s)
and p n,s is chosen so that ´Rn P (X, y) dy = 1.

Then, ū ∈ C 2 (R n+1 + ) ∩ C(R n+1 + ), t 1-2s ∂ t ū ∈ C(R n+1 + ) and        ∇ • (t 1-2s ∇ū) = 0 in R n+1 + , ū = u on ∂R n+1 + , -lim t→0 t 1-2s ∂ t ū = κ s (-∆) s u on ∂R n+1 + ,
where

(1.9) κ s = Γ(1 -s) 2 2s-1 Γ(s) .
Applying Theorem 1.3 to a solution of the fractional Lane-Emden equation, we end up with the equation

(1.10) -∇ • (t 1-2s ∇ū) = 0 in R n+1 + -lim t→0 t 1-2s ∂ t ū = κ s |ū| p-1 ū on ∂R n+1
+ An essential ingredient in the proof of Theorem 1.1 is the following monotonicity formula Theorem 1.4. Take a solution to (1.10

) ū ∈ C 2 (R n+1 + ) ∩ C(R n+1 + ) such that t 1-2s ∂ t ū ∈ C(R n+1 + ). For x 0 ∈ ∂R n+1 + , λ > 0, let E(ū, x 0 ; λ) = λ 2s p+1 p-1 -n 1 2 ˆRn+1 + ∩B(x0,λ) t 1-2s |∇ū| 2 dx dt - κ s p + 1 ˆ∂R n+1 + ∩B(x0,λ) |ū| p+1 dx + λ 2s p+1 p-1 -n-1 s p + 1 ˆ∂B(x0,λ)∩R n+1 + t 1-2s ū2 dσ.
Then, E is a nondecreasing function of λ. Furthermore,

dE dλ = λ 2s p+1 p-1 -n+1 ˆ∂B(x0,λ)∩R n+1 + t 1-2s ∂ ū ∂r + 2s p -1 ū r 2 dσ
Remark 2. In the above, B(x 0 , λ) denotes the euclidean ball in R n+1 + centered at x 0 of radius λ, σ the n-dimensional Hausdorff measure restricted to ∂B(x 0 , λ), r = |X| the euclidean norm of a point X = (x, t) ∈ R n+1 + , and ∂ r = ∇• X r the corresponding radial derivative.

An analogous monotonicity formula has been derived by Fall and Felli [START_REF] Moustapha | Unique continuation property and local asymptotics of solutions to fractional elliptic equations[END_REF] to obtain unique continuation results for fractional equations. Previously, Caffarelli and Silvestre derived an Almgren quotient formula for the fractional laplacian in [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] and Caffarelli, Roquejoffre and Savin [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF] obtained a related monotonicity formula to study regularity of nonlocal minimal surfaces. Another monotonicity formula for fractional problems was obtained by Cabré and Sire [START_REF] Cabré | Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates[END_REF] and used by Frank, Lenzmann and Silvestre [START_REF] Frank | Uniqueness of radial solutions for the fractional laplacian[END_REF].

The proof of Theorem 1.1 follows an approach used in our earlier work with Kelei Wang [START_REF] Dávila | A Monotonicity Formula and a Liouville-type Theorem for a Fourth Order Supercritical Problem[END_REF] (see also [START_REF] Wang | Partial regularity of stable solutions to the supercritical equations and its applications[END_REF]). First we derive suitable energy estimate (Section 2) and handle the critical and subcrtiicical cases (Section 3). In Section 4 we give a proof of the monotonicity formula Theorem 1.4. Then we use the monotonicity formula and a blown-down analysis (Section 6) to reduce to homogeneous singular solutions. We exclude the existence of stable homogeneous singular solutions in the optimal range of p (Section 5). Finally we prove Theorem 1.2 in Section 7.

Energy estimates

Lemma 2.1. Let u be a solution to (1.3). Assume that u is stable outside some ball

B R0 ⊂ R n . Let η ∈ C ∞ c (R n \ B R0 ) and for x ∈ R n , define (2.1) ρ(x) = ˆRn (η(x) -η(y)) 2 |x -y| n+2s dy Then, ˆRn |u| p+1 η 2 dx + 1 p uη 2 Ḣs (R n ) ≤ 2 p -1 ˆRn u 2 ρ dx. Proof. Multiply (1.3) by uη 2 . Then, ˆRn |u| p+1 η 2 dx = ˆRn (-∆) s u uη 2 dx = ˆRn ˆRn (u(x) -u(y))(u(x)η(x) 2 -u(y)η(y) 2 ) |x -y| n+2s dx dy = ˆRn ˆRn u 2 (x)η 2 (x) -u(x)u(y)(η 2 (x) + η 2 (y)) + u 2 (y)η 2 (y) |x -y| n+2s dx dy = ˆRn ˆRn (u(x)η(x) -u(y)η(y)) 2 -(η(x) -η(y)) 2 u(x)u(y) |x -y| n+2s dx dy = uη 2 Ḣs (R n ) - ˆRn ˆRn (η(x) -η(y)) 2 u(x)u(y) |x -y| n+2s dx dy Using the inequality 2ab ≤ a 2 + b 2 , we deduce that (2.2) uη 2 Ḣs (R n ) - ˆRn |u| p+1 η 2 dx ≤ ˆRn u 2 ρ dx
Since u is stable, we deduce that (p -1)

ˆRn |u| p+1 η 2 dx ≤ ˆRn u 2 ρ dx Going back to (2.2), it follows that 1 p uη 2 Ḣs (R n ) + ˆRn |u| p+1 η 2 dx ≤ 2 p -1 ˆRn u 2 ρ dx Lemma 2.2. For m > n/2 and x ∈ R n , let (2.3) η(x) = (1 + |x| 2 ) -m/2 and ρ(x) = ˆRn (η(x) -η(y)) 2 |x -y| n+2s dy
Then, there exists a constant C = C(n, s, m) > 0 such that

(2.4) C -1 1 + |x| 2 -n 2 -s ≤ ρ(x) ≤ C 1 + |x| 2 -n 2 -s .
Proof. Let us prove the upper bound first. Since ρ is a continuous function, we may always assume that |x| ≥ 1. Split the integral

ˆRn (η(x) -η(y)) 2 |x -y| n+2s dy in the regions |x -y| < |x|/2, |x|/2 ≤ |x -y| ≤ 2|x|, and |x -y| > 2|x|. When |x -y| ≤ |x|/2, |η(x) -η(y)| ≤ C(1 + |x| 2 ) -m+1 2 |x -y|. So, ˆ|x-y|≤|x|/2 (η(x) -η(y)) 2 |x -y| n+2s dy ≤ C(1 + |x| 2 ) -m-1 ˆ|x-y|≤|x|/2 |x -y| 2-n-2s dy ≤ C(1 + |x| 2 ) -m-s ≤ C 1 + |x| 2 -n 2 -s . When |x|/2 ≤ |x -y| ≤ 2|x|, ˆ|x|/2≤|x-y|≤2|x| (η(x) -η(y)) 2 |x -y| n+2s dy ≤ C|x| -n-2s ˆ|y|≤2|x| (η(x) 2 + η(y) 2 ) dy ≤ C|x| -n-2s (|x| -2m+n + 1) ≤ C(1 + |x| 2 ) -n 2 -s ,
where we used the assumption m > n 2 . When |x -y| > 2|x|, then |y| ≥ |x| and η(y

) ≤ C(1 + |x| 2 ) -m/2 . Then, ˆ|x-y|>2|x| (η(x) -η(y)) 2 |x -y| n+2s dy ≤ C(1 + |x| 2 ) -m ˆ|x-y|>2|x| 1 |x -y| n+2s dy ≤ C(1 + |x| 2 ) -m-s ≤ C(1 + |x| 2 ) -n 2 -s .
Let us turn to the lower bound. Again, we may always assume that |x| ≥ 1. Then,

ρ(x) ≥ ˆ|y|≤1/2 (η(y) -η(x)) 2 |x -y| n+2s dy ≥ |x| 2 -(n+2s) ˆ|y|≤1/2 (η(y) -2 -m/2 ) 2 dy
and the estimate follows.

Corollary 2.3. Let m > n/2, η given by (2.3), R ≥ R 0 ≥ 1, ψ ∈ C ∞ (R n ) be such that 0 ≤ ψ ≤ 1, ψ ≡ 0 on B 1 and ψ ≡ 1 on R n \ B 2 . Let (2.5) η R (x) = η x R ψ x R 0 and ρ R (x) = ˆRn (η R (x) -η R (y)) 2 |x -y| n+2s dy There exists a constant C = C(n, s, m, R 0 ) > 0 such that for all |x| ≥ 3R 0 ρ R (x) ≤ Cη x R 2 |x| -(n+2s) + R -2s ρ x R Proof. Fix x such that |x| ≥ R ≥ 3R 0 .
Using the definition of η R and Young's inequality, we have

1 2 ρ R (x) ≤ η x R 2 ˆRn ψ x R0 -ψ y R0 2 |x -y| n+2s dy + ˆRn ψ y R 0 2 (η x R -η y R ) 2 |x -y| n+2s dy ≤ η x R 2 ˆB2R 0 1 |x -y| n+2s dy + ˆRn (η x R -η y R ) 2 |x -y| n+2s dy ≤ Cη x R 2 |x| -(n+2s) + R -2s ρ x R and the result follows. Lemma 2.4. Let u be a solution of (1.3) which is stable outside a ball B R0 . Take ρ R as in Corollary 2.3 with m ∈ ( n 2 , n 2 + s(p+1) 2 
). Then, there exists a constant

C = C(n, s, m, p, R 0 ) > 0 such that for all R ≥ 3R 0 , ˆRn u 2 ρ R dx ≤ C ˆB3R 0 u 2 ρ R dx + R n-2s p+1 p-1 . Proof. By Corollary 2.3, if R ≥ |x| ≥ 3R 0 , then ρ R (x) ≤ C(|x| -n-2s + R -2s )
and so

ˆBR\B3R 0 ρ R (x) p+1 p-1 η R (x) -4 p-1 dx ≤ CR n-2s p+1 p-1 . Similarly, if |x| ≥ R ≥ 3R 0 , then ρ R (x) ≤ CR -2s 1 + |x| 2 R 2 -n 2 -s
and so

ρ R (x) p+1 p-1 η R (x) -4 p-1 ≤ CR -2s p+1 p-1 1 + |x| 2 R 2 -n+2s 2 p+1 p-1 + 2m p-1 Since m ∈ ( n 2 , n 2 + s p+1 2 ), we have 2m p-1 -n+2s 2 p+1 p-1 < -n 2 and so ˆRn \B3R 0 ρ R (x) p+1 p-1 η R (x) -4 p-1 dx ≤ CR n-2s p+1 p-1 . Now, ˆRn u 2 ρ R dx = ˆB3R 0 u 2 ρ R dx + ˆRn \B3R 0 u 2 ρ R η -4 p+1 R η 4 p+1 R dx ≤ ˆB3R 0 u 2 ρ R dx + ˆRn |u| p+1 η 2 R dx 2 p+1 ˆRn ρ p+1 p-1 R η -4 p-1 R dx p-1 p+1 ≤ ˆB3R 0 u 2 ρ R dx + CR (n-2s p+1 p-1 ) p-1 p+1 ˆRn |u| p+1 η 2 R dx 2 p+1
By a standard approximation argument, Lemma 2.1 remains valid with η = η R and ρ = ρ R and so the result follows.

Lemma 2.5. Assume that p = n+2s n-2s . Let u be a solution to (1.3) which is stable outside a ball B R0 and ū its extension, solving (1.10). Then, there exists a constant

C = C(n, p, s, R 0 , u) > 0 such that ˆBR t 1-2s ū2 dxdt ≤ CR n+2(1-s)-4s p-1 for any R > 3R 0 . Proof. According to Theorem 1.3, ū(x, t) = p n,s ˆRn u(z) t 2s (|x -z| 2 + t 2 ) n+2s 2 dz so that ū(x, t) 2 ≤ p n,s ˆRn u(z) 2 t 2s (|x -z| 2 + t 2 ) n+2s 2 dz. So, ˆBR t 1-2s ū2 dxdt ≤ p n,s ˆ|x|≤R,z∈R n u(z) 2 ˆR 0 t (|x -z| 2 + t 2 ) n+2s 2 dt dzdx ≤ C ˆ|x|≤R,z∈R n u 2 (z) |x -z| 2 -n 2 +1-s -|x -z| 2 + R 2 -n 2 +1-s dzdx Split this last integral according to |x -z| < 2R or |x -z| ≥ 2R. Then, ˆ|x|≤R,|x-z|<2R u 2 (z) |x -z| 2 -n 2 +1-s -|x -z| 2 + R 2 -n 2 +1-s dzdx ≤ ˆ|x|≤R,|x-z|<2R u 2 (z) |x -z| 2 -n 2 +1-s dzdx ≤ CR 2(1-s) ˆB3R u 2 (z) dz ≤ CR 2(1-s) ˆ|u| p+1 η 2 R 2 p+1 ˆB3R η -4 p-1 R p-1 p+1 ≤ CR 2(1-s)+n p-1 p+1 ˆu2 (z)ρ R (z) dz 2 p+1 ≤ CR n+2(1-s)-4s p-1 ,
where we used Hölder'sin equality, then Lemma 2.1 and then Lemma 2.4. For the region |x -z| ≥ 2R, the mean-value inequality implies that

ˆ|x|≤R,|x-z|≥2R u 2 (z) |x -z| 2 -n 2 +1-s -|x -z| 2 + R 2 -n 2 +1-s dzdx ≤ CR 2 ˆ|x|≤R,|x-z|≥2R u 2 (z)|x -z| -(n+2s) dzdx ≤ CR n+2 ˆ|z|≥R u 2 (z)|z| -(n+2s) dz ≤ CR 2 ˆ|z|≥R u 2 ρ dz ≤ CR n+2(1-s)-4s p-1 ,
where we used again Corollary 2.3 in the penultimate inequality and Lemma 2.4 in the last one.

Lemma 2.6. Let u be a solution to (1.3) which is stable outside a ball B R0 and ū its extension, solving (1.10). Then, there exists a constant C = C(n, p, s, u) > 0 such that

ˆBR∩R n+1 + t 1-2s |∇ū| 2 dx dt + ˆBR∩∂R n+1 + |u| p+1 dx ≤ CR n-2s p+1 p-1
Proof. The L p+1 estimate follows from Lemmata 2.1 and 2.4. Now take a cut-off

function η ∈ C 1 c (R n+1 + ) such that η = 1 on R n+1 + ∩ (B R \ B 2R0 ) and η = 0 on B R0 ∪ (R n+1 + \ B 2R
), and multiply equation (1.10) by ūη 2 . Then,

κ s ˆ∂R n+1 + |ū| p+1 η 2 dx = ˆRn+1 + t 1-2s ∇ū • ∇(ūη 2 ) dx dt = ˆRn+1 + t 1-2s |∇(ūη)| 2 -ū2 |∇η| 2 dx dt. (2.6)
Since u is stable outside B R0 , so is ū and we deduce that

1 p ˆRn+1 + t 1-2s |∇(ūη)| 2 dx dt ≥ ˆRn+1 + t 1-2s |∇(ūη)| 2 -ū2 |∇η| 2 dx dt.
In other words,

p ′ ˆRn+1 + t 1-2s ū2 |∇η| 2 dx dt ≥ ˆRn+1 + t 1-2s |∇(ūη)| 2 dx dt, (2.7)
where 1 p ′ + 1 p = 1. We then apply Lemma 2.5.

The subcritical case

In this section, we prove Theorem 1.1 for 1 < p ≤ p S (n).

Proof. Take a solution u which is stable outside some ball B R0 . Apply Lemma 2.4 and let R → +∞. Since p ≤ p S (n), we deduce that u ∈ Ḣs (R n ) ∩ L p+1 (R n ).

Multiplying the equation (1.3) by u and integrating, we deduce that (3.1)

ˆRn |u| p+1 = u 2 Ḣs (R n ) ,
while multiplying by u λ given for λ > 0 and x ∈ R n by

u λ (x) = u(λx) yields ˆRn |u| p-1 u λ = ˆRn (-∆) s/2 u(-∆) s/2 u λ = λ s ˆRn ww λ ,
where w = (-∆) s/2 u. Following Ros-Oton and Serra [START_REF] Serra | The Pohozaev identity for the fractional Laplacian[END_REF], we use the change of variable y = √ λ x to deduce that

λ s ˆRn ww λ dx = λ 2s-n 2 ˆRn w √ λ w 1/ √ λ dy
Hence,

- n p + 1 ˆRn |u| p+1 = ˆRn x • ∇ |u| p+1 p + 1 = ˆRn (|u| p-1 u)x • ∇u = d dλ λ=1 ˆRn |u| p-1 uu λ = d dλ λ=1 λ 2s-n 2 ˆRn w √ λ w 1/ √ λ dy = 2s -n 2 ˆRn w 2 + d dλ λ=1 ˆRn w √ λ w 1/ √ λ dy = 2s -n 2 u 2 Ḣs (R n )
In the last equality, we have used the fact that w ∈ C 1 (R n ), as follows by elliptic regularity. We have just proved the following Pohozaev identity

n p + 1 ˆRn |u| p+1 = n -2s 2 u 2 Ḣs (R n )
For p < p S (n), the above identity together with (3.1) force u ≡ 0. For p = p S (n), we are left with proving that there is no stable nontrivial solution. Since u ∈ Ḣs (R n ), we may apply the stability inequlatiy (1.5) with test function ϕ = u, so that

p ˆRn |u| p+1 ≤ u 2 Ḣs (R n ) .
This contradicts (3.1) unless u ≡ 0.

In the following sections, we present several tools to study the supercritical case.

The monotonicity formula

In this section, we prove Theorem 1.4.

Proof. Since the equation is invariant under translation, it suffices to consider the case where the center of the considered ball is the origin x 0 = 0. Let (4.1)

E 1 (ū; λ) = λ 2s p+1 p-1 -n ˆRn+1 + ∩B λ t 1-2s |∇ū| 2 2 dx dt - ˆ∂R n+1 + ∩B λ κ s p + 1 |ū| p+1 dx For X ∈ R n+1 + , let also (4.2) U (X; λ) = λ 2s p-1 ū(λX).
Then, U satisfies the three following properties: U solves (1.10),

(4.3) E 1 (ū; λ) = E 1 (U ; 1),
and, using subscripts to denote partial derivatives, (4.4)

λU λ = 2s p -1 U + rU r .
Differentiating the right-hand side of (4.3), we find

dE 1 dλ (ū; λ) = ˆRn+1 + ∩B1 t 1-2s ∇U • ∇U λ dx dt -κ s ˆ∂R n+1 + ∩B1 |U | p-1 U λ dx.
Integrating by parts and then using (4.4),

dE 1 dλ (ū; λ) = ˆ∂B1∩R n+1 + t 1-2s U r U λ dσ = λ ˆ∂B1∩R n+1 + t 1-2s U 2 λ dσ - 2s p -1 ˆ∂B1∩R n+1 + t 1-2s U U λ dσ = λ ˆ∂B1∩R n+1 + t 1-2s U 2 λ dσ - s p -1 ˆ∂B1∩R n+1 + t 1-2s U 2 dσ λ
Scaling back, the theorem follows.

Homogeneous solutions

Theorem 5.1. Let ū be a stable homogeneous solution of (1.10). Assume that p > n+2s n-2s and

(5.1) p Γ( n 2 -s p-1 )Γ(s + s p-1 ) Γ( s p-1 )Γ( n-2s 2 -s p-1 ) > Γ( n+2s 4 ) 2 Γ( n-2s 4 ) 2 . Then, ū ≡ 0.
Proof. Take standard polar coordinates in R n+1 + : X = (x, t) = rθ, where r = |X| and θ = X |X| . Let θ 1 = t |X| denote the component of θ in the t direction and S n + = {X ∈ R n+1 + : r = 1, θ 1 > 0} denote the upper unit half-sphere.

Step 1. Let ū be a homogeneous solution of (1.10) i.e. assume that for some

ψ ∈ C 2 (S n + ), ū(X) = r -2s p-1 ψ(θ).
Then,

ˆSn + θ 1-2s 1 |∇ψ| 2 + β ˆSn + θ 1-2s 1 ψ 2 = κ s ˆ∂S n + |ψ| p+1 , (5.2)
where κ s is given by (1.9) and

β = 2s p -1 n -2s - 2s p -1 .
Indeed, since ū solves (1.10) and is homogeneous, ψ solves

   -div(θ 1-2s 1 ∇ψ) + βθ 1-2s 1 ψ = 0 on S n + -lim θ1→0 θ 1-2s 1 ∂ θ1 ψ = κ s |ψ| p-1 ψ on ∂S n + , (5.3) 
Multiplying (5.3) by ψ and integrating, (5.2) follows.

Step 2. For all ϕ ∈ C 1 (S n + ),

κ s p ˆ∂S n + |ψ| p-1 ϕ 2 ≤ ˆSn + θ 1-2s 1 |∇ϕ| 2 + n -2s 2 2 ˆSn + θ 1-2s 1 ϕ 2 (5.4) By definition, ū is stable if for all φ ∈ C 1 c (R n+1 + ), (5.5) 
κ s p ˆ∂R n+1 + |ū| p-1 φ 2 dx ≤ ˆRn+1 + t 1-2s |∇φ| 2 dxdt
Choose a standard cut-off function η ǫ ∈ C 1 c (R * + ) at the origin and at infinity i.e. χ (ǫ,1/ǫ) (r) ≤ η ǫ (r) ≤ χ (ǫ/2,2/ǫ) (r). Let also ϕ ∈ C 1 (S n + ), apply (5.5) with

φ(X) = r -n-2s 2 η ǫ (r)ϕ(θ)
for X ∈ R n+1 + , and let ǫ → 0. Inequality (5.4) follows.

Step 3. For α ∈ (0, n-2s

2 ),

x ∈ R n \ {0}, let v α (x) = |x| -n-2s 2 +α
and vα its extension, as defined in Theorem 1.3. Then, vα is homogeneous i.e. there exists

φ α ∈ C 2 (S n + ) such that for X ∈ R n+1 + \ {0}, vα (X) = r -n-2s 2 +α φ α (θ).
In addition, for all ϕ ∈ C 1 (S n + ),

ˆSn

+ θ 1-2s 1 |∇ϕ| 2 + n -2s 2 2 -α 2 ˆSn + θ 1-2s 1 ϕ 2 = κ s λ(α) ˆ∂S n + ϕ 2 + ˆSn + θ 1-2s 1 φ 2 α ∇ ϕ φ α 2 
Indeed, according to Fall [16, Lemma 3.1], vα is homogeneous. Using the calculus identity stated by Fall-Felli in [17, Lemma 2.1], we get

     -div(θ 1-2s 1 ∇φ α ) + n -2s 2 2 -α 2 θ 1-2s 1 φ α = 0 on S n + φ α = 1 on ∂S n + .
(5.7)

Multiply equation (5.7) by ϕ 2 /φ α , integrate by parts, apply the calculus identity

∇φ α • ∇ ϕ 2 φ α = |∇ϕ| 2 -∇ ϕ φ α 2 φ 2 α
and recall from Fall [16, Lemma 3.1] that

-lim t→0 t 1-2s ∂ t v α = κ s λ(α)|x| -n-2s 2 +α-2s ,
where λ(α) is given by (1.8).

Step 4. For α ∈ (0, n-2s 2 )

φ 0 ≤ φ α on S n + . (5.8) Indeed, on S n + , div(θ 1-2s 1 ∇φ 0 ) = n -2s 2 2 θ 1-2s 1 φ 0 ≥ n -2s 2 2 -α 2 θ 1-2s 1 φ 0
so φ 0 is a sub-solution of (5.7). By the maximum principle, the conclusion follows.

Step 5. End of proof. Fix α ∈ (0, n-2s 2 ) given by

α = n -2s 2 - 2s p -1 so that n -2s 2 2 -α 2 = 2s p -1 n -2s - 2s p -1 = β,
where β is the constant appearing in (5.3). Use the stability inequality (5.4) with ϕ = ψφ0 φα :

(5.9)

κ s p ˆ∂S n + |ψ| p+1 ≤ ˆSn + θ 1-2s 1 ∇ ψφ 0 φ α 2 + n -2s 2 2 ˆSn + θ 1-2s 1 ψφ 0 φ α 2 .
Note that a particular case of the identity (5.6) is

ˆSn + θ 1-2s 1 |∇ϕ| 2 + n -2s 2 2 ˆSn + θ 1-2s 1 ϕ 2 = κ s Λ n,s ˆ∂S n + ϕ 2 + ˆSn + θ 1-2s 1 φ 2 0 ∇ ϕ φ 0 2
(5.10) Using (5.10) (with ϕ = ψφ0 φα ), (5.9) becomes

κ s p ˆ∂S n + |ψ| p+1 ≤ κ s Λ n,s ˆ∂S n + ψ 2 + ˆSn + θ 1-2s 1 φ 2 0 ∇ ψ φ α 2 .
By (5.8), we deduce that

κ s p ˆ∂S n + |ψ| p+1 ≤ κ s Λ n,s ˆ∂S n + ψ 2 + ˆSn + θ 1-2s 1 φ 2 α ∇ ψ φ α 2 .
Using again the identity (5.6), we deduce that

κ s p ˆ∂S n + |ψ| p+1 ≤ κ s (Λ n,s -λ(α)) ˆ∂S n + ψ 2 + ˆSn + θ 1-2s 1 |∇ψ| 2 + β ˆSn + θ 1-2s 1 ψ 2
Comparing with (5.2), it follows that (p -1)

ˆ∂S n + |ψ| p+1 ≤ (Λ n,s -λ(α)) ˆ∂S n + ψ 2 . (5.11)
But from (5.2) and (5.6)

ˆ∂S n + |ψ| p+1 ≥ λ(α) ˆ∂S n + ψ 2
Combined with (5.11), we find that λ(α)p ≤ Λ n,s unless ψ ≡ 0.

Blow-down analysis

Proof of Theorem 1.1. Assume that p > p S (n). Take a solution u of (1.3) which is stable outside the ball of radius R 0 and let ū be its extension solving (1.10).

Step 1. lim λ→+∞ E(ū, 0; λ) < +∞. Since E is nondecreasing, it suffices to show that E(ū, 0; λ) is bounded. Write E = E 1 + E 2 , where E 1 is given by (4.1) and

E 2 (ū; λ) = λ 2s p+1 p-1 -n-1 s p + 1 ˆ∂B(0,λ)∩R n+1 + t 1-2s ū2 dσ By Lemma 2.6, E 1 is bounded. Since E is nondecreasing, E(ū; λ) ≤ 1 λ ˆ2λ λ E(u; t) dt ≤ C + λ 2s p+1 p-1 -n-1 ˆB2λ ∩R n+1 + t 1-2s ū2 .
Applying Lemma 2.5, we deduce that E is bounded.

Step 2. There exists a sequence λ i → +∞ such that (ū λi ) converges weakly in H 1 loc (R n+1 + ; t 1-2s dxdt) to a function ū∞ . This follows from the fact that (ū λi ) is bounded in H 1 loc (R n+1 + ; t 1-2s dxdt) by Lemma 2.6.

Step 3. ū∞ is homogeneous

To see this, apply the scale invariance of E, its finiteness and the monotonicity formula: given

R 2 > R 1 > 0, 0 = lim n→+∞ E(ū; λ i R 2 ) -E(ū; λ i R 1 ) = lim n→+∞ E(ū λi ; R 2 ) -E(ū λi ; R 1 ) ≥ lim inf n→+∞ ˆ(BR 2 \BR 1 )∩R n+1 + t 1-2s r 2-n+ 4s p-1 2s p -1 ūλi r + ∂ ūλi ∂r 2 dx dt ≥ ˆ(BR 2 \BR 1 )∩R n+1 + t 1-2s r 2-n+ 4s p-1 2s p -1 ū∞ r + ∂ ū∞ ∂r 2 dx dt
Note that in the last inequality we only used the weak convergence of (ū λi ) to ū∞ in

H 1 loc (R n+1 + ; t 1-2s dxdt). So, 2s p -1 ū∞ r + ∂ ū∞ ∂r = 0 a.e. in R n+1 + .
And so, u ∞ is homogeneous.

Step 4. ū∞ ≡ 0 Simply apply Theorem 5.1.

Step 5. (ū λi ) converges strongly to zero in H 1 (B R \ B ε ; t 1-2s dxdt) and (u λi ) converges strongly to zero in L p+1 (B R \ B ε ) for all R > ǫ > 0. Indeed, by Steps 2 and 3, (ū λi ) is bounded in H 1 loc (R n+1 + ; t 1-2s dxdt) and converges weakly to 0. It follows that (ū λi ) converges strongly to 0 in L 2 loc (R n+1 + ; t 1-2s dxdt). Indeed, by the standard Rellich-Kondrachov theorem and a diagonal argument, passing to a subsequence we obtain

ˆRn+1 + ∩(BR\A) t 1-2s |ū λi | 2 dxdt → 0, as i → ∞, for any B R = B R (0) ⊂ R n+1 and A of the form A = {(x, t) ∈ R n+1 + : 0 < t < r/2}, where R, r > 0. By [15, Theorem 1.2], ˆRn+1 + ∩Br (x) t 1-2s |ū λi | 2 dxdt ≤ Cr 2 ˆRn+1 + ∩Br(x) t 1-2s |∇ū λi | 2 dxdt for any x ∈ ∂R n+1 + , |x| ≤ R, with a uniform constant C. Covering B R ∩ A with half balls B r (x) ∩ R n+1 + , x ∈ ∂R n+1
+ with finite overlap, we see that

ˆBR∩A t 1-2s |ū λi | 2 dxdt ≤ Cr 2 ˆBR∩A t 1-2s |∇ū λi | 2 dxdt ≤ Cr 2 ,
and from this we conclude that (ū λi ) converges strongly to 0 in L 2 loc (R n+1 + ; t 1-2s dxdt). Now, using (2.7), (ū λi ) converges strongly to 0 in H 1 loc (R n+1 + \ {0}; t 1-2s dxdt) and by (2.6), the convergence also holds in L p+1 loc (R n \ {0}). Step 6.

ū ≡ 0. Indeed,

E 1 (ū; λ) = E 1 (ū λ ; 1) = ˆRn+1 + ∩B1 t 1-2s |∇ū λ | 2 2 dx dt - ˆ∂R n+1 + ∩B1 κ s p + 1 |ū λ | p+1 dx = ˆRn+1 + ∩Bǫ t 1-2s |∇ū λ | 2 2 dx dt - ˆ∂R n+1 + ∩Bǫ κ s p + 1 |ū λ | p+1 dx+ ˆRn+1 + ∩B1\Bǫ t 1-2s |∇ū λ | 2 2 dx dt - ˆ∂R n+1 + ∩B1\Bǫ κ s p + 1 |ū λ | p+1 dx = ε n-2s p+1 p-1 E 1 (ū; λε) + ˆRn+1 + ∩B1\Bǫ t 1-2s |∇ū λ | 2 2 dx dt - ˆ∂R n+1 + ∩B1\Bǫ κ s p + 1 |ū λ | p+1 dx ≤ Cε n-2s p+1 p-1 + ˆRn+1 + ∩B1\Bǫ t 1-2s |∇ū λ | 2 2 dx dt - ˆ∂R n+1 + ∩B1\Bǫ κ s p + 1 |ū λ | p+1 dx
Letting λ → +∞ and then ε → 0, we deduce that lim λ→+∞ E 1 (ū; λ) = 0. Using the monotonicity of E,

E(ū; λ) ≤ 1 λ ˆ2λ λ E(t) dt ≤ sup [λ,2λ] E 1 + Cλ -n-1+2s p+1 p-1 ˆB2λ \B λ ū2
and so lim λ→+∞ E(ū; λ) = 0. Since u is smooth, we also have E(ū; 0) = 0. Since E is monotone, E ≡ 0 and so ū must be homogeneous, a contradiction unless u ≡ 0. Take λ ∈ (0, 1). Since u s is a positive supersolution of (7.1), there exists a minimal solution u = u λ . By minimality, the family (u λ ) is nondecreasing and u λ is axially symmetric, that is, u λ (x, t) = u λ (r, t) with r = |x| ∈ [0, 1]. In addition, for a fixed value λ ∈ (0, 1), u λ is bounded, as can be proved by the truncation method of [START_REF] Brezis | Blow up for ut -∆u = g(u) revisited[END_REF], see also [START_REF] Dávila | Singular solutions of semi-linear elliptic problems, Handbook of differential equations: stationary partial differential equations[END_REF] and radially decreasing by the moving plane method (see [START_REF] Capella | Regularity of radial extremal solutions for some non-local semilinear equations[END_REF] for a similar setting). From now on let us assume that p S (n) < p and p Γ( n 2 -s p-1 )Γ(s + s p-1 ) Γ( s p-1 )Γ( n-2s 2 -s p-1 ) ≤ Γ( n+2s 4 ) 2 Γ( n-2s 4 ) 2 , which means that the singular solution u s is stable. Then, u λ ↑ u s as λ ↑ 1, using the classical convexity argument in [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF] (see also Section 3.2.2 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF]). Let λ j ↑ 1 and m j = u λj L ∞ = u λj (0), R j = m p-1 2s j , so that m j , R j → ∞ as j → ∞. Set v j (x) = m -1 j u λj (x/R j ). Then 0 ≤ v j ≤ 1 is a bounded solution of Moreover 0 ≤ v ≤ 1, v(0) = 1 and v ≤ ūs . This v restricted to R n × {0} is a radial, bounded, smooth solution of (1.3) and from v ≤ ūs we deduce that v is stable.

       div (t 1-2s ∇v j ) = 0 in B Rj ∩ R n+1 + v j = λ j ūs on ∂B Rj ∩ R n+1

7 . 1 -

 71 Construction of radial entire stable solutions Let ūs denote the extension of the singular solution u s (1.7) to R n+1 + defined by ūs (X) = ˆRn P (X, y)u(y) dy.Let B 1 denote the unit ball in R n+1 and for λ ≥02s ∇u) = 0 in B 1 ∩ R n+1 + u = λū s on ∂B 1 ∩ R n+1 + -lim t→0 (t 1-2s u t ) = κ s u p on B 1 ∩ {t = 0}.

+ -lim t→0 (t 1 -(t 1 -

 t→011 2s (v j ) t ) = κ s v p j on B Rj ∩ {t = 0}. Moreover v j ≤ ūs in B Rj ∩ R n+1 + and v j (0) = 1.Using elliptic estimates we find (for a subsequence) that (v j ) converges uniformly on compact sets of R n+1 + to a function v that is axially symmetric and solves div (t 1-2s ∇v) 2s v t ) = κ s v p on R n × {0}.
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