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Abstract 

Calculations on solid (S)-liquid (wL )-gas (G)-phase equilibria of selected ternary {water + 
salt + gas} and quaternary {water + salt1 + salt2 + gas} systems (salt = NaCl, KCl, CaCl2; 
gas = CH4, CO2) comprising a gas clathrate hydrate phase (S ≡ H) have been performed. The 
thermodynamic description of the liquid phase non-idealities observed in these systems has 
been provided by means of the semi-empirical electrolyte NRTL (eNRTL) excess Gibbs 
energy model. Multicomponent expressions for individual as well as mean ionic activity 
coefficients as defined by both, a previous and the most recent version of the eNRTL model, 
have been implemented in a computer programme written in the Java programming language. 
Basic model parameters are provided by means of a data bank set up in the xml file format. 
The correctness of the programme implementation of the eNRTL expressions has been 
verified by comparing the results of selected example calculations with corresponding results 
given in the original literature sources. The programme code of the model implementation has 
been incorporated into a previously developed in-house programme enabling to perform 
equilibrium calculations on non-electrolyte aqueous systems involving gas hydrate phases. In 
the H-Lw-G calculations, fugacities in the gas phase were calculated by means of the Soave-
Redlich-Kwong (SRK) equation of state (EOS), whereas a Henry’s law approach in 
combination with the eNRTL model has been applied to characterise the liquid phase. The 
van der Waals and Platteeuw model has been used to describe the gas clathrate hydrate phase. 
A satisfying predictive description of the experimental p-T-H-Lw-G phase equilibrium data is 
achieved with average absolute relative deviations (AARD) between experimental and 
calculated pressures ranging from 1 % to 15 %. 

Keywords: Modelling, gas hydrate, eNRTL model, electrolytes, phase equilibrium, CO2, CH4

                                                 
* Corresponding author: Phone: +33 (0) 4 77 42 00 62, Fax: +33 (0) 4 77 49 96 92, e-mail: kwaterski@emse.fr 
† Phone: +33 (0) 4 77 42 02 92, Fax +33 (0) 4 77 49 96 92, e-mail: herri@emse.fr 





 3

1 IntroductionFormelabschnitt 1 

Gas clathrate hydrates are mixed solid crystalline phases which are built up by a network of 
hydrogen bonded water molecules comprising cage-like structural units, each of which can 
encapsulate a single appropriately sized guest molecule. The guest species, generally 
molecules of low molecular weight gases and organic compounds [1], stabilise the solid 
solvent, the thermodynamically metastable host lattice, by interacting with the water 
molecules of the cavities through van der Waals forces [2]. Gas clathrate hydrates are 
thermodynamically stable in regions of ambient or lower temperatures (near the normal 
freezing point of water) and elevated pressures (typically more than 0.6 MPa) [3,4] and 
crystallise in the two cubic structures I (sI) and II (sII), and the hexagonal structure H (sH). 
Besides having the potential for numerous applications in the oil and gas industry and the 
energy sector (e.g. in gas storage and separation, air-conditioning systems and water 
desalination and treatment [5]), gas hydrates can also cause problems in the oil and gas 
industry (e.g. pipeline blockages by hydrates in drilling applications or gas pipelines) [6]. 
Species being capable of forming hydrogen bonds with the water molecules like methanol or 
ethylene glycol as well as water-soluble polymers or electrolytes are known for acting as 
thermodynamic inhibitors with respect to the formation of gas hydrates [3]. These additives 
can prevent the formation of hydrate plugs by altering the state of the liquid phase [3] and 
thereby changing the phase transition conditions [7]. 

Due to the electrostatic forces acting between ions the thermodynamic description of 
electrolyte solutions is significantly more difficult than the treatment of non-electrolyte 
systems [8,9]. To model electrolyte solutions, an electrolyte equation of state (EOS), 
especially useful at high pressures, an excess Gibbs energy model [8] or a combination of the 
two strategies is usually employed. Several electrolyte EOS, like e.g. the Fürst-Renon EOS 
[10,11], the electrolyte modification [8] of the Trebble-Bishnoi EOS [12,13], or the statistical 
associating fluid theory with variable range for electrolytes (SAFT-VRE) EOS [14] have been 
developed. Besides, numerous semi-empirical excess Gibbs energy models have been 
proposed [15], as e.g. the model of Bromley [16], the ion-interaction model of Pitzer [17,18], 
the model of Cruz and Renon [19], the eNRTL-model of Chen et al. [15,20-23], the 
LIQUAC- model of Li et al. [24] and the MSA-model of Papaiconomou et al. [25]. 

To model the Hydrate (H)-Liquid (Lw)-Gas (G)-phase boundary in systems containing 
electrolytes, an equation of state and/or activity coefficient approach for the fluid phases is 
combined with the hydrate model of van der Waals and Platteeuw (vdW-P) [26]. Englezos 
and Bishnoi [27] e.g. presented an approach to predict the thermodynamic gas hydrate 
formation conditions in aqueous systems containing light hydrocarbon gases and single or 
mixed electrolytes using Pitzer’s [17] and Meissner’s [28] activity coefficient models. Clarke 
and Bishnoi [8] have developed an electrolyte EOS for mixed salt and mixed solvent systems 
to describe the Liquid-Vapour- (L-V-) equilibrium in these mixtures. The EOS was also used 
to model the H-L-V-equilibrium obtained in systems containing additionally one or more of 
the gases CH4, CO2, H2S and/or C3H8 [8]. Hsieh et al. [7] presented an approach for 
modelling the change in hydrate forming conditions in mixtures containing electrolytes and 
molecular inhibitors. They combined the vdW-P model with the Peng-Robinson-Stryjek-Vera 
EOS [29], using the first order modified Huron-Vidal (MHV1) mixing rule [30] with two 
activity coefficient models, the UNIQUAC [31] and the COSMO-SAC [32,33] model. 

Prior to initiating the current modelling work, incipient gas hydrate forming conditions in 
non-electrolyte aqueous systems were modelled in our research group. The calculations were 
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performed with our in-house programme named “GasHyDyn” which was created and 
described earlier [34] using the object oriented programming language Java. The programme 
has been based on the algorithm proposed by Sloan [35] and its code is available from the 
second author on request. The need for extending this in-house programme to enable the 
treatment of electrolyte systems originated from the attempt to model the thermodynamics of 
so-called (gas-)semiclathrate hydrates of tri-n-butylammonium bromide (TBAB), the results 
of which will be dealt with in a forthcoming article [36]. Since TBAB dissociates into ions in 
aqueous solution, an electrolyte model was required to describe the liquid phase non-idealities 
in this system with sufficient accuracy. Bèlvèze et al. [37] showed that the eNRTL-model 
[20,21] does an excellent job in describing experimental data on the mean molal activity 
coefficient of TBAB, , TBAB,bγ ∗

± , in aqueous solution at 298.15 K [38] over a wide range of 
TBAB concentration (maximum overall molality 1

TBAB, max 27 mol kgb −= , residual standard 
deviation of 0.038σ =  with respect to calculated and measured results on , TBAB,ln bγ ∗

± ). 
Moreover, only two parameters are required for the isothermal description of single 
electrolyte solutions with this model [20,21] (e.g. the famous Pitzer model [17] needs three). 
Therefore we decided to use the eNRTL-model to describe the isobaric H-Lw equilibrium in 
the system {H2O + TBAB} and H-Lw-G-equilibria in the corresponding gas semi-clathrate 
hydrate systems. In this preliminary study the aim is to test the suitability of the model to 
describe systems with conventional gas hydrate phases in the presence of electrolytes. 
Therefore, a Java implementation of both the previous [21] and the updated version of the 
single-solvent multicomponent eNRTL-model [23] was created initially. After having 
thoroughly tested the correctness of the eNRTL-code, the programme was incorporated into 
our previously existing in-house programme for modelling H-Lw-G-phase equilibria. 
Subsequently, by means of the new programme, incipient gas hydrate formation conditions 
were modelled in systems with sodium chloride (NaCl) and potassium chloride (KCl) or 
calcium chloride (CaCl2) and the gases methane (CH4) or carbon dioxide (CO2). 

2 Modelling approach Formelabschnitt (nächster) 

2.1 Hydrate-liquid-gas equilibrium 

Thermodynamic equilibrium between the gas hydrate phase (H) and the aqueous liquid phase 
( wL ) under incipient hydrate formation conditions, when being in simultaneous equilibrium 
with a gas phase (G), can be expressed by 

 wLH
w wβ βµ µ∆ = ∆  (1) 

where H H ,
w w w

β
β µ µ µ∆ ≡ − o  denotes the difference in the chemical potential of water in the gas 

hydrate phase and the pure (index o ) solid solvent phase, i.e. the empty metastable hydrate 
lattice (index β ). Similarly, w wL L ,

w w w
β

β µ µ µ∆ ≡ − o  designates the chemical potential difference 
of water in the liquid and the empty hydrate phase. It should be pointed out that the way for 
expressing the equilibrium condition in eq. (1) differs from the way it is usually found in the 
literature, firstly because minuend and subtrahend are reversed as it was also done by Ballard 
and Sloan [39] (i.e., ,

w w
π βµ µ− o  instead of ,

w w
β πµ µ−o  with wH,Lπ = ), and secondly, because 

the nomenclature is adopted from the notation as recommended by the IUPAC Commission 
I.2. [40]. Since the presence of water in the gas phase was neglected in a good approximation, 
the condition involving the chemical potential of water in this phase was not considered. 
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2.2 The thermodynamic description of the hydrate phase 

The clathrate hydrate phase is described by means of the ideal solid solution theory of van der 
Waals and Platteuuw [26]. In this statistical thermodynamic model, the chemical potential 
difference H

wβ µ∆ , expressed on a molar basis, is given by 

 
cav g

H
w Hln 1i j i

i S j SRT
β µ

ν θ
∈ ∈

 ∆
= −  

 
∑ ∑  (2) 

In eq. (2), R  denotes the universal gas constant [41], { }cav cav1, ,S N= K  the set of indices of 
the cavN  different types of cavities, and { }g g1, ,S N= K  the set of indices identifying the gN  
different types of guest species. iν  is the number of type i  cavities per water molecule, and 

H
j iθ  the fractional occupancy of guest j  in cavity i  in the hydrate phase. Hj iθ  can be expressed 

in terms of the Langmuir constant j iC  of guest j  in cavity i , and the fugacity jf  of j  as 

 

g

H

1
j i j

j i
j i j

j S

C f

C f
θ

′ ′
′∈

=
+ ∑

   (for all gj S∈  and cavi S∈ ) (3) 

The expression in eq. (3) resembles the well known relation describing the two dimensional 
adsorption according to the Langmuir model. At wH-L -G -equilibrium, the isofugacity 
criterion, implicitly incorporated into eq. (2) [27] does hold. The latter states the equality of 
the fugacities jf  throughout the co-existing phases, i.e. wLH G ( )j j j jf f f f= = ≡ . Hence, any of 
the jf ’s in one of the three phases may be employed for calculating jf . For practical reasons, 
the gas phase fugacities Gjf , obtained from the SRK-EOS [42], were used for this purpose. 

The Langmuir constants were calculated from an expression proposed by Parrish and 
Prausnitz [43] describing the cell potential energy of guest j  within the spherically assumed 
cavity i  of water molecules. The latter in turn is based on the Kihara core potential [44] 
which accounts for the single interactions between the guest and each of the water molecules 
constituting the cavity [1]. In that way, j iC  is given in terms of the Kihara parameters wjσ , 

wjε  and ja , the core distance at which attraction and repulsion of a guest host-pair balance 
each other, the corresponding characteristic energy, and the core radius of the guest molecule, 
respectively, and the lattice specific quantities iz  and iR , the coordination number and the 
radius of the cavity i , respectively [1]. The relations w w( , , , , )j i j j j i iC f a z Rσ ε=  in which the 
water molecules are assigned a zero core radius (i.e., w w0 2 j ja a a= ⇒ = ) [45] are compiled 
in appendix A.1. The values for ja , wjσ  and wjε  used in this study are listed in Table 6 along 
with literature data on wjσ  and wjε . The values for iz  and iR  were taken from [35]. 

2.3 Dependence of the liquid phase chemical potential difference on the state variables 

The model description for wL
wβ µ∆  as function of temperature T , pressure p  and the vector of 

independent mole fractions wLx
r

, was provided by the following equation 

 

( )

( )

ww w w

w

w

w

w w w

LL L L
0 , m, w 0 0w w 0 0 0

0
0

L
m, w 0 0 L 0

, m, w 0 0 0
0

L
m, w 0 0 L L L

0 , w w

( , )( , , ) ( , )
ln

2

( , )1
( , ) 1

2

( , )
ln ( , , ) ln

p

p

x

bT C T pT p x T p T b
T T

RT RT R T R

H T p Tb
C T p T

R T T

V T p
p p T p x x

RT

ββ β

β
β

β

µ µ

γ

+ ∆∆ ∆  = + + − 
 

 ∆  + − ∆ − −     

∆
+ − − −

oo

o

o

o

r

r

 (4) 
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where wL
wx  and 

wL
, wxγ  denotes the mole fraction and the activity coefficient of water in the 

liquid phase, respectively. wL
w 0 0( , )T pβ µ∆ o , wL

m, w 0 0( , )H T pβ∆ o , wL
, m, w 0 0( , )pC T pβ∆ o  and 

wL
m, w 0 0( , )V T pβ∆ o  are the difference in chemical potential, molar enthalpy, isobaric molar heat 

capacity and molar volume between water in the pure liquid and the pure metastable hydrate 
phase under reference conditions for temperature and pressure of 0 273.15 KT =  and 

0 0 MPap =  [34], respectively. Along with the empirical constant b , these quantities are 
regarded as parameters determined by using various experimental and calculation techniques 
[35]. Eq. (4) is derived from an empirical expression for wL

, m, wpCβ∆ o , which was e.g. also used 
by Holder et al. [46], via classical thermodynamic relationships (Appendix A.2). 

The reference parameters describing the phase change wLβ →  were taken from different 
literature sources [35,47-49] as compiled in Table 1. Since the data available for 

wL
w 0 0( , )T pβ µ∆ o  show strong variations among different laboratories [34], this parameter needs 

to be selected with precaution when being used in calculations of j iC  along with a given set 
of Kihara parameters [34]. A great variation is also detected among the values published for 

wL
m, w 0 0( , )H T pβ∆ o . In contrast, literature data on wL

, m, w 0 0( , )pC T pβ∆ o , b  and wL
m, w 0 0( , )V T pβ∆ o  are 

less numerous. Based on the conclusions drawn in [34], the data of Handa and Tse [49] were 
used for wL

w 0 0( , )T pβ µ∆ o  and wL
m, w 0 0( , )H T pβ∆ o . The value for wL

m, w 0 0( , )V T pβ∆ o  was taken from 
John et al. [48], while the values for wL

, m, w 0 0( , )pC T pβ∆ o  and b  were taken from Sloan [35]. 

Table 1 Parameters characterising the phase change between the “empty” hydrate phase 
β  and the pure liquid water phase wL  

 sI sII 

wL 1
w 0 0( , ) J molT pβ µ −∆ o a –1263c 

–1297d 

–1120e 

1287f 

–883.8c 

–937d 

–931e 

–1068f 
wL 1

m, w 0 0( , ) J molH T pβ
−∆ o a, b 4622c 

4622d 

4297e 

5080f 

4986c 

4986d 

4611e 

5247f 
wL 1 1

, m, w 0 0( , ) J K molpC T pβ
− −∆ o a 38.12c 38.12c 

2 1J K molb − − a –0.141c –0.141c 

wL 3 1
m, w 0 0( , ) cm molV T pβ

−∆ o a –4.5959e –4.99644e 

a The numerical values for the parameters compiled here are the negative values of the values given in the 
original sources due to the inversely defined differences as outlined in the text. 

b Since the original data are given as 
I m, w 0 0( , )H T pβ∆ o , the wL

m, w 0 0( , )H T pβ∆ o -values presented here are derived by 
adding the molar enthalpy of fusion wL 1

fus m, w 0 0 I m, w 0 0( , ) ( , ) 6011J molH T p H T p −∆ = ∆ =o o  [48] to 
I m, w 0 0( , )H T pβ−∆ o . 

c 2nd ed. of the monograph of Sloan [35]. 

d Dharmawardhana [47]. 
e John et al. [48]. Since the authors present 

I m, w 0 0( , )V T pβ∆ o , the value the molar volume of fusion of ice, 
wL 3 1

fus m, w 0 0 I m, w 0 0( , ) ( , ) 1.6 cm molV T p V T p −∆ = ∆ = −o o , as determined from X-ray diffraction data of von 
Stackelberg and Müller [50], has been added to wL

I m, w 0 0( , )V T p−∆ o  for obtaining wL
m, w 0 0( , )V T pβ∆ o . 

f Handa and Tse [49]. 
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2.4 The solubility of the gases in the aqueous liquid phase 

The solubility of gas j  ( 4 2CH , COj = ) in the liquid phase, expressed in terms of the mole 
fraction wL

jx , is estimated via a Henry’s law approach. Hereby, the assumption was made that 
the activity coefficient of j , w, L

,x jγ ∗ , i.e. the so-called salting-in or salting-out effect [9], can be 
neglected. Setting w, L

, 1x jγ ∗ =  and assuming that the partial molar volume w, L
m, jV ∞  of j  at infinite 

dilution is independent of pressure, the phase equilibrium condition reads [35] 

 
w

w w

, L
m,L LG

H, , w w( , )exp j
j j j j

pV
f f x k T p

RT
σ

∞ 
= =   

 
 (5) 

where G
jf  is the fugacity of j  in the gas phase which is calculated by means of the Soave-

Redlich-Kwong EOS [42] and H, , w w( , )jk T pσ  denotes Henry’s constant at the saturation 
pressure wpσ  of the pure solvent, i.e., at infinite dilution of j . The lower integration limit in 
the Poynting correction has been approximately set to 0 MPap = , as it was done by Sloan 
[35]. Like in our previous work [34], an average value of w, L 3 1

m, 32 cm moljV ∞ −=  [51] was used 
for both gases. Henry’s constant at T  and wpσ  was calculated from the empirical relation [35] 

 H, , w w
0 1 2 35

( , ) 4.185 J K
exp ln

1.01325 10 Pa K mol K K
jk T p T T

a a a a
R T

σ    = − + + +   × ×    
 (6) 

The numerical values of the constants 0a , 1a , 2a  and 3a  are listed in Table 2. 

Table 2 Parameters appearing in the correlation (eq. (6)) for Henry’s law constant 

 0a  1a  2a  3a  

CH4
a –365.183 18106.7 49.7554 –0.000285 

CO2
a –317.658 17371.2 43.0607 –0.002191 

a 2nd ed. of the monograph of Sloan [35]. 

2.5 The eNRTL-model 

For the case of a single solvent, aqueous multicomponent electrolyte system considered here, 
the eNRTL model [15,20] describes its molar excess Gibbs energy by referring to the basic 
microscopic characteristics of electrolyte solutions. The model accounts for the long ranging 
inter-ionic forces (subscript LR) and the short range forces (subscript SR) acting between the 
various species by splitting up the molar excess Gibbs energy E

mG ∗  into the sum of the two 
corresponding contributions Em, LRG ∗  and E

m, SRG ∗  [20], respectively, according to 

 E E E
m m, LR m, SRG G G∗ ∗ ∗= + , (7) 

where E
m, LRG ∗  stands for the long-range and Em, SRG ∗  for the short-range contribution to EmG ∗ . 

The asterisk denotes the unsymmetric reference state (see further below). From an expression 
for E

mG  or E
mG ∗ , expressions for the symmetrically referenced activity coefficients ,x jγ  and 

the unsymmetrically referenced activity coefficients ,x jγ ∗  can be derived in the usual way via 
the thermodynamic relationships given in Appendix A.3. It follows from eq. (7) that for all 
species C Amj S S S∈ ∪ ∪  (see explanations below) ,ln x jγ  (as well as ,ln x jγ ∗ ) is given by 

 , , , LR , , SRln ln lnx j x j x jγ γ γ= + , (8) 



 8

where , , LRx jγ  and , , SRx jγ  are the respective contributions to ,x jγ . The presentation of the 
model in the following sub-sections is mainly based on the modification published by Bollas 
et al. [] of the multicomponent version of the eNRTL-model of Chen and Evans [ 

2.5.1 The description of the composition of the system 

In the most general case the system is a multicomponent electrolyte solution consisting of 
1mN +  molecular components 0 1, , ,

mNm m mK , CN  cationic species 
C1C , ,CNK  and AN  

anionic species 
A1A , ,A NK , respectively. Whereas 0m  stands for the molecular solvent (here 

water, i.e. 0 wm ≡ ), 1, ,
mNm mK designates the set of possible additional molecular solute 

species, respectively. The corresponding sets of species are denoted by mS , CS  and AS , i.e. 

 

{ }
{ }
{ }

C

A

0 1

C 1

A 1

, , ,

C , ,C

A , ,A

mm N

N

N

S m m m

S

S

=

= 


= 

K

K

K

 (9) 

The systems treated here contain strong electrolytes 
C, CA A, CA

C Aν ν  (abbreviated as CA) 
which dissociate completely into C, CAν  cations CCz +  and A, CAν  anions A| |A z −  

 C A

C, CA A, CA

| |
C, CA A, CAC A C Az z

ν ν ν ν+ −→ +  (10) 

The composition of the system might either be characterised by means of the mole fraction 

jx  of species j , calculated from the complete set of mole numbers jn  of species according to 

 

C Am

j
j

j
j S S S

n
x

n ′
′∈ ∪ ∪

=
∑

   (for all C Amj S S S∈ ∪ ∪ ), (11) 

or in terms of the amounts of the chemical components regardless of what happens to their 
particles when being dissolved. These quantities are called here “overall” or “apparent” 
quantities. For example, the overall molality kb  of component k  is defined as 

 
w w w

k k
k

n n
b

m n M
= =    (for all { } { }CA \ wmk S S∈ ∪ ), (12) 

where kn  is the overall mole number of component k , and wm  and wM  are the overall mass 
and the molar mass of water, respectively. CAS  designates the set of salts used for preparing 
the respective solution, which in combination with the condition of complete dissociation 
determines unambiguously the mixture composition in terms its species. 

2.5.2 The long-range interaction contribution 

In the framework of the eNRTL model the long-range contribution to E
mG ∗ , E E

m, LR m, PDHG G∗ ∗= , is 
modelled by a Debye-Hückel term as modified by Pitzer (indicated by subscript PDH), in 
which the solvent is treated as a dielectric continuum [17,18]. The set of independent 
variables for representing E

m, PDHG ∗  consists of temperature, molar volume, the chemical 
potential of the solvent and the mole numbers of all solute species, corresponding to the so-
called McMillan-Meyer-framework [52]. Therefore the Pitzer-Debye-Hückel equation is 
based on an unsymmetric reference state whereby E

m, PDHG ∗  vanishes when the mole fraction of 
the solvent species wx  approaches unity. 
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w

E
m, PDH1

lim 0
x

G ∗

→
= , (13) 

w 1x →  is equivalent to the condition w 0jj
x≠ →∑ , explaining the term “unsymmetric”. 

E
m, PDHG ∗  vanishes if the pure component state is approached for the solvent, but the state of 

infinite dilution is approached for the solute species. 

Since E
m, PDHG ∗  accounts for the long-range Coulomb forces between the charged species 

only, its composition dependence can be represented entirely by means of the ionic strength. 
The ionic strength, expressed with respect to the mole fraction concentration scale, xI , is 
defined through the relation 

 
C A

21

2x j j
j S S

I z x
∈ ∪

= ∑  (14) 

where jz  is the positive or negative charge number of ion j . With xI , the defining equation 
for E

m, PDHG ∗  [18] reads 

 ( )
E E
m, LR m, PDH 1 2 1 2

w4 ln 1x
x

G G I
A M I

RT RT φ ρ
ρ

∗ ∗
−= = − +  (15) 

In eq. (15), T  denotes the absolute temperature, wM  the molar mass of the solvent water and 
ρ  the closest approach parameter, respectively. Aφ  is the so-called Debye-Hückel-parameter 
which for aqueous electrolyte systems can be expressed by 

 

3 2
1 2 2

Av w

0 r, w B

(2 )1

3 8

N e
A

k Tφ
ρ
π ε ε

 
=   

 

o

o
, (16) 

where AvN , Bk , e , and 0ε  stands for the Avogadro constant, the Boltzmann constant, the 
elementary charge and the permittivity of free space, respectively [41]. r, wε o  is the relative 
permittivity and wρo  the density of water, respectively. Since the numerical value for each of 
the quantities in eq. (15) and (16) depends on the respective unit employed, the numerical 
factor 1000 given in the original publications (e.g. [17,18,53]) has been omitted in both eq. 
(15) and eq. (16). Aφ  is based on molality as the underlying composition scale and has the 
dimension 1 2 1 2mass (amount of substance)−× . Numerical values of the Debye-Hückel 
parameter are usually given in 1 2 1 2kg mol−  and at 298.15 K 1 2 1 20.391 kg molAφ

−= . In case 
of water being the solvent, Aφ  is provided as an empirical function of temperature by Chen et 
al. [20], which was also used here. It should be remarked that the expression given in [20] has 
to be multiplied by 1 2 1 2kg mol−  to give the correct results. The closest approach parameter ρ  
has been set to a value of 14.9 in accordance with the work of Chen and co-workers [20,21]. 

The general expression for the long range interaction contribution to the activity coefficient 

, , LRx jγ ∗ , valid for all types of species, ionic as well as molecular solute and solvent species, 
i.e., C Amj S S S∈ ∪ ∪ , is derived from eq. (15) by using eq. (A.8) in appendix A.3. 

 ( )
2 2 1 2 3 2

1 2 1 2
, , LR w 1 2

2 2
ln ln 1

1
j j x x

x j x
x

z z I I
A M I

Iφγ ρ
ρ ρ

∗ −
   −

= − + +    +  
 (17) 

2.5.3 The short-range interaction contribution 

A modified version of the Non-Random-Two-Liquid model of Renon and Prausnitz [54] 
(indicated by subscript mod-NRTL) which is based on the local composition concept (index 
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LC) is used to describe the short range contribution E E E
m, SR m, mod-NRTL m, LCG G G∗ ∗ ∗= =  to E

mG ∗ . In 
contrast to the Pitzer-Debye-Hückel model, the modified NRTL model is based on a 
symmetric reference state, i.e., it provides an expression for E

m, SRG , the symmetrically 
referenced molar excess Gibbs energy rather than for E

m, SRG ∗ . In other words, the model uses 
the pure liquid solvent, the hypothetically pure liquid molecular and the hypothetically pure 
liquid homogeneously mixed electrolyte solutes, respectively, as reference states. 

 { }
w

CA

E
m, SR1

E
m, SR1

E
m, SR CA1

lim 0

lim 0 (for all \ w )

lim 0 (for all CA )

m

x

m
x

x

G

G m S

G S

→

→

→

=

= ∈ 

= ∈


 (18) 

where wx , mx  and CAx  denote the overall mole fractions of the solvent, the molecular and the 
electrolyte solute components, respectively. 

The reference value used for defining the short range contribution to the excess molar 
Gibbs energy is the residual molar Gibbs energy of the pure molecular component/species for 
each mm S∈ . The hypothetically homogeneously mixed completely dissociated liquid 
electrolyte mixture [21] is used as reference state for the residual molar Gibbs energy of ionic 
species CC S∈  and AA S∈  respectively. 

 R ref R
m, -cell m, -cellm m mmG G g= =o    (for all mm S∈ ) (19) 

 
A

R ref
m, C-cell C A AC

A S

G z Y g
∈

= ∑    (for all CC S∈ ) (20) 

 
C

R ref
m, A-cell A C CA

C

| |
S

G z Y g
∈

= ∑    (for all AA S∈ ) (21) 

In eqs. (19)-(21), mmg , ACg  and CAg  denote the energies of interaction between -m m , A-C  
and C-A  species, respectively. With regard to the individual ionic activity coefficients, the 
symmetrical reference frame implies that the activity coefficients approach unity only if for a 
given CC S∈  (or AA S∈ ) all other ions vanish except for another single counter ion AA S∈  
(or CC S∈ ). This corresponds to the state of the pure, hypothetically homogeneously mixed 
liquid pure electrolyte component CA . In eqs. (20) and (21), AY  and CY  are the so-called 
ionic charge fractions defined according to [15] 

 

C

C
C

C
C S

X
Y

X ′
′∈

=
∑

   (for all CC S∈ ) (22) 

 

A

A
A

A
A S

X
Y

X ′
′∈

=
∑

   (for all AA S∈ ) (23) 

In eqs. (22) and (23), jX  is the effective mole fraction of species j  which is defined by [21] 

 j j jX x c=    with 
C A

1 for

| | for
m

j
j

j S
c

z j S S

∈
=  ∈ ∪

 (24) 

The symmetric reference frame leads to the following expression for E
m, SRG  [21] 
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C A A

C A

C A A

C

A C

C

C,AC C,ACE
m, SR

C A
C A C,AC

A,CA A,CA

A C
A C A,CA

m m

m

m m

m

m

j jm j m j j j
j S S S j S S

m
m S S Sj j m j j

j S S S j S S

j j j
j S S

S S j j
j S S

X G X G
G

X X Y
RT X G X G

X G

X Y
X G

τ τ

τ

∈ ∪ ∪ ∈ ∪

∈ ∈ ∈′ ′ ′ ′
′ ′∈ ∪ ∪ ∈ ∪

∈ ∪

∈ ∈ ′ ′
′∈ ∪

= +

+

∑ ∑
∑ ∑ ∑

∑ ∑

∑
∑ ∑

∑

 (25) 

where j mG , C,ACjG  and A,CAjG  are the Boltzmann kind factors and j mτ , C,ACjτ  and A,CAjτ  the 
corresponding dimensionless interaction energy parameters [15,21]. The quantities j mG  for 
j m′= , C  and A , respectively, are calculated for any mm S∈  according to [15,21] 

 ( )expm m m m m mG α τ′ ′ ′= −    (for all mm S′ ∈ , mm S∈ ) (26) 

 
A

C A CA,
A

m m
S

G Y G
∈

= ∑    (for all CC S∈ , mm S∈ ) (27) 

 
C

A C CA,
C

m m
S

G Y G
∈

= ∑    (for all AA S∈ , mm S∈ ) (28) 

CA, mG  in turn is given by [55] 

 ( )CA, CA, CA,expm m mG α τ= −    (for all mm S∈ , CC S∈ , AA S∈ ), (29) 

where CA, mα  and CA, mτ  are basic model parameters. The Boltzmann kind factors C,ACjG  for 
, Aj m ′= , and A,CAjG  for , Cj m ′= , are defined similarly to eq. (26) and eq. (29) [55] by 

 ( )C,AC C,AC C,ACexpj j jG α τ= −    (for all Amj S S∈ ∪ , CC S∈ , AA S∈ ) (30) 

 ( )A,CA A,CA A,CAexpj j jG α τ= −    (for all Cmj S S∈ ∪ , CC S∈ , AA S∈ ) (31) 

In eqs. (26) and (29-31), the dimensionless quantities m mα ′ , C,ACjα  and A,CAjα  are the so-
called nonrandomness factors. 

The interaction energy parameters Cmτ  and A mτ  are obtained from [15] 

 C
C

C

ln m
m

m

G
τ

α
= −    (for all CC S∈ , mm S∈ ) (32) 

 A
A

A

ln m
m

m

G
τ

α
= −    (for all AA S∈ , mm S∈ ) (33) 

where the jmα ’s are obtained from the independent nonrandomness factors CA, , CAm mα α≡  via 
the same type of mixing rule as the one being used for calculating the quantity j mG  [15,21]. 

 
A

C A CA,
A

m m
S

Yα α
∈

= ∑    (for all CC S∈ , mm S∈ ) (34) 

 
C

A C CA,
C

m m
S

Yα α
∈

= ∑    (for all AA S∈ , mm S∈ ) (35) 
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Whereas A C,AC AC,A Cα α′ ′≡  and C A,CA CA,C Aα α′ ′≡  as well as A C, ACτ ′ , AC, A Cτ ′ , C A, CAτ ′  and 

CA, C Aτ ′  belong to the set of basic parameters of the model, C, ACmτ  and A, CAmτ  are composition 
dependent quantities which are derived by means of the following relations [15,23] 

 ( )CA,
C,AC C CA, ,CA

C,AC

m
m m m m

m

α
τ τ τ τ

α
= − −    (for all mm S∈ , CC S∈ , AA S∈ ) (36) 

 ( )CA,
A,CA A CA, ,CA

A,CA

m
m m m m

m

α
τ τ τ τ

α
= − −    (for all mm S∈ , CC S∈ , AA S∈ ) (37) 

Like m mτ ′  and CA, mτ , , CAmτ  is yet another independent model parameter. In contrast, C,ACmα  
and A,CAmα  are set to [15,23] 

 C, AC Cm mα α=    (for all mm S∈ , CC S∈ , AA S∈ ) (38) 

 A,CA Am mα α=    (for all mm S∈ , CC S∈ , AA S∈ ) (39) 

Since the solvent activity coefficient, wL
, wxγ , is of fundamental importance in modelling the 

wH-L -G -equilibria treated in this study, the expression for the short range contribution to the 
symmetrically referenced activity coefficient , , SRx mγ  of molecular species m  is explicitly 
presented at this stage. Partial differentiation of the E

m, SRG -expression defined in eq. (25) with 
respect to jn  for j m=  ( mm S∈ ) according to eq. (A.8) leads to the equation for , , SRln x mγ  

 

C A C A

C A C A C A

A

, , SR

C,A C C,A C
A C C,A C

C,A C
C,A C

ln m m

m

m m m

m

m

j j m j m j j m j m
j S S S j S S Sm mm

x m mm
m Sj j m j j m j j m

j S S S j S S S j S S S

j j j
j Sm

m
j j

j S S

X G X G
X G

X G X G X G

X G
Y X G

X G

τ τ
γ τ

τ
τ

′ ′
′ ′∈ ∪ ∪ ∈ ∪ ∪

′
′∈′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′∈ ∪ ∪ ∈ ∪ ∪ ∈ ∪ ∪

′ ′
′ ′ ∈ ∪

′
′ ′ ′

′∈ ∪

 
 = + − 
 
 

+ −

∑ ∑
∑

∑ ∑ ∑

∑
A

C A

A

C

A C

C C

C A C,A C

A,C A A,C A
C A A,C A

A,C A
A C A,C A A,C A

m

m

m m

S

S S j j
j S S

j j j
j S Sm

m
S S j j j j

j S S j S S

X G

X G
Y X G

X G X G

τ
τ

′∈ ∈ ′ ′ ′
′∈ ∪

′ ′
′ ′ ∈ ∪

′
′∈ ∈ ′ ′ ′ ′ ′ ′

′ ′∈ ∪ ∈ ∪

 
 
 
 
 

 
 + − 
 
 

∑
∑ ∑

∑

∑
∑ ∑

∑ ∑

(40) 

Eq. (40) holds for all mm S∈  and thus also for 0 wm m= ≡ . Since , w, SRxγ  is normalised in 
line with the unsymmetric convention according to the pure component reference frame, no 
further adjustment of the value derived from eq. (38) is needed for this case. Contrary, for 
deriving the activity coefficients of molecular solute species { }\ wmm S∈ , which in 
accordance with the unsymmetric convention are usually expressed within the Henry’s law 
reference frame, normalisation of the activity coefficient to the infinite dilute state is required 
for obtaining , , SRln x mγ ∗ . Even though the presence of molecular solutes dissolved in the liquid 
phase was neglected in this work, the corresponding formula for , , SRln x mγ∞  [15], derived by 
means of eq. (A.3), is mentioned here for the sake of completeness. 

 , , SR w w wln x m m m mGγ τ τ∞ = +    (for all \ {w}mm S∈ ) (41) 

In contrast to , w, SRxγ , the expressions for the activity coefficients of the ionic species are 
not required for the exclusive modelling of the incipient gas hydrate formation conditions. 
Nevertheless, they are also discussed in the framework of this study for two reasons (see 
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appendix A.4): Firstly since ,ln x jγ  (along with ,ln x jγ ∗ , the mean ionic activity coefficients 

, CA,ln xγ ∗
±  and , CA,ln mγ ∗

± , as well as the infinite dilution activity coefficients ,ln x jγ∞ ) for all 

C Aj S S∈ ∪ , as given in both eNRTL model versions [21,23] were also incorporated in the 
model implementation of this work. Secondly, since the most general expression for , C, SRln xγ  
in the refined eNRTL-model [23] does contain a typing error, while the expressions for both, 

, C, SRln xγ∞  and , A, SRln xγ∞  presented in [23], respectively, are erroneous. 

2.5.4 On the basic model parameters and their temperature dependence 

The basic model parameters to be adjusted to binary {water + electrolyte} systems at constant 
temperature are the nonrandomness factor w, CAα  and the dimensionless energetic interaction 
parameters w, CAτ  and CA, wτ . The latter are weak but well behaved functions of temperature. 
In practice, the nonrandomness factor is often a priori set to a fixed value. Hence, only two 
parameters are needed to describe an isothermal solution of a single electrolyte [21]. For the 
general case of a multicomponent system under isothermal conditions, containing besides the 
solvent additional molecular solutes as well as ionic species, combinatorial considerations 
lead to the number of eNRTL model parameters required for its description (Appendix A.5). 

In multicomponent systems the independent model parameters are mmα ′ , , CAmα , CA, CAα ′ , 

AC, ACα ′ , mmτ ′ , m mτ ′ , , CAmτ , CA, mτ , AC, ACτ ′ , AC , ACτ ′ , CA, CAτ ′ , and CA , CAτ ′ . mmτ ′ , m mτ ′  (and 
possibly mmα ′ ) are adjusted to molecule-molecule binary systems (these values can be taken 
from data sources for the NRTL-model). AC,ACτ ′ , AC ,ACτ ′ , CA,CAτ ′ , and CA ,CAτ ′  (and possibly 

CA, CAα ′  and AC, ACα ′ ) are adjusted to ternary 1 2{solvent salt salt }+ +  systems involving 
electrolytes having one ion in common. Actually it can be set AC, AC AC , ACτ τ′ ′= −  and 

CA, CA CA , CAτ τ′ ′= −  [21]. Good results are even obtained by setting these parameters to zero 
[21]. This is an example for demonstrating the predictive capabilities of the model. 

The non-randomness parameters are usually set to default values, as it was also done in this 
work. Whereas 0.3mmα ′ =  is typically used for describing the molecule-molecule interactions 
(parameter was not used in these calculations since no molecule-molecule interaction was 
taken into account), a value of 0.2 is usually adopted for , CAmα , CA, CAα ′  and AC, ACα ′  [53]. 
Confining to this procedure, ,CAmα  was set to 0.2 throughout in this study. 

The parameters mmτ ′ , ,CAmτ , CA,mτ , CA,C Aτ ′  and AC,A Cτ ′ , respectively, are functions of 
temperature. Their dependence on temperature is described by means of empirical functions. 
The molecule-molecule interaction parameters are described by [53] 

 ,1
, 0 , 2 , 3( ) ln

K
mm

m m m m mm mm

A T
T A A A T

T
τ ′

′ ′ ′ ′
 = + + + 
 

 (42) 

whereas the following functions are proposed for describing ,CA ( )m Tτ  and CA, ( )m Tτ  

 
ref

,CA,1
,CA ,CA, 0 ,CA, 2 ref

( ) lnm
m m m

B T T T
T B B

T T T
τ  −  = + + +  

  
, (43) 

 
ref

CA, ,1
CA, CA, , 0 CA, , 2 ref

( ) lnm
m m m

B T T T
T B B

T T T
τ  −  = + + +  

  
, (44) 

Similarly, CA,C A ( )Tτ ′  and AC,A C( )Tτ ′  are modelled by 
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ref

CA,C A,1
CA,C A CA,C A, 0 CA,C A, 2( ) ln

B T T T
T B B

T T T
τ ′

′ ′ ′
 −  = + + +  

  
 (45) 

 
ref

AC,A C,1
AC,A C AC,A C, 0 AC,A C, 2 ref

( ) ln
B T T T

T B B
T T T

τ ′
′ ′ ′

 −  = + + +  
  

 (46) 

In the expressions for CA,C A ( )Tτ ′  and AC,A C( )Tτ ′ , the values for CA,C A, 0B ′ , CA,C A,1B ′  and 

CA,C A, 2B ′ , and AC,A C, 0B ′ , AC,A C,1B ′  and AC,A C, 2B ′ , respectively, are often set to zero, like it was 
also done in this study. refT  is set to 298.15 K [53]. 

2.6 The thermodynamic description of the gas phase 

An equation of state (EOS) approach was used to describe the vapour phase throughout in the 
calculations while a cubic equation of state, the Soave-Redlich-Kwong (SRK) EOS [42], 
served for calculating the fugacities of the gaseous components in the gas phase. The presence 
of water in the gas phase was neglected, i.e., it was assumed that 

2

G
H O 0f = . Like in our 

previous work [34], the values for the SRK-EOS-parameters were taken from Danesh [56]. 

2.7 Details on the eNRTL model implementation and overall modelling procedure 

The modelling of the incipient hydrate forming conditions in systems comprising one of the 
guest components CH4 or CO2 and an aqueous solution of one or two strong electrolytes was 
performed by means of our updated in-house programme mentioned earlier. As the main part 
of this work, both the previous version of the eNRTL model by Chen and Evans [21] as well 
as the more recent version of the model by Bollas et al. [23] were incorporated into the 
previous programme designed for gas hyadrate modelling of systems without electrolytes. 
The newly implemented eNRTL routines (called “classes” in the object oriented Java 
language) provide expressions for treating multicomponent systems composed of the solvent 
water and any number of molecular, cationic and anionic solute species. Mixed solvent 
systems as included through the model extension of Mock et al. [57] were thus not taken into 
account. In particular, the eNRTL implementation contains functions (called “methods” in 
Java) for the calculation of individual ionic and molecular species’ activity coefficients, mean 
ionic activity coefficients, both with respect to the mole fraction and molality concentration 
scale, and the osmotic coefficient, respectively. Expressions for the different types of activity 
coefficients at infinite dilution were also provided. The unsymmetric convention was adopted 
for normalising the activity coefficients, i.e., the Henry’s law reference frame was used for the 
solute species, whereas the Lewis-Randall reference frame was applied in case of the solvent 
species. The basic eNRTL model parameters used for representing the energetic interaction 
parameters as function of temperature were retrieved from the Aspen Properties® data bank 
and provided to the programme by means of an xml-data file. 

The algorithm presented by Sloan [35] was used for calculating the incipient hydrate 
formation conditions at H-Lw-G-phase equilibrium. Its central element is the solution of eq. (1
) for the unknown state variables. In calculating the activity of water, the influence of the 
dissolved gases on the liquid phase non-idealities was neglected. The mole fraction of the gas 
dissolved in the liquid phase was thus estimated by means of the Henry’s law approach 
presented in section 2.4 by assuming that w w

4 2

, L , L
, CH , CO 1x xγ γ∗ ∗= = . In the calculation of w, L

, wxγ ∗ , the 
influence of the dissolved gases on w, L

, wxγ ∗  was neglected by setting w, , w 0j jτ τ= =  
( 4 2CH , COj = ). The gas-salt-interaction parameters were also set to zero. With regard to the 
Kihara parameters wjσ  and wjε  ( 4 2CH , COj = ) it turned out that it was sufficient to use the 
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set of values obtained in our previous study [34] to achieve a good overall description of the 
incipient hydrate formation conditions at fixed salt concentration in the initial solutions. 

3 Modelling Results and Discussion 

3.1 Verification of the correctness of the eNRTL model implementation 

Initially, in view of the quite lengthy multicomponent eNRTL-expressions for the activity 
coefficients, the correctness of the model implementation was thoroughly examined. For that 
purpose, calculated results of numerous selected examples were compared to corresponding 
experimental data. Mean molal activity coefficients, osmotic coefficients and solubilities were 
investigated for single and mixed aqueous electrolyte solutions. 

3.1.1 Osmotic coefficient of binary {solvent + salt} systems 

The calculations carried out for checking the correctness of the code were inspired by the 
systems treated in the publication of Chen and Evans [21]. In the first examples the osmotic 
coefficient φ  was modelled at 25 °C and ambient pressure for single salt aqueous solutions of 
alkali metal chlorides MCl  (M Li, Na, K, Rb= ) and alkaline earth metal halides 2MX  
( M Mg, Ca= ; X Cl, Br, I= ), respectively, using data for the solvent-salt interaction 
coefficients reported in [21]. The quantity φ  is derived by means of eq. (A.13) using 
calculated results for , wxγ . eNRTL-model parameters were taken from [21] 

Root mean square relative deviations between the calculated results and the experimental 
data of Robinson and Stokes [58], defined according to 

 
exp data

2

exp, calc,
, rel

1exp data exp,

1 N
q q

q qNφ

φ φ
σ

φ=

 −
=   

 
∑  (47) 

are compiled in Table 3. As can be verified in Table 3, the values of , relφσ  generated in this 
work reproduce the corresponding , relφσ -values of Chen and Evans [21]. 

Table 3 Comparison of values for the root mean square deviation , relφσ  between 
calculated and experimental results [58] on the osmotic coefficient at 25 °C and 
ambient pressure obtained in this study and by Chen and Evans [21], respectively, 
for selected alkali chloride and alkaline earth metal halide aqueous solutions 

Salt , relφσ  a , relφσ b CA, maxb  

LiCl 0.0227 0.024 6 
NaCl 0.0118 0.012 6 
KCl 0.0023 0.002 4.8 
RbCl 0.0015 0.002 5 

CaCl2 0.0238 0.025 2.5 
CaBr2 0.1235 0.13 6 
CaI2 0.0220 0.024 2 

MgCl2 0.0838 0.09 5 
MgBr2 0.0896 0.09 5 
MgI2 0.1036 0.11 5 

a This work. 
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 b Results of Chen and Evans [21]. 

3.1.2 Ternary }1 2{solvent + salt + salt  systems 

Calculations on 1 2solvent salt salt+ +  systems were performed in order to provide evidence 
for the correctness of the programme implementation for the general case of multicomponent 
electrolyte solutions. In each of these selected systems, the two different salts have one of 
their ions in common, i.e., they are either of the type 2 1 2{H O C A C A}+ +  or 

2 1 2{H O CA CA }+ + . Osmotic coefficients φ , mean molal activity coefficients , , CAbγ ∗
±  and 

salt solubilities were derived and compared to results found in the literature. 

At first, in an attempt to reproduce Figure 2 given in [21], φ  was calculated for the system 

2{H O NaCl LiCl}+ +  at 298.15 KT = , 0.1 MPap =  and constant overall electrolyte molality 
of 1

NaCl LiCl 2molkgb −
+ =  as function of the relative amount of LiCl in the salt mixture (Figure 

1). The latter was expressed in terms of the overall mole fraction of LiCl in the solvent-free 
binary sub-system {NaCl LiCl}+ , i.e., LiCl, NaCl LiCl LiCl NaCl LiCl( )x b b b+ = + . φ  was modelled for 
three different values of the salt-salt-interaction parameters. Chen and Evans claimed that the 
curves B, C, and D in Figure 2 of their article [21] would correspond to parameter values of 

Na Cl ,Li Cl Li Cl ,Na Cl
0τ τ+ − + − + − + −= − = , 1 and 2 and 0.2α = . The curves B-D given in Figure 2 of the 

original publication along with the linear interpolation line A between LiCl, NaCl LiCl( 0)xφ + =  and 

LiCl, NaCl LiCl( 1)xφ + =  are reproduced from [21] by means of the programme “plotdigitizer” 
provided by the Physics Department of the University of South Alabama, USA [59]. They are 
represented as red lines in Figure 1 a) and b). Although Chen and Evans do not explicitly 
mention the numerical values CA,wτ  and w,CAτ  used for creating the curves of φ  against 

LiCl, NaCl LiClx +  it can be assumed that they used the data presented in Table 1 of the same 
publication [21]. The latter are compiled in the rows labelled as “Figure 1 a)” in Table 4. 
Using these values for CA,wτ  and w,CAτ , and 0, 1, 2 for the salt-salt parameters, the curves 
published in [21] could not be reproduced. However, when incrementing the values of the 
latter by one, and hence setting 

Na Cl ,Li Cl Li Cl ,Na Cl
1, 2, 3τ τ+ − + − + − + −= − = , the curves B-D could at 

least be reproduced qualitatively (see light blue curves of Figure 1 a)). Nevertheless, the 
values of LiCl, NaCl LiCl( 0)xφ + =  between this work and [21] do still not match. Using for CA,wτ  
and w,CAτ  the values provided by Chen et al. [20] and listed in the last two rows of Table 4 
again together with 

Na Cl ,Li Cl Li Cl ,Na Cl
1, 2, 3τ τ+ − + − + − + −= − =  results in the turquoise curves in Figure 

1 b). Although the values of LiCl, NaCl LiCl( 0)xφ + =  do almost coincide, a deviation can be 
detected for LiCl, NaCl LiCl( 1)xφ + =  between this work and [21]. 

Since the correctness of the Java implementation has been checked independently through 
the same calculations performed by using the computer algebra software Mathcad® (version 
14), it is believed that the results calculated in this work are correct. This conclusion is 
additionally supported by the fact that the change in slope of the curve D generated in this 
work (light blue and turquoise curve D in Figure 1 a) and b)) is smoother than it is for the 
corresponding curve presented by Chen and Evans (red curve D). 

Table 4 Binary water-salt interaction coefficients used for generating the light blue and 
turquoise curves in Figure 1 a) an b), respectively, of φ  for 2{H O NaCl LiCl}+ +  

 CA w, CAτ  CA, wτ  

Figure 1 a)a NaCl 9.0234 –4.5916 
 LiCl 10.1242 –5.1737 
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Figure 1 b)b NaCl 8.885 –4.549 
 LiCl 10.031 –5.154 

a Chen and Evans [21]. 
b Chen et al. [20]. 

 

Figure 1 Osmotic coefficient of the system 2{H O NaCl LiCl}+ +  at constant total overall 
molality 1

NaCl LiCl 2molkgb −
+ = , 298.15 KT =  and ambient pressure as function of 

the salt mole fraction LiCl, NaCl LiCl LiCl NaCl LiCl( )x b b b+ = + . Light blue curves in a) and 
turquoise curves in b), this work with solvent-salt parameters given in [21] and 
[20], respectively, and salt-salt-parameters NaCl,LiCl LiCl,NaCl 1τ τ= − = , 2, 3 for curves 
B-D, respectively. Red curves in a) and b) reproductions of the curves presented 
in Figure 2 of the original publication of Chen and Evans [21] with supposed 
values NaCl,LiCl LiCl,NaCl 0τ τ= − = , 1, 2. Curves A: linear interpolation. 

As a further example for verifying the correctness of our eNRTL model implementation, 
the mean molal activity coefficients , CA,bγ ∗

±  of NaCl and KCl in the 2{H O NaCl KCl}+ + -
system have been modelled at 25 °C (Figure 2) using eqs. (A.9)-(A.12) along with eqs. 
(A.15)-(A.18). For the expressions for ,x jγ  and ,x jγ ∞  ( C Aj S S∈ ∪ ) in the older model version, 
the reader is referred to [21] and [15], respectively. The calculations were inspired by Figure 1 
presented in the article of Bollas et al. [23] in which the authors have performed calculations 
on , NaCl,bγ ∗

±  and , KCl,bγ ∗
±  using values for the salt-salt-interaction parameters of 

Na Cl , K Cl
τ + − + − =  

K Cl ,Na Cl
0, 0.25, 0.50τ + − + −− =  to compare the performance of the simplified [21] (Figure 2 a)) 

and the refined eNRTL model version (Figure 2 b)), respectively [23]. The reproducibility of 
the curves given in [23] (reproduced from [23] as red and orange lines in Figure 2, 
respectively, using the freely available programme “plotdigitizer” [59]) by means of our 
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programme in both model versions (blue and turquoise lines in Figure 2, respectively) serves 
as a further evidence that both the new [23] and the previous model equations [21] had been 
correctly implemented in our programme. 

 

Figure 2 Prediction of the mean molal ionic activity coefficients of NaCl and KCl, , NaCl,bγ ∗
±  

and , KCl,bγ ∗
± , of the system 2{H O NaCl KCl}+ +  at 298.15 K and a total overall 

molality 1
NaCl KCl 4molkgb −

+ =  with various salt-salt energy parameters using the 
equations for , Cxγ ∗  and , Axγ ∗  of a) Chen and Evans [21] and b) Bollas et al. [23]. 
Comparison between the results of the eNRTL implementation for , NaCl,bγ ∗

±  and 

, KCl,bγ ∗
±  in this work and the results on , NaCl,bγ ∗

±  and , KCl,bγ ∗
±  given in [23]. 

3.1.3 SKX-Lw and SKCl -SKI -Lw equilibria encountered in the system 2{H O + KI + KCl}  

As an example for equilibrium calculations performed with the eNRTL model, the solubility 
curve of the system 2{H O KI KCl}+ +  at T = 298.15 K and p = 0.1 MPa is shown in Figure 3. 
To model the solubilties in this ternary electrolyte system, values for the solubility products of 
the salts, sp, KIK  and sp, KClK , are needed in addition to the eNRTL model parameters. With 

sp, KI 4.2346K = −  and sp, KCl 5.9695K = −  [21] gained from a data regression of the solubility 
data of Linke [60], the salt-solvent interaction parameters 

K I ,w
4.1217τ + − = − , 

w,K I
7.9408τ + − = , 

K Cl ,w
4.1341τ + − = −  and 

w,K Cl
8.1354τ + − =  [21] and the salt-salt-parameters 

K Cl , K I
0.109τ + − + − =  

and 
K I , K Cl

0.124τ + − + − =  [21], the solubility curves (Figure 3) were reproduced well. However, 
since the visibility of the respective curves in Figure 5 a) of [21] is restricted, no attempt was 
made to reproduce the fragments of the curve. Instead, only the experimental data compiled 
by Linke [60] are shown in Figure 3 for comparison. 
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Figure 3 Salt Precipitation in the system 2{H O KI KCl}+ +  at T = 298.15 K and ambient 
pressure. (—) KCl wS L -, (�) KCl KI wS S L -, and (—) KI wS L -equilibrium, this work. 
(�) experimental data [60] (data point at KCl KI wS -S -L  equilibrium is the averaged 
value over the data points given in [60]). 

3.2 Application of the eNRTL model to the description of gas hydrate equilibria 

Four different aqueous ternary or quaternary electrolyte systems of the type 2H O CA gas+ +  
or 2 1 2H O C A C A gas+ + +  have been modelled. The influence of the strong electrolytes NaCl, 
KCl and CaCl2 on the wHL G -phase equilibrium obtained in mixtures containing the hydrate 
forming gases methane (CH4) and carbon dioxide (CO2), respectively, was investigated. 
Values of the eNRTL solvent-salt parameters CA,w, 0B , CA,w,1B  and CA,w, 2B  and w,CA, 0B , 

w,CA,1B  and w,CA, 2B  for 2CA NaCl, KCl, CaCl=  were retrieved from the Aspen Properties® 
data bank of the Aspen Engineering Suite and are listed in Table 5. Salt-salt-parameters were 
set to zero. The influence of the amount of gas dissolved in the liquid phase on the activity 
coefficient of the solvent species wL

, wxγ  was neglected. With the eNRTL expression for wL
, wxγ  

(eq. (8) in combination with eq. (17) and eq. (40) for wj ≡ ), modelling calculations have 
been carried out on the three-phase wH-L -G -boundary p-T-lines of ternary and quaternary 
mixtures at different values of the ionic strengths involving gas hydrate phases. 

Table 5 Ion-pair-water eNRTL parameters CA,w, 0B , CA,w,1B  and CA,w, 2B , and water-ion-
pair eNRTL parameters w,CA, 0B , w,CA,1B  and w,CA, 2B  for 2CA NaCl, KCl, CaCl=  
required for obtaining CA,w ( )Tτ  and w,CA ( )Tτ  according to eqs. (43) and (44). 

Parametera NaCl KCl  2CaCl  

CA,w, 0B  –3.789168 –4.060085 –5.06 

CA,w,1 KB  –216.3646 –30.93534 0.0 

CA,w, 2B  –1.100418 1.42956 0.0 

w,CA, 0B  5.980196 6.849537 10.472 

w,CA,1 KB  841.5181 402.9818 0.0 
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w,CA, 2B  7.4335 0.206522 0.0 
a Retrieved from the data bank provided by Aspen Properties . 

The Langmuir constant j iC  was expressed by means of eqs. (A.1)-(A.3) in terms of the 
microscopic quantities wjσ , wjε , ja , iz  and iR . The Kihara parameters wjσ  and wjε  were 
taken from our previous study [34], whereas the numerical values for the hard core radius ja  
were taken from [35]. The complete set of Kihara parameters, including a comparison with 
values published in the literature for wjσ  and wjε  [1,35], is compiled in Table 6. With regard 
to the radius iR  of the cavity of type i , 395 pmiR =  was used for the small 512- and 

433 pmiR =  for the large 51262-cavity of sI hydrates, respectively, whereas 391 pmiR =  was 
used for the small 512- and 473 pmiR =  for the large 51264-cavity of sII hydrates, respectively 
[35]. For the coordination number iz , the value 20 and 24 was employed for the small and 
large cavity of structure I, respectively, whereas the value of 20 and 28 was used for iz  of the 
small and the large cavity of structure II, respectively [35]. 

Table 6 Kihara parameters. wjσ - and wjε -values obtained from a previous regression [34] 
along with corresponding literature data; ja -values taken from [1,35] 

 pmja  w pmjσ  w B( K)j kε  

CH4 38.34a 315.03b 
314.393c 

316.50a 

158.71b 
155.593c 

154.54a 

CO2 68.05a 298.30b 
297.638c 

298.18a 

171.41b 
175.405c 

168.77a 

a 2nd ed. of the monograph of Sloan [35]. 
b Used in this study. Taken from our previous publication (data set of “Model 3”) [34]. 
c 3rd ed. of the monograph of Sloan and Koh [1]. 

3.2.1 H-L w-G-equilibrium in aqueous electrolyte systems containing methane 

Modelling calculations on the incipient hydrate forming in the electrolyte systems 

2 4{H O NaCl CH }+ + , 2 4{H O NaCl KCl CH }+ + +  and 2 2 4{H O NaCl CaCl CH }+ + +  were 
carried out for mixtures of given initial salt concentration in the liquid phase. The modelled 
results are presented in Figure 4 in terms of p-T- wH-L -G -phase boundary lines along with 
corresponding experimental data of Dholabhai et al. (1991) [61]. 

For the systems 2 4{H O NaCl CH }+ +  and 2 4{H O NaCl KCl CH }+ + +  (Figure 4 a)), the 
model shows a good overall performance despite the relatively high pressure range 
( 2 MPa 10p< < ) covered. The values for the Average Absolute Relative Deviation (AARD) 
between the experimental [61] and calculated pressures defined as 

 
exp data

exp, calc,

1exp data exp,

| || | 1 N
q q

q q

p pp

p N p=

−∆ = ∑  (48) 

range from 2.8 % for the mixture 2 4{H O NaCl CH }+ +  with NaCl 0.0094x =  to approximately 
7.0 % for the two salt-system with NaCl 0.0367x =  and KCl 0.0354x = . The curves show the 
potential of the salts for acting as inhibitors with respect to the formation of gas hydrates since 
at const=T  the pressure rises with increasing salt concentration. 
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While for the system 2 2 4{H O NaCl CaCl CH }+ + +  (Figure 4 b)), the temperature and 
pressure range (265 K 281T< < , 2 MPa 10p< < ) as well as the AARD values relative to 
the data of Dholabhai et al. (1991) [61] are comparable with those of the previous mixtures 
(between 2 % and 6 %), the overall electrolyte concentration is smaller. However, since the 2-
1-electrolyte 2CaCl  possesses a bivalent cation, the ionic strength range is not smaller. Not 
only does 2CaCl  release three ions in solution, but the 2Ca + -ion does also have a higher 
charge and charge density than the +K -ion, leading to an increased hydration of the 2Ca + -ion 
[62]. Nevertheless, the performance of the eNRTL model for this mixture is still very good. 

 

Figure 4 wH-L -G -p-T equilibrium data in a) the systems 2 4{H O NaCl CH }+ +  and 

2 4{H O NaCl KCl CH }+ + +  and in b) the system 2 2 4{H O NaCl CaCl CH }+ + +  at 
given overall mole fractions of the electrolytes. Lines and hollow symbols: 
modelling, solid symbols: experimental data of Dholabhai et al. (1991) [61]. 

3.2.2 H-L w-G-equilibrium in aqueous electrolyte systems containing carbon dioxide 

Incipient hydrate forming conditions have additionally been modelled for aqueous systems 
containing the same electrolytes as the ones treated in section 3.2.1, but with carbon dioxide 
instead of methane as the hydrate forming component (Figure 5). 



 22

 

Figure 5 wH-L -G -p-T-equilibrium in a) the systems 2 2{H O CO }+ , 2 2{H O NaCl CO }+ +  
and 2 2{H O NaCl KCl CO }+ + + , respectively, and in b) the quarternary system 

2 2 2{H O NaCl CaCl CO }+ + +  at given overall mole fractions of the electrolytes. 
Lines and hollow symbols: modelling, solid symbols: experimental data of 
Dholabhai et al. (1993) [63]. 

As can be seen in Figure 5 a), for the single salt system 2 2{H O NaCl CO }+ +  the 
maximum overall mole fraction of NaCl is NaCl 0.04x = , whereas for the system 

2 2{H O NaCl KCl CO }+ + +  NaCl, max KCl, max 0.07+ ≈x x . Within the pressure range of 
0 MPa 4p< <  a very good performance of the eNRTL model is observed for this system with 
AARD values varying mostly between 1 and 2 %. Like in the mixtures with 4CH  (Figure 4), 
the curves in Figure 5 a) show that the strong electrolytes NaCl and KCl act as hydrate 
inhibitors, causing the temperature (at a given pressure) to fall, or the pressure (at a given 
temperature) to rise for hydrate formation with increasing salt mole fraction. 

Our study is completed by the results of the modelling of the incipient hydrate forming 
conditions in the quaternary mixture 2 2 2{H O NaCl CaCl CO }+ + + . The results (Figure 5 b)) 
reveal that on a similar pressure interval as in the previous example, higher deviations 
between calculated and experimental pressures are observed than for the other systems. 
Whereas the result for the two lowest concentrated mixtures is fairly good with AARD values 
with respect to the data of Dholabhai et al. (1993) [63] of 1.3 % and 4.2 % at NaCl 0.0265=x  
and 

2CaCl 0.0035=x , and NaCl 0.0098=x  and 
2CaCl 0.0052=x , respectively, the deviations 
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increase up to values between 12 % and 18 % for the higher concentrated solutions. This is 
most probably due to the influence of the significantly higher degree of hydration of the 

2Ca + -ion rather than due to neglecting the solubility of the CO2 in the liquid phase in 
calculating wL

, wγx . Moreover, since the salt-salt parameters between NaCl and 2CaCl  were not 
known, the interaction between the ions of the two salts had to be neglected as well. 

4 Conclusion 

In this article, it is demonstrated by numerous examples that the eNRTL-model of Chen and 
co-workers [15,20-23] has been implemented successfully in a Java programme. The eNRTL 
model implementation in turn was incorporated in a previously developed in-house 
programme enabling to perform, among other features, predictive calculations on wH-L -G -
phase boundaries of systems involving gas hydrates. 

The correctness of the code has been verified by calculations on osmotic coefficients and 
mean ionic activity coefficients of binary solutions of strong electrolytes and ternary mixtures 
of the type 1 2{water salt salt }+ +  where the constituting salts have one ion in common. The 
examples selected for this purpose were taken from the original articles on the eNRTL model 
by Chen and Evans [21] and Bollas et al. [23]. In case of the 2{H O NaCl LiCl}+ + -mixture, 
the shape of the osmotic coefficient curves could not reproduced with the salt-salt-parameter 
values given in [21]. However, upon incrementing each of them by one, it turned out that the 
curves were reproduced at least qualitatively. Since the results of that calculation had also 
been checked independently by means of the computer algebra software “mathcad”, it is 
suspected that the sequence of the salt-salt coefficients given in [21] was reported 
erroneously. The data of the remaining systems could be reproduced from the original work. 
The results reveal once more, that the eNRTL model provides an accurate description of 
liquid phase non-ideality of the electrolyte systems over the ranges of state conditions 
investigated. The model does not only correlate thermodynamic data, but possesses also 
predictive capability using model parameters determined exclusively from data of the 
constituting binaries and ternary salt-salt systems with a common ion [21]. 

The model was subsequently used in the purely predictive modelling of wH-L -G -hydrate 
phase equilibria of mixtures with water, one or two of the salts NaCl, KCl and 2CaCl  and 
methane or carbon dioxide using a set of Kihara parameters obtained in an earlier study [34]. 
In calculating wL

, wγx , the presence of 2CO  in the liquid phase was neglected. Salt-salt-
interaction parameters were also neglected. Despite of these simplifications, the p-T-values 
obtained reveal a good overall performance of the model leading to average absolute relative 
deviations ranging from 2 % to 7 %. Only at higher ionic strengths and when the bivalent 

2Ca + -ion gets involved, the deviations increase remarkably to reach approximately 20 %. In a 
future work this deficiency may be overcome by implementing a model version that takes 
hydration into account [62]. Nevertheless, in view of the simplifications introduced, it can be 
stated that the results are quite satisfying from an engineering point of view. 

Acknowledgement 

This work has been carried out within the framework of the ANR (French Research Agency) 
project SECOHYA and the European iCap research project (EU FP7, GA No. 241393). We 
are grateful to Peter J. Herslund for inspiring discussions on several topics related to the 
thermodynamics of gas hydrates. 



 24

5 List of symbols 

Normal symbols 

a  a) Spherical hard core radius in Kihara potential [ ] pma = ; b) coefficients in 
Henry’s constant correlation with temperature, dimensionless 

Aφ  Debye-Hückel constant, dimensionless 

A  Coefficient used in the temperature correlation for the eNRTL-parameters mmτ ′  
and m mτ ′ . 1[ ] KA = , 1

3[ ] KA −= , 0A  and 2A , dimensionless 

AARD  Average absolute relative deviation 

α  Nonrandomness factor, dimensionless 

b  Coefficient used in the correlation for wL
, m, w 0( , )pC T pβ∆ o  with temperature, 

2 1[ ] J K molb − −=  

jb  Molality of a chemical speciesj , 1[ ] mol kgjb −=  

kb  Overall or apparent molality of component k , 1[ ] mol kgkb −=  

B  Coefficient used in temperature correlation of eNRTL-parameters CA,mτ , ,CAmτ , 

AC,ACτ ′ , AC ,ACτ ′ , CA,CAτ ′ , CA ,CAτ ′ . 1[ ] KB = , 0B  and 2B , dimensionless 

c  Constant used for calculating the effective mole fractions X  in eNRTL equations. 

jc  to be set to zero for mj S∈ , and to | |jz  for C Aj S S∈ ∪ , respectively 

C  a) Langmuir constant, 1[ ] PaC −= ; b) heat capacity, 1[ ] J KC −=  

∆  Finite difference between two values of a quantity 
β
α∆  Finite difference between two values of a quantity for a process from initial state 

α  to final state β  

e  Elementary charge, 19(1.602176 565 0.000 000 035) 10 Ce −= ± ×  [41] 

eNRTL Electrolyte Non-Random-Two-Liquid model for the excess Gibbs energy 

EOS Equation of state 

wjε  Characteristic energy between guest j  and host water molecule w , [ ] Jε =  

0ε  Permittivity of free space, 12 1
0[ ] 8.854187 817 10 Fmε −= ×  [41] 

rε  Relative permittivity, dimensionless 

f  Fugacity, [ ] Paf =  

g  Molar interaction energy in the framework of the eNRTL model, 1[ ] J molg −=  

G  a) Gibbs energy, [ ] JG = ; b) Boltzmann kind factor, dimensionless 

γ  Activity coefficient, dimensionless 

I  Ionic strength, dimensionless 

Bk  Boltzmann constant, 23 1
B (1.380 648 8 0.000 0013) 10 J Kk − −= ± ×  [41] 

H, , wjk  Henry’s constant of gas j  in water, H, , w[ ] Pajk =  

m  Mass, [ ] kgm =  

M  Molar mass, 1[ ] g molM −=  

µ  Chemical potential of a species or component, 1[ ] J molµ −=  
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n  Amount of substance or mole number, [ ] moln =  

N  Number in general, dimensionless 

NRTL Non-Random-Two-Liquid model for the excess Gibbs energy 

AvN  Avogadro constant, 23 1
Av (6.022141 29 0.000 000 27) 10 molN −= ± ×  [41] 

ν  a) Stoichiometric coefficient, dimensionless; b) number of water molecules per 
number of guest molecules in a cage of type i (hydration number), dimensionless 

p  Pressure, [ ] Pap =  

R  Molar gas constant, 1 1(8.314 4621 0.000 007 5) J mol KR − −= ±  [41] 

ρ  a) Density, 3[ ] kg mρ −= ; b) Closest approach parameter, dimensionless 

T  Absolute temperature, [ ] KT =  

τ  Interaction energy eNRTL-parameter, dimensionless 

j iθ  Fraction of sites occupied by species j  in cavity of type i , dimensionless 

S  Given set (here of indices) in general 

SAFT  Statistical Fluid Associated Solution Theory 

wjσ  Core distance at which attraction and repulsion between guest species j  and host 
water molecule w  in host-pair balance each other, w[ ] pmjσ =  

V  Volume, 3[ ] mV =  

VRE Variable Range for Electrolytes; particular model variant of the SAFT-EOS 

kw  Overall or apparent weight fraction of component k , dimensionless 

jx  Mole fraction of chemical species j , dimensionless 

kx  Overall or apparent mole fraction of component k , dimensionless 

jX  Effective mole fractions of species j , dimensionless 

jY  Ionic charge fractions of ionic species C, Aj = , dimensionless 

jz  Charge number of species j , positive for cations, negative for anions, zero for 
neutral species, dimensionless 

Subscripts 

A, A , A′ ′′  Anionic species A| |A z −  

b  Indicating reference to molality as composition 

C, C , C′ ′′  Cationic species CzC +  

CA  Binary salt 
C A

C Aν ν , composed of Cν  cations, CzC + , and Aν  anions, A| |A z −  

cav Referring to type of cavity 

exp data Referring to experimental data 

fus Property referring to the process of fusion 

g  Referring to type of guest species 

i  Type of cavity 

j , l  Chemical species 

k  Indicating components (molecular and strong electrolyte components) 
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LC  Local Composition model 

LR  Property referring to Long Range contribution 

,m m′  Referring to molecular species 

m  Molar quantity 

p  Referring to property at constant pressure 

PDH Referring to Pitzer-Debye-Hückel model 

q  Index used for counting data points 

SR Property referring to Short Range contribution 

w  Water (the only solvent component occurring in this study) 

x  Indicating reference to mole fraction as composition variable 

±  Mean ionic quantity 

0  Reference conditions for temperature and pressure, 0 273.15 KT = , 0 0 MPap =  

Superscripts 

−  Indicating a concentration quantity of component k  based on the overall/apparent 
composition (possible dissociation or association reactions are thus disregarded) 

∗  Unsymmetric convention for the normalisation of the excess Gibbs energy and the 
activity coefficients 

o  Pure component state 

∞  State of infinite dilution 

β  Metastable empty hydrate phase 

E Excess property 

G  Gas phase 

H Hydrate phase 

I  Ice phase 

wL  Liquid aqueous phase 

π  Any given phase in general 

R  Residual Property 

ref  Reference state/frame in general 

S Solid phase in general 

σ  Liquid-vapour saturation conditions 

A Appendix 

A.1 The cell potential function and its relation to the Langmuir constant 

The Langmuir constant j iC  reflects the intermolecular forces between the guest molecule j  
and the water molecules constituting the cavity of type i  by which it is enclosed. Since these 
forces are in turn related to the host-guest interaction potential, j iC  can be calculated from a 
suitable expression for the potential energy j iω  of species j  in cavity i . In this study, the 
interaction potential energy was assumed to be describable by the cell potential ( )j i rω  
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presented by Parrish and Prausnitz [43] which assumes the cavities to be of spherically 
symmetrical geometry. In accordance with the suggestion of MacKoy and Sinanoğlu [45] this 
cell potential is based on the Kihara potential [64] as the underlying intermolecular pair 
potential energy model. In this model the effect of the finite size of the different interacting 
molecules is taken into account by ascribing a hard core to each molecule [45]. 

To arrive at the expression for ( )j i rω , the integral effect of the interactions between guest 
j  and each of the nearest neighbouring host molecules within the type i  cavity is obtained by 

means of the averaging procedure used in the cell theory of Lennard-Jones and Devonshire 
[65]. In applying the averaging method [65] to the assembly of the guest species and its 
nearest neighbouring spherically arranged water molecules, the guest molecule j  is regarded 
as a spherical hard core of radius ja  [66], whereas the water molecules are approximated by 
point molecules. This leads to the following cell potential energy function [43] 
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w w
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In eq. (A.1) and (A.2), r  is the distance between the centre of the cavity and the centre of the 
guest molecule, whereas wjσ  stands for the core distance at which attraction and repulsion 
balance each other. wjε  denotes the characteristic maximum attractive potential energy. 
Along with ja , wjσ  and wjε  are referred to as the “Kihara parameters” which depend on the 
properties of guest species only. iz  and iR  are the coordination number and the radius of the 
spherically assumed cavity i . They have been uniquely determined for each cavity from x-ray 
diffraction experiments and are regarded as independent of the guest molecule [1]. 

It should be pointed out here that throughout the literature two different coordinate systems 
are used (as e.g. in [43,45,64,67]) for expressing the distance quantities and parameters 
appearing in the Kihara potential energy expression. Often, like in eqs. (A.1) and (A.2), 
different standards are even used in the same equation [68]: whereas wjσ  measures the 
shortest distance between the edge of the core and the water point molecule, r  refers to the 
distance measured relative to the centre of the guest molecule. The various standards used for 
the distance quantities and the possible confusion arising from the inconsistent usage of these 
different standards have been reviewed by Bakker et al. (1996) [68] and Bakker (1998) [69]. 

The relation between the Langmuir constant j iC  and the potential energy ( )j i rω  of the 
guest molecule j  in the spherically symmetrical cavity i  is given by 

 2

B B0

( )4
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i jR a
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j i

r
C r dr

k T k T

ωπ −
 

= − 
 

∫  (A.3) 

where T  denotes the thermodynamic temperature and Bk  the Boltzmann constant [41], 
respectively. Although ( )j i rω  is not defined at 0r = , it can be shown that this discontinuity 
can be removed since the right-sided limes for 0r → +  exists. Evaluation of the latter leads to 
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The lower limit of integration in the expression of eq. (A.3) can thus be set to zero. However, 
( )j i rω  possesses another discontinuity at i jr R a= −  which in contrast to the former is a 

singularity with a change in sign that can not be removed. When approaching i jR a−  from 
the left side, ( )j i rω  tends to +∞ , when i jR a−  is approached from the right sight, ( )j i rω  
tends to −∞ . Therefore, since Bexp( ( ) )j i r k Tω−  diverges when i jR a−  is approached from 
the right side, the upper integration limit in eq. (A.3) has to be set to i jR a− . The region 
between i jR a−  and iR  is thus to be excluded from the integration interval. 

A.2 The description of the chemical potential of water in the liquid phase 

The difference between the chemical potential of water in the liquid and in the β -phase, 
w wL L

w ( , , )T p xβ µ∆ r
, is calculated from the following classical thermodynamic relation 
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where wLx
r

 and w wL L
w , wxa a≡  denote the vector of independent mole fractions and the activity of 

water in the liquid phase, respectively. The activity of water is defined by means of its 
corresponding activity coefficient wL

, wxγ  as 

 w w wL L L
w w , wxa x γ= , (A.6) 

0 273.15 KT =  and 0 0 MPap =  in eq. (A.5) are reference values for temperature and pressure 
[34]. wL

w 0 0( , )T pβ µ∆ o  is the chemical potential difference at standard conditions. Assuming a 
linear empirical relationship for the molar isobaric heat capacity difference according to 

 w wL L
m, w 0 m, w 0 0 0( , ) ( , ) ( )C T p C T p b T Tβ β∆ = ∆ + −o o , (A.7) 

and regarding the corresponding molar volume difference wL
m, w ( , )V T pβ∆ o  as constant by using 

its value at reference conditions, wL
m, w 0 0( , )V T pβ∆ o , the integration of eq. (A.5) leads to eq. (4) 

when eqs. (A.6) and (A.7) are additionally taken into account. Thereby, use had to be made of 
the thermodynamic relationship w wL L

m, w 0 m, w 0 ,( , ) ( ( , ) )p xC T p H T p Tβ β∆ = ∂∆ ∂ r
o o . 

A.3 On activity coefficients and the osmotic coefficient 

The activity coefficient ,x jγ  describing the deviation of a given phase from an appropriately 
defined ideal mixture (mostly applied to quantify liquid phase non-idealities) can be derived 
from an expression for the excess molar Gibbs energy E

mG  according to 

 
( )E

m

,

, ,

1
ln

l j

x j
j

T p n

nG

RT n
γ

≠

 ∂
 =
 ∂
 

 (A.8) 

where n  is the total amount of substance on the basis of species and jn  is the amount of 
substance of species j . With the symmetrically referenced activity coefficient ,x jγ , the 
unsymmetrically referenced activity coefficient ,x jγ ∗  can be derived by 
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 ,
,

,

x j
x j

x j

γ
γ

γ
∗

∞=    (for all { } { }C A \ wmj S S S∈ ∪ ∪ ) (A.9) 

where ,x jγ ∞  stands for the activity coefficient at infinite dilution which is defined by 

 
w

, ,1
limx j x j
x

γ γ∞

→
=  (A.10) 

Care has to be taken when deriving activity coefficients of ions at infinite dilution in multi-
component electrolyte systems in regard of whether or not this limiting value does exist in a 
strict mathematical sense (see remarks in appendix A.4). 

The activity coefficient refers to the mole fraction (index x ) as composition variable. 
Conversion to the value referring to molality (index b ) is performed by 

 , , wb j x j xγ γ∗ ∗=    (for all { } { }C A \ wmj S S S∈ ∪ ∪ ) (A.11) 

The mean ionic activity coefficient , CA,xγ ±  is, in contrast to the activity coefficient of the 
individual ions, an experimentally accessible quantity. It is defined in terms of the activity 
coefficients of the cation and the anion constituting the corresponding ion pair through 

 C, CA , C A, CA , A C , A A , C
, CA,

C, CA A, CA C A

ln ln ln | | ln
ln

| |
x x x x

x

z z

z z

ν γ ν γ γ γ
γ

ν ν±

+ +
= =

+ +
 (A.12) 

where C, CAν  and A, CAν  is the cationic and anionic stoichiometric coefficient of the cation-
anion combination, respectively, and Cz  and Az  is the charge number of the cation and the 
anion, respectively. 

The (molal) osmotic coefficient φ  is defined in terms of the activity coefficient of the 
solvent , wxγ  as [9] 

 

{ } { }C A

w , w

w
\ w

ln ln

m

x

j
j S S S

x

M b

γ
φ

∈ ∪ ∪

+
= −

∑
 (A.13) 

where jb  designates the molality of species j . 

A.4 The short range eNRTL-contribution to the activity coefficient for the ionic species 

To derive the expressions for the activity coefficients of the ionic species, the calculation of 
the first partial derivative of the E

SRG -function with respect to jn , the mole number of species 
j , is required. Since the ionic charge fractions CY  and AY  appear in the expression for ESRG  

(explicitly and implicitly via the mixing rules for the concentration dependent model 
parameters), this step involves the calculation of C , ,( )

l jj T p nY n
′≠′∂ ∂  and A , ,( )

l jj T p nY n
′≠′∂ ∂ . 

Calculating , ,( )
l jj j T p nY n

′≠′∂ ∂  for Cj =  (for all CC S∈ ), implying Cj′′ ′′=  (for all CC S′′ ∈ ), 
or Aj =  (for all AA S∈ ), implying Aj′′ ′′=  (for all AA S′′ ∈ ), leads to 

 
, ,

(1 ) ( ) for

( ) for ( )

0 for ,l j

j j j j

j
j j j j

j T p n

z Y Y nX j j
Y

z Y Y nX j j j
n

j j j′≠

′′ ′′ ′′
′

′− =
 ∂  ′ ′′= − = ≠   ∂   ′ ′′≠

, (A.14) 

where it is understood that the indices j  and j′′  are taken from the same set of indices of 
ionic species, i.e., either cationic or anionic species, respectively, but that j j′′≠ . ,j j j′ ′′≠  
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means that j′  originates from a set of a different type of species. In other words, the 
differentiation leads to the result that C , ,( )

l jj T p nY n
′≠′∂ ∂  vanishes only for all Amj S S′ ∈ ∪ , but 

not for Cj S′ ∈  (the inverse holds for the derivative A , ,( )
l jj T p nY n

′≠′∂ ∂ , i.e., it vanishes for all 

Cmj S S′ ∈ ∪ , but not for Aj S′ ∈ ). While the derivative vanishes in any case if it the 
differentiation is executed with respect to mn  ( mm S∈ ), it remains finite if the differentiation 
of jY  is performed with respect to the mole number of an ion with a charge number of the 
same sign. Hence, taking the derivatives C , ,( )

l jj T p nY n
′≠′∂ ∂  and A , ,( )

l jj T p nY n
′≠′∂ ∂  correctly into 

account leads to expressions for , C, SRln xγ  and , A, SRln xγ  which are remarkably more 
complicated than the corresponding expression for , , SRln x mγ . In the original publication on 
the multicomponent version of the eNRTL model, Chen and Evans [21] have set 

C , , A , ,( ) ( ) 0
l j l jj T p n j T p nY n Y n

′ ′≠ ≠′ ′∂ ∂ = ∂ ∂ = , apparently in order to simplify the calculations and 
resulting functions for , C, SRln xγ  and , A, SRln xγ . Only in 2008, Bollas et al. [23] presented an 
updated version of the model, in which the simplifying assumption of vanishing derivatives 

C , ,( )
l jj T p nY n

′≠′∂ ∂  and A , ,( )
l jj T p nY n

′≠′∂ ∂  made in deriving , C, SRxγ  and , A, SRxγ  had been 
removed. The quite lengthy most general expression for , C, SRln xγ , derived within the 
framework of the model version of 2008, is given below. It was was corrected for a typing 
error found in the original publication [23] and reads 
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 (A.15) 
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Similarly, by applying eq. (A.8) to eq. (25) for Aj = , the corresponding relation for 

, A, SRln xγ  is derived [23]. 
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 (A.16) 

From eqs. (A.15) and (A.16), the corresponding activity coefficients at infinite dilution, 

, C, SRxγ∞  and , A, SRxγ∞ , can be derived by applying eq. (A.10). The latter in turn enable the 
calculation of the unsymmetrically referenced activity coefficients , C, SRxγ ∗  and , A, SRxγ ∗  using 
eq. (A.9). Upon deriving , C, SRln xγ∞  and , A, SRln xγ∞  it was found that the corresponding 
expressions given in the original article of Bollas et al. [23] for the most general case of 
different nonrandomness parameters are erroneous. Moreover, an additional remark not made 
in [23] should be made here with regard to the calculation of the limiting value according to 
eq. (A.10). In fact, for the case of multielectrolyte solutions, i.e. if the number of different 
ionic species exceeds 2, the limiting value for w 1x →  of at least some of the quantities 
depending on the ionic charge fractions jY  can not be calculated in the strict mathematical 
sense. More precisely, the limiting value for identically vanishing mole fractions of all species 
other than the solvent species is diverging and hence can not be calculated for all those jY  
depending quantities whenever 1jY ≠ . 1jY ≠  in turn is necessarily observed when more than 
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one ion occurs in the respective expression for CY  or AY . However, if it is assumed that the 
relative composition of all solute species remains constant during the limiting process of 
approaching the state of infinite dilution, the respective quantities causing problems could be 
evaluated. In order to indicate that these quantities refer to limiting values obtained in this 
“approximate way”, they are endowed with the superscript “∞” as well. The complication 
outlined above does not appear for a solution containing besides the solvent and any number 
of molecular solutes only one single electrolyte, that generates only two ions when being 
dissolved, since jY  is unity for both Cj =  and Aj = , respectively. 

A further remark should be added in this context. The fact that the limiting value of jY  for 

w 1x → , and thus , C, SRxγ∞  and/or , A, SRxγ∞ , may not exist does not have the consequence that the 
corresponding limiting values of , C, SRxγ ∗  and , A, SRxγ ∗  do not exist either. Due to a 
compensation of terms after normalisation of the expressions for , C, SRxγ  and , A, SRxγ , the 
limiting values ,

, C, SRxγ ∗ ∞  and ,
, A, SRxγ ∗ ∞  do exist. In particular, as expected and in accordance with 

the Henry’s law reference frame , ,
, C, SR , A, SR 1x xγ γ∗ ∞ ∗ ∞= =  for all CC S∈  and AA S∈ . 

With the conventions outlined above, the expression for , C, SRln xγ∞ , corrected for the error 
found in [23], reads 
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whereas the correct expression for , A, SRln xγ∞  reads 
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A.5 On the number of (isothermal) eNRTL parameters 

The following coefficients are to be considered by the model: For a set 1{ , , }
mm NS m m= K  of 

| |m mN S=  different molecular components, a set 
CC 1{C , ,C }NS = K  of C C| |N S=  different 

cations and a set 
AA 1{A , ,A }NS = K  of A A| |N S=  different anions, the following types of 

isothermal eNRTL coefficients have to be considered and the corresponding numerical values 
to be provided: a) mmα ′ , mmτ ′ , m mτ ′ , with m m′<  for all , mm m S′ ∈ , b) , CAmα , , CAmτ , CA, mτ , 
for all mm S∈ , CC S∈  and AA S∈ , c) CA, C Aα ′ , CA, C Aτ ′ , C A, CAτ ′ , for all CC, C S′ ∈  with 
C C′<  and AA S∈  and d) AC, A Cα ′ , AC, A Cτ ′ , A C, ACτ ′  for all AA, A S′ ∈  with A A ′<  and 

CC S∈ . Combinatorial considerations lead to the total number of isothermal coefficients 

coeffN  necessary to describe the multicomponent electrolyte system 
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 (A.19) 

If it is assumed in accordance with a very common approximation in the eNRTL-model 
that for the salt-salt interaction parameters the following relation is obeyed 

 CA, C A C A, CAτ τ′ ′= −  (A.20) 

 AC, A C A C, ACτ τ′ ′= −  (A.21) 

and that for the non-randomness factors mmα ′  (for the case of 1mN > ) 

 ( )0
m m

mm
m S m S

m m

α α′′∈ ∈
′>

∀ ∀ =  (A.22) 

and the non-randomness factors , CAmα , CA, C Aα ′  and AC, A Cα ′  the relations , CA 1mα α=  (for all 

mm S∈ , CC S∈  and AA S∈ ), CA, C A 1α α′ =  (for all CC, C S′ ∈  with C C′<  and AA S∈ ) and 

AC, A C 1α α′ =  (for all AA, A S′ ∈  with A A ′<  and CC S∈ ) do hold, the number of isothermal 
parameters coeffN  required to describe the system is given by 

 ( )coeff C A C A 1

1 1
1 2 1 2

2 2 mm m m NN N N N N N N N δ = − + + + − + − 
 

, (A.23) 

where 1 mNδ  is Dirac’s delta function, defined by 
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 (A.24) 

If it is, however, assumed that CA, C A C A, CA AC, A C A C, AC 0τ τ τ τ′ ′ ′ ′= = = =  and 0mmα α′ =  (for all 

mm S∈  and mm S′ ∈  with m m′ > ) does hold along with , CA 1mα α=  (for all mm S∈ , CC S∈  
and AA S∈ ) and the assumption that CA, C Aα ′  (for all CC, C S′ ∈  with C C′<  and AA S∈ ) and 

AC, A Cα ′  (for all AA, A S′ ∈  with A A ′<  and CC S∈ ) take any but finite values (since they are 
not needed), the number of isothermal parameters coeffN  needed to characterise the system is 
to be calculated from 

 ( )coeff C A 12 1 2
mm m NN N N N N δ= + − + −  (A.25) 



 34

References 

 
[1] Sloan, E. D.; Koh, C. A.; “Clathrate Hydrates of Natural Gases”; CRC Press, Taylor & 

Francis Group, Boca Raton, London, New York, 3rd ed. (2008). 

[2] Ribeiro Jr., C. P.; Lage, P. L. C.; “Modelling of hydrate formation kinetics: State-of-
the-art and future directions”; Chem. Eng. Sci. 63 (2008) 2007-2034. 

[3] Englezos, P.; “Chlathrate Hydrates“; Ind. Eng. Chem. Res. 32 (1993) 1251-1274. 

[4] Sloan, E. D.; “Fundamental principles and applications of natural gas hydrates”; 
Nature 46 (2003) 353-359. 

[5] Eslamimanesh, A.; Mohammadi, A. H.; Richon, D.; Naidoo, P. Ramjugernath, D.; 
“Application of gas hydrate formation in separation processes: A review of 
experimental studies”; J. Chem. Thermodynamics 46 (2012) 62-71. 

[6] Barker, J. W.; Gomez, R. K.; “Formation of hydrates during deepwater drilling 
operations”; J. Petrol. Technol. 41 (1989) 297-301. 

[7] Hsieh, M.-K.; Yeh, Y.-T.; Chen, Y.-P.; Chen, P.-C.; Lin, S.-T.; Chen, L.-J.; 
“Predictive Method fort he Change in Equilibrium Conditions of Gas Hydrates with 
Addition of Inhibitors and Electrolytes”; Ind. Eng. Chem. Res. 51 (2012) 2456-2469. 

[8] Clarke, M. A.; Bishnoi, P. R.; “Development of a new equation of state for mixed salt 
and mixed solvent systems, and application to vapour-liquid and solid (hydrate)-
vapour-liquid equilibrium calculations”; Fluid Phase Equilib. 220 (2004) 21-35. 

[9] Luckas, M.; Krissmann, J.; “Thermodynamik der Elektrolytlösungen – Eine 
einheitliche Darstellung der Berechnung komplexer Gleichgewichte“; Springer-
Verlag, Berlin, Heidelberg, New York (2001). 

[10] Fürst, W.; Renon, H.; “Representation of excess properties of electrolyte solutions 
using a new equation of state”; AIChE J. 39 (1993) 335-343. 

[11] Zuo, J. Y.; Zhang, D.; Fürst, W.; „Extension of the electrolyte EOS of Fürst and 
Renon to mixed solvent electrolyte systems“; Fluid Phase Equilib. 175 (2000) 285-310 

[12] Trebble, M. A.; Bishnoi, P. R.; “Development of a new four-parameter cubic equation 
of state”; Fluid Phase Equilib. 35 (1987) 1-18. 

[13] Trebble, M. A.; Bishnoi, P. R.; “Extension of the Trebble-Bishnoi equation of state to 
fluid mixtures”; Fluid-Phase Equilib. 40 (1988) 1-21. 

[14] Galindo, A.; Gil-Villegas, A.; Jackson, G.; Burgess, A. N.; “SAFT-VRE: Phase 
Behavior of Electrolyte Solutions with the Statistical Associating Fluid Theory for 
Potentials of Variable Range”; J. Phys. Chem. B 103 (1999) 10272-10281. 

[15] Chen, C.-C.; Song, Y.; “Generalized Electrolyte-NRTL Model for Mixed-Solvent 
Electrolyte Systems”; AIChE J. 50 (2004) 1928-1941. 

[16] Bromley, L. A.; “Thermodynamic Properties of Strong Electrolytes in Aqueous 
Solution”; AIChE J. 19 (1973) 313-320. 

 

 
 



 35

 
[17] Pitzer, K. S.; “Thermodynamics of Electrolytes. I. Theoretical Basis and General 

Equations”; J. Phys. Chem. 77 (1973) 268-277. 

[18] Pitzer, K. S.; “Electrolytes: From Dilute Solutions to Fused Salts”; J. Am. Chem. Soc. 
102 (1980) 2902-2906. 

[19] Cruz, J. L.; Renon, H.; “A New Thermodynamic Representation of Binary Electrolyte 
Solutions Nonideality in the Whole Range of Concentrations”; AIChE J. 24 (1978) 
817-830. 

[20] Chen, C.-C.; Britt, H. I.; Boston, J. F.; Evans, L.B.; “Local Composition Model for 
Excess Gibbs Energy of Electrolyte Systems”; AIChE J. 28 (1982) 588-596. 

[21] Chen, C.-C., Evans, L. B.; “A Local Composition Model for the Excess Gibbs Energy 
of Aqueous Electrolyte Systems”; AIChE J. 32 (1986) 444-454. 

[22] Chen, C.-C.; Bokis, C. P.; Mathias, P. M.; “A Segment-Based Excess Gibbs Energy 
Model for Aqueous Organic Electrolyte Systems”; AIChE J., 47 (2001) 2593-2602. 

[23] Bollas, G. M., Chen, C. C., Barton, P. I.; “Refined Electrolyte-NRTL Model: Activity 
Coefficient Expressions for Application to Multi-Electrolyte Systems”; AIChE J. 54 
(2008) 1608-1624. 

[24] Li, J; Polka, H. M.; Gmehling, J.; “A gE model for single and mixed solvent electrolyte 
systems 1. Model and results for strong electrolytes.“ Fluid Phase Equilibria, 94 
(1998) 89-114 

[25] Papaiconomou, N.; Simonin, J.-P.; Bernard, O.; Kunz, W.; “MSA-NRTL Model for 
the Description of the Thermodynamic Properties of Electrolyte Solutions”; Phys. 
Chem. Chem. Phys. 4 (2002) 4435-4443. 

[26] van der Waals, J. H.; Platteeuw, J. C.; “Clathrate solutions”; Adv. Chem. Phys. 2 
(1959) 1-57. 

[27] Englezos, P.; Bishnoi, P. R. Bishnoi; “Prediction of Gas Hydrate Formation 
Conditions in Aqueous Electrolyte Solutions”; AIChE J. 34 (1988) 1718-1721. 

[28] Meissner, H. P.; Kusik, C. L.; “Activity Coefficients of Strong Electrolytes in 
Multicomponent Aqueous Electrolyte Solutions“; AIChE J. 18 (1972) 294-. 

[29] Stryjek, R.; Vera, J. H.; “PRSV: An Improved Peng-Robinson Equation of State for 
Pure Compounds and Mixtures”; Can. J. Chem. Eng. 64 (1986) 323-333. 

[30] Michelsen, M. L.; “A Modified Huron-Vidal Mixing Rule for Cubic Equations of 
State”; Fluid Phase Equilib. 60 (1990) 213-219. 

[31] Yan, W. D.; Topphoff, M.; Rose, C.; Gmehling, J.; “Prediction of Vapour-Liquid 
Equilibria in Mixed-Solvent Electrolyte Systems Using the Group Contribution 
Concept”; Fluid Phase Equilib. 227 (2005) 157-164. 

[32] Hsieh, C. M.; Sandler, S. I.; Lin, S. T.; “Improvements of COSMOO-SAC for Vapour-
Liquid and Liquid-Liquid Equilibrium Predictions”; Fluid Phase Equilib. 297 (2010) 
90-97. 

 



 36

 
[33] Hsieh, M. T.; Lin, S. T.; “A Predictive Model for the Excess Gibbs Free Energy of 

Fully Dissociated Electrolyte Solutions”; AIChE J. 57 (2011) 1061-1074. 

[34] Herri J.-M.; Bouchemoua, A.; Kwaterski, M.; Fezoua, A.; Ouabbas, Y.; Cameirao, A.; 
“Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures – Experimental 
studies and Thermodynamic Modelling”, Fluid Phase Equilib. 301 (2011) 171-190. 

[35] Sloan, E.D.; “Clathrate hydrates of natural gases”; 2nd ed., Marcel Decker, New York, 
Basel (1997). 

[36] Matthias Kwaterski; Jean-Michel Herri; “Thermodynamic Modelling of Gas Semi-
Clathrate Hydrates using the electrolyte NRTL Model”, under preparartion 

[37] Belvèze, L. S., Brennecke, J. F., Stadtherr, M. A.; „Modeling of Activity Coefficients 
of Aqueous Solutions of Quaternary Ammonium Salts with the Electrolyte-NRTL 
Equation”; Ind. Eng. Chem. Res. 43 (2004) 815-825. 

[38] Lindenbaum, S.; Boyd, G. E.; “Osmotic and Activity Coefficients for the Symmetrical 
Tetraalkyl Ammonium Halides in Aqueous Solution at 25 °C”. J. Phys. Chem. 68 
(1964) 911-917. 

[39] Ballard, A. L.; Sloan Jr., E. D.; “The next generation of hydrate prediction I. Hydrate 
standard states and incorporation of spectroscopy”; Fluid Phase Equilib. 194-197 
(2002) 371-383. 

[40] “A Report of IUPAC Commission 1.2 on Thermodynamics Notation for states and 
processes, significance of the word ‘standard’ in chemical thermodynamics, and 
remarks on commonly tabulated forms of thermodynamic functions”; J. Chem. 
Thermodyn. 14 (1982) 805-815. 

[41] Mohr, P. J.; Taylor, B. N.; Newell, D. B.; “CODATA Recommended Values of the 
Fundamental Physical Constants: 2010”; J. Phys. Chem. Ref. Data, 41 (2012) 1-84. 

[42] Soave, G.; “Equilibrium constants from a modified Redlich-Kwong equation of state”; 
Chem. Eng. Sci. 27 (1972) 1197-1203. 

[43] Parrish, W.R.; Prausnitz, J.M.; “Dissociation pressure of gas hydrates formed by gas 
mixtures”; Ind. Eng. Chem. Process Des. Develop. 11 (1972) 26-35. 

[44] Kihara, T.; “The second virial coefficient of non-spherical molecules”; J. Phys. Soc. 
Japan 6 (1951) 289–296. 

[45] McKoy, V.; Sinanoğlu, O. J.; “Theory of dissociation pressures of some gas hydrates”; 
J Chem. Phys 38 (1963) 2946-2956. 

[46] Holder, G. D.; Corbin, G.; Papadopoulos, K. D.; “Thermodynamic and Molecular 
Properties of Gas Hydrates from Mixtures Containing Methane, Argon and Krypton”; 
Ind. Eng. Chem. Fundam. 19 (1980) 282-286. 

[47] Dharmawandhana, P. B.; “The measurement of the thermodynamic parameters of the 
hydrate structure and application of them in the prediction of natural gas hydrates”, 
PhD Thesis, Colorado School of Mines, Golden, CO, USA (1980). 

 



 37

 
[48] John, V. T.; Papadopoulos, K. D.; Holder, G. D.; “A Generalized Model for Predicting 

Equilibrium Conditions for Gas Hydrates”; AlChE J. 31 (1985) 252-259. 

[49] Handa, Y. P.; Tse, J. S.; “Thermodynamic properties of empty lattices of structure I 
and structure II clathrate hydrates”, J. Phys. Chem. 90 (1986) 5917-5921. 

[50] Von Stackelberg, M.; Müller, H. R.; “On the structure of gas hydrates”; J. Chem. 
Phys. 19 (1951) 1319-1320. 

[51] Holder, G.D.; Zetts, S.P.; Pradhan, N.; “Phase behavior in systems containing clathrate 
hydrates, a review”; Rev. Chem. Eng. 5 (1988) 1-70. 

[52] McMillan W. G., Mayer J. E.; “The statistical thermodynamics of multicomponent 
systems”; J. Chem. Phys. 13 (1945) 276-305. 

[53] Aspen Technology, Inc.; “Aspen Physical Property System-Physical Property 
Models”-Manual; Vers. Nr. V7.1; 01/2009; 200 Wheeler Road Burlington, MA, USA. 

[54] Renon, H.; Prausnitz, J. M.; “Local Compositions in Thermodynamic Excess 
Functions for Liquid Mixtures”; AIChE J. 14 (1968) 135-144. 

[55] Austgen, D. M.; Rochelle, G. T.; Peng, X.; Chen, C.-C.; “Model of Vapor-Liquid 
Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL 
Equation”; Ind. Eng. Chem. Res. 28 (1989) 1060-1073. 

[56] Danesh, A.; “PVT and Phase Behaviour of Petroleum Reservoir Fluids”; Elsevier 
(1998). 

[57] Mock B.; Evans, L. B.; Chen, C. C.; “Thermodynamic representation of phase-
equilibria of mixed-solvent electrolyte systems”; AIChE. J. 32 (1986) 1655-1664. 

[58] Robinson, R. A.; Stokes, R. H.; “Electrolyte Solutions, 2nd rev. ed., Dover 
publications; Inc., Mineola, New York (2002). Reprint of the rev. ed. 1970. 

[59] Downloaded from “http://www.southalabama.edu/physics/software/plotdigitizer.htm”, 
Department of Physics, University of South Alabama, Mobile, AL 36688, USA 

[60] Linke, W. F.; “Solubilities. Inorganic and Metal-Organic Compounds”; 4th ed., Am. 
Chem. Soc. Washington, DC, II (1965). 

[61] Dholabhai, P.D.; Englezos, P.; Kalogerakis, N.; Bishnoi, P.R.; “Equilibrium 
conditions for methane hydrate formation in aqueous mixed electrolyte solutions”; 
Can. J. Chem. Eng. 69 (1991) 800-805. 

[62] Chen C.-C.; Mathias, P. M.; and Orbey, H.; “Use of hydration and dissociation 
chemistries with the electrolyte-NRTL model”; AIChE J. 45 (1999) 1576-1586. 

[63] Dholabhai, P.D.; Kalogerakis, N.; Bishnoi, P.R.; “Equilibrium conditions for carbon 
dioxide hydrate formation in aqueous electrolyte solutions”. J. Chem. Eng. Data 38 
(1993) 650-654. 

[64] Kihara, T.; “The second virial coefficient of non-spherical molecules”; J. Phys. Soc. 
Japan 6 (1951) 289–296. 

 



 38

 
[65] Lennard-Jones, J.E.; Devonshire, A. F.; “Critical Phenomena in Gases. I”; Proc. R. 

Soc. Lond. A 163 (1937) 53-70. 

[66] Mooijer-van den Heuvel, M. M.; “Phase Behaviour and Structural Aspects of Ternary 
Clathrate Hydrate Systems”; PhD thesis, Technical University of Delft, The 
Netherlands (2004). 

[67] Tee, L. S.; Gotoh, S.; Stewart, W. E.; “Molecular Parameters for Normal Fluids – The 
Kihara Potential with a spherical core“; Ind. Eng. Chem. Fundam. 5 (1966) 363-367. 

[68] Bakker, R. J.; Dubessy, J.; Cathelineau, M.; “Improvements in clathrate modelling: I. 
The H2O-CO2 system with various salts”; Cosmochim. Geochim. Acta 60 (1960) 
1657-1681. 

[69] Bakker, R. J.; “Improvements in clathrate modelling II: the H2O-CO2-CH4-N2-C2H6 
fluid system”; in: Henriet, J.-P.; Mienert, J. (eds.); “Gas Hydrates: Relevance to World 
Margin Stability and Climate Change”; Geological Society, London, Special 
Publications 137 (1998) 75-105. 


