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Abstract: This study focuses on 2D Computational Fluid Dynamics (CFD) numerical 
modelling of the erosion of a cohesive soil by a circular impinging turbulent jet. Initially, the 
model is validated in the case of a non-erodible flat plate. Several turbulence models are 
compared to experimental results and to simplified formulas available in the literature. The 
results obtained show that the Reynolds Stress Model (RSM) is in good agreement with the 
semi-empirical results in the literature. Nonetheless, the RSM cannot be used with successive 
remeshings, due to its convergence issues. The shear stress at the wall is well-described by the 
k-ε model while the pressure is better-described by the k-ω model. The numerical model of 
erosion is based on adaptive remeshing of the water/soil interface to ensure the good precision 
of the mechanical values at the wall. The two erosion parameters are the critical shear stress 
and the erosion coefficient. The results obtained are compared with the semi-empirical model 
interpreting the Jet Erosion Test. The k-ε  model underestimates the shear stress and does not 
allow simulating the entire erosion process, whereas the results obtained with the k-ω model 
agree well with the semi-empirical model and experimental data. A study of the influence of 
erosion parameters on erosion kinetics and scouring depth shows that the shape and depth of 
scouring are influenced solely by the critical shear stress while the duration of scouring 
depends on both erosion parameters. Further research is nonetheless required to better 
understand the erosion mechanisms in the stagnation zone. 
 
 
Key-words: Erosion; Jet Erosion Test; critical shear stress; erosion coefficient; turbulent flow 
modelling; fluid-structure interaction modelling 
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1. Introduction 
Soil erosion caused by a flow of water is an old but still topical issue. It deals with the fields 
of sediment transport and free surface flows. The phenomenon is considered globally, as a 
balance between detachment, transport and deposit of solid particles within a stationary flow. 
At a smaller scale, though one which remains that of a continuous medium, one of the first 
mechanically-based numerical simulation approaches was proposed by Vardoulakis et al. [1] 
in the field of petroleum geomechanics. It introduced a fluidised solid phase that presented a 
regular transition between the solid and liquid phases. These three phases were in interaction 
through a source term in the mass conservation equation. This source term describes the 
exchanges of mass between the three phases. It represents the erosion of the solid phase. 
Ouriemi et al. [2] have recently proposed a diphasic model in which the solid and liquid 
phases are in interaction through a source term in the equation of momentum conservation. 
This source term describes the exchanges of momentum between the two phases. It permits 
describing the erosion of the solid phase. These two approaches are well-adapted to a flow of 
water on a granular soil with sufficiently high permeability to allow the development of a 
fluidised solid phase between the flow and the granular medium. The flow of water is 
described by the Navier-Stokes equations, the intermediate zone by a Brinkman model and 
the flow in the granular medium by a Darcy model.  
When the eroded soil is fine with a very low permeability, the thickness of this intermediate 
zone is very small. It is therefore more pertinent to consider that the interface between the 
flow and the soil is a singular interface, susceptible of being one of discontinuity. Erosion can 
therefore be described by the flux of eroded mass crossing this interface. This approach was 
proposed in particular by Brivois et al. [3] in the framework of a diphasic erosion model, then 
validated by Lachouette et al. [4]. 
A diphasic model of the flow is not necessary when erosion kinetics is very low in relation to 
flow velocity. Indeed, the flux of eroded mass is sufficiently low and the water flow 
sufficiently fast to allow assuming that the fluid phase is a diluted suspension, and that the 
exchanges of momentum between the water and the dispersed solid phase are negligible. In 
the case of a laminar flow, this hypothesis of low erosion kinetics has led to a monophasic 
model of erosion by an incompressible Stokes flow [5]. The numerical model unifies the 
description of the fluid and soil using the fictitious domains approach, on a fixed and 
independent Cartesian mesh. The fluid/soil interface is described by the level-set method 
Osher et al. [6]. 
For a turbulent flow, the model with a sharp interface was initially developed analytically, in 
the specific case of piping flow with erosion [7]. The case of a turbulent flow eroding a soil 
with slow erosion kinetics has still not been approached in a general way, thus this is what we 
propose to do in the present article, using a specific configuration: an impinging jet on a soil. 
Erosion modelling requires precise modelling of wall quantities, something that is particularly 
difficult in the case of turbulent flows. The fictitious domains method is therefore not relevant 
and another method has to be used. 
To our knowledge, no work has yet been published on modelling the erosion process of a soil 
subjected to the impingement of a submerged jet flow. The geometry of a jet with a stagnation 
point on a flat surface is simple but its physics is complex. For high Reynolds numbers, the 
use of Reynolds Average Navier Stokes (RANS) models is common. The turbulence models 
most frequently used for modelling jet flows belong to the following three main categories of 
turbulence models, described in section 2: the    model [8], the    model [9] and the 
RSM (Reynolds Stress Model) model [10]. Looney et al. [11] presented results given by 
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several versions of the    model. Craft et al. [12] compared a     model with three 
RSM models. Jaramillo et al. [13] focused on using a    turbulence model. Balabel and 
El-Askary [14] compared the performances of several     and v²-f [15] turbulence models. 
Generally, these studies compared the influence of different turbulence models on calculation 
results for mean and fluctuation values of velocity, as well as for variables related to heat 
transfer, such as the Nusselt number and the heat transfer coefficient. To our knowledge, no 
numerical study on the subject of impinging jets has focused on pressure fields or the stress 
distribution on the impinged surface. 
Direct numerical simulations (DNS) and large eddy simulations (LES) can lead to better 
understanding of fluid-soil interaction mechanisms and therefore the processes involved in 
erosion, but implementing these methods is still very difficult and costly in terms of the 
calculation time required to model erosion processes. The use of hybrid RANS/LES method 
could have been a good compromise but still remains time costly. 
The present work focuses on the numerical modelling of a turbulent jet flow impinging a fine 
cohesive soil, causing its erosion. We will compare the results of the numerical model with 
the semi-empirical approach of the Jet Erosion Test introduced by Hanson and Cook [16]. In 
this paper, emphasis will be mainly given to the development and validation of the numerical 
modelling.  
The paper is organised as follows: we will describe the physical model in section two and the 
numerical model in section three. The method for modelling the submerged impinging jet 
flow will be described in section four, with validation on a non erodible flat wall. In section 
five, we will present the results of the numerical modelling with erosion. The results will then 
be discussed in section six. 

2. Flow model with erosion 

2.1. Field equations 

We study the surface erosion of a soil subjected to a turbulent flow. The soil particles are 
detached and then transported by the flow. The fluid domain is denoted wΩ . The fluid flow 
equations are the following: 

0

( )

u
u u u Tw t

ρ

∇⋅ =


∂  + ∇ ⋅ = ∇⋅  ∂ 

     in wΩ  (1) 

where u  is the mean velocity of the flow, wρ  the fluid specific density and T  the Cauchy 
stress tensor. This stress tensor is expressed as follows: 

2T I D Rwp µ= − + +  in wΩ  (2) 


 


            ,           (3) 

where   is the mean static pressure, wµ  the molecular viscosity of the water,   the 
symmetrical part of the mean velocity gradient and   the turbulent stress tensor (Reynolds 
stresses). This tensor   is defined by the velocity fluctuations   in comparison to the mean 
velocity  . It has to be modelled by a turbulence model that will be described further in the 
paper. 
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2.2. Equations on the interface 

The solid/fluid interface is denoted by  . This interface, crossed by the flux of eroded mass 
 , is a mobile interface of celerity  . Therefore it is not defined by the same material points 
at two different instants. We assume that it is a singular, purely geometric interface without 
any thickness. The model can be simplified by applying several hypotheses. The soil is 
assumed to be saturated. Its permeability is assumed to be very low, allowing the omission of 
internal flows, so that all the material flowing through   results in an erosion process. Lastly, 
we assume that the soil is homogeneous, with a constant specific density  . The mass 
jump equation on   is written as 

water+particleswater+particles water+particles
passing through leaving the soil ranging in the flow

( )            ( )soil soil w wc u m c uρ ρΓ Γ

Γ

− = = −   on Γ  (4) 

where     ,   is the unit normal to   oriented towards the soil,   is the value of   
on  , soil side, and   is the value of  , flow side. The deformations of the soil are 
neglected, thus   .  
The erosion law most commonly used is a threshold law that takes the following form: 

 


  


   



   
 on Γ  (5) 

where ττττ   , ττττ             is the shear stress on  . Threshold   (Pa) is the 
critical shear stress and   (m².s/kg) is the erosion coefficient.  

2.3. Analysis of orders of magnitude 

To justify the monophasic modelling of a flow with erosion, it is necessary to estimate the 
orders of magnitude of the dimensionless numbers governing the flow and the erosion process 
[17]. We take   to denote the characteristic length of the fluid domain,   the pressure 
drop along  ,   the flow velocity gauge,   a characteristic dimension of the zone close 
to the interface,   the shear stress gauge on the interface,   the gauge of the soil’s 
hydraulic permeability close to the interface. The erosion velocity gauge is     . The 
characteristic erosion time is     . 
We can then define the following three dimensionless numbers: 

 











    ,   








    ,          (6) 

The Reynolds’ number of the flow   is the ratio between the fluid kinetic energy       

and the viscous force     . The erosion kinetics   is the ratio between the erosion 
velocity   and the flow velocity  . Lastly, the erosion number   is the ratio between the 
tangential momentum      due to the mobility of   and the shear stress   [18]. 
In the case of turbulent flows (   ), the orders of magnitude are the following [18]: 


     ,   





 









 

 
 ,   

        (7) 
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It is equivalent to assume a low erosion number (   ) and a low erosion kinetics 
(   ). This is not true for laminar flows. In this case, the flow can be considered as quasi 
steady (but the phenomenon remains transitory due to the erosion). In addition, the 
concentration of solid particles close to the eroded wall is very low. Indeed, the order of 
magnitude of the concentration close to the wall   is, [18]: 

 
 

 

    

 


  


 



 

  near Γ  (8) 

where n is the porosity. When the erosion kinetics is low,      . It can therefore 
be assumed that, close to the wall, the flow and the erosion are not influenced by the 
concentration of solid particles.  
Lastly, it can be considered that the velocity of the water is null on : this velocity is in fact 
of the same order as that of the erosion velocity, here assumed to be very low compared to the 
flow velocity. Finally, the condition on   is  

  on Γ  (9) 

2.4. Modelling the Reynolds stress tensor 

The Reynolds stress tensor       corresponds to the momentum transfer by the 
velocity fluctuations. To our knowledge, no consensus exists on modelling turbulence in the 
case of a flow as complex as an impinging jet. We modelled this configuration with three 
standard turbulence models: the    model, the    model, and the RSM (Reynolds 
Stress Model) model. 
The kinetic energy of velocity fluctuations        is introduced, which is 
proportional to the trace of the Reynolds stress tensor. The Boussinesq hypothesis introducing 
a turbulent viscosity   is written as: 


  


              (10) 

The molecular kinematic viscosity of the water is denoted      . The turbulent 
viscosity is defined as follows: 


 


 


  (11) 

where           is the dissipation rate of turbulent kinetic energy and   is most 
often considered as a constant but sometimes a function of the mean deformation and   and 
 . 
Model    is a phenomenological model of turbulence based on the following transport 
equations for   and  : 

  
   




   




 


                          
  (12) 

  
   


 


 
   



                          
  (13) 

where   (resp.  ) is the source term of production of   (resp.  ) due to the mean velocity 
gradient and where   (resp.  ) is the dissipation of   (resp.  ) due to the turbulence. 
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There are several    type models. The    realizable turbulence model is well adapted 
to planar and circular jets [19]. 
The    model is a phenomenological model of turbulence based on the equation of   

previously given in Eq. (12) and the specific dissipation rate 
 


  . The transport 

equation of   reads: 

  
   


 


 
   



                          
  (14) 

where   is the source term of production of   due to the mean velocity gradient and where 
  is the dissipation of   due to turbulence. The standard values of the parameters of the 
   model and the definition of the production and dissipation terms are well-known [6]. 
According to Pope [19], the    model seems better adapted to jet flows than the    
model. The over prediction of the jet half-width and the under prediction of the velocity by 
the    turbulence model are well-known. 
The    and    models only model the isotropic part of   and impose a condition of 
co-axiality between   and  , as expressed in the Boussinesq hypothesis defined by Eq. 
(10). The RSM model is defined through the direct resolution of the Reynolds stress tensor   
by the transport equations. These transport equations take the form 

         




           




    (15) 

where   is the source term of production due to the mean velocity gradient, DR includes 
turbulent diffusion and mean pressure contributions,   is the dissipation term due to 
turbulence and ΠR is the pressure-deformation term. The definition of these terms is well-
known [10]. 

3. Numerical modelling 

3.1. Loose-coupling resolution 

In the case where the erosion kinetics and erosion number are small, Bonelli et al. [18] 
deduced from the analysis of the transport equations of diphasic media that the flow can be 
considered as steady with respect to the time scale of erosion. The steadiness of the flow with 
respect to erosion time step permits sequential loose-coupling resolution of the equations 
related to the fluid and material. 
In the case of the numerical simulation of flows in the presence of interfaces, two approaches 
can be distinguished, namely capture and tracking of the interface. The first approach, called 
Eulerian, consists in defining the media (water-soil) in given domains (fixed mesh) and in 
determining their evolutions. The fluid/solid interactions are modelled with the fictitious 
domains method and the Level Set method. This approach was used for instance to model a 
Stokes flow with erosion [5]. The use of immersed boundary method to model interfaces 
displacement has increased these past few years. Khosronejad et al. [20] modelled coupled 
flow and sediment transport phenomena in a turbulent open channel flow. The advantage is 
that it permits considering a mesh independently of the interfaces: the mesh does not have to 
follow the mobile interface and it can be Cartesian and fixed. It is therefore possible to 
consider complex 2- or 3-dimensional geometries. The disadvantage of this model lies in the 
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difficulty to model mechanical quantities, such as the shear stress, on the interface with 
sufficient accuracy.  
The second approach, known as Lagrangian, consists in only modelling the fluid part, then 
shifting the boundary through time (dynamic meshing). Remeshing allows modelling a flow 
and obstacles with complex and changing shapes, by precisely describing the phenomena 
close to the walls. This approach was chosen here, since to calculate the efforts applied by the 
fluid on the solid accurately, it is necessary to take into account the different flow regimes 
between the viscous boundary layer at the wall and the turbulent flow far from the walls with 
great accuracy. 
The wall evolves due to erosion of the soil. With the hypothesis of low erosion kinetics, 
flow/erosion coupling is weak and it is possible to perform an explicit sequential loose-
coupling resolution. This supposes that the wall evolves slowly and that its velocity does not 
have a significant influence on the flow momentum. The geometry is updated at the end of 
every time step by an explicit Euler scheme: 

x x
   

   


   
  

         


 (16) 

where ( )tx  is the position at time t  of a node of the interface. Once the position of the wall 
has been updated, the domain is remeshed close to the interface in order to obtain a mesh 
adapted to this new configuration. 
The advantage of modelling by remeshing is that it allows precise modelling of quantities at 
the fluid/solid interface, making it possible to use wall laws and complex models of 
turbulence. 
After establishing the flow, the mesh is periodically deformed and refined locally close to the 
interface (approximately after 1000 iterations). Since this deformation is minimal, the flow is 
only slightly disturbed. However, after several tens of local deformations and refinements, the 
meshing is so unstructured that it is necessary to carry out global remeshing and interpolation 
of the flow fields. The calculation after the global remeshing is started from an interpolation 
at the first order of the data calculated for the previous cells positions. This important 
remeshings issues are an important drawback of this remeshing method, as explained in 
section 3.1. The advantage is a precise determination of mechanical quantities on the 
interface. The complete modelling of the erosion process of a cohesive soil by a turbulent 
impinging jet on a configuration such as that shown in Figure 2, requires about one month’s 
calculation time on a cluster of 8 CPUs with Intel Xeon EMT64 3.2 GHz dual processors. The 
MPI library is used for paralleled coding. 

3.2. Wall laws 

Close to walls, the fluid zone is generally divided into three zones with distinct behaviours 
[19]. The zone closest to the wall is called the viscous sublayer, since viscosity effects are 
dominant. In the zone furthest from the wall within a turbulent boundary layer, turbulence is 
dominant, and two distinct regions are generally distinguished, the log-law region and the 
wake region. The intermediate zone, often called the buffer sublayer or mixing zone, is 
governed in equivalent ways by viscosity and turbulence. 
Let y+  be the dimensionless distance from the centre of the first cell at the wall, with y  the 
distance from the centre of the first cell at the wall, and Uτ  the friction velocity at the wall: 

w

w

U yy τρ
µ

+ = , 
w

Uτ
τ
ρ

=  (17) 
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The RSM and  -  turbulence models have been validated for flows far from the walls, and 
additional equations must be introduced in these models to make them applicable to the 
vicinity of the walls. The  -  turbulence model presents a flow resolution close to the walls 
directly integrated in the basic equations of the model.  
In the case of the RSM and  -  turbulence models, two approaches can be used to solve the 
viscous sublayer and the intermediate zone. The first consists in using semi-empirical 
formulas called standard wall functions; the second, the enhanced wall treatment, leads to the 
modification of the turbulence models in such a way as to permit the resolution of the 
sublayer equations. The enhanced wall treatment was chosen for the  -  and RSM models. 
The most commonly used wall functions result from the work of Launder et al. [8]. A log law 
is used to determine the mean velocity values of the cells near the wall for dimensionless 
distances such as 30<y+<300. For nodes adjacent to the wall, such as y+<30, a linear 
stress/deformation relation corresponding to the laminar regime is applied. These wall 
functions correspond to flat smooth walls, which will obviously not be the case here where 
scour erosion is the leading phenomenon 
The enhanced wall treatment consists in applying a two layer model: the calculation domain is 
divided into two zones, a fully turbulent zone and another one sensitive to viscous effects 
whose demarcation is determined by the turbulent Reynolds number Re y : 

Re w
y

w

y kρ
µ

=  (18) 

In fully turbulent regions, for Rey>200, standard turbulence models are used. Otherwise, the 
method using the one-equation model of Wolfshtein [17] is performed. For both    and 
   turbulence models, the wall boundary conditions for the   equation are treated in the 
same way. The appropriate low-Reynolds-number boundary conditions will be applied. 
Values for ε or ω are thus inferred from an equation such as (19), which simply relates ε to k 
and a characteristic length scale. Therefore, the problems associated with the resolution of the 
ε or ω equation in the wall vicinity are avoided. 

3/2k
lµ

ε =  (19) 

The turbulent kinetic energy is determined using transport equations, and the turbulent 
viscosity is defined by using a characteristic length l determined with the equation introduced 
by Chen et al. [21]. 
Choosing a turbulence model and a suitable mesh is difficult. Indeed the choice depends on a 
compromise between the quality of the results expected (compared to those in the literature or 
theory) and the difficulty of implementing numerical simulations from the standpoints of both 
convergence and calculation time. 

3.3. Adaptation of the erosion law 

According to the erosion law in Eq. (5), the displacement of a point at the interface depends 
only on the shear stress exerted by the fluid on the material at this point. In the case of a flow 
normal to the surface of the soil, the mean shear stress is null at the stagnation point, then 
increases up to its maximum and then decreases again by receding from the stagnation zone. 
The implementation of the erosion law as it is should progressively lead to a geometric 
singularity of the erosion pattern in the stagnation zone, as shown schematically in Figure 1 
where the shear stress profile is also plotted. 
In the case of erosion caused by a turbulent jet flow, one finds no singularity in practice. On 
the contrary, a symmetric cup-shape with the maximum depth at the jet centerline is observed. 
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The inhomogeneity of a real soil can explain the absence of a non-eroded soil peak at the jet 
centerline. The addition of a flow mechanical quantity in the erosion law could also lead to 
the smoothing of the theoretical non eroded peak. In addition, the fluctuations of 
instantaneous turbulence quantities in the stagnation area of the jet, as well as the pulse of the 
jet in 3-D geometry, may explain this smoothing of the peak of non-eroded soil. Hadziabdic 
and Hanjalic [22] displayed fluctuations of the location of the stagnation point for an 
impinging jet, but the amplitude of the stagnation point displacement cannot be found directly 
from this study for our problem configuration. More work is needed to precisely model these 
effects and integrate them in a reliable erosion law; but this subject is outside the scope of the 
present study. Therefore, for the sake of simplicity, we use the following simplified model as 
a first step: 

  



  

  



  

  



 

   
   

      

        on Γ  (20) 

where   is the stagnation zone of the jet flow defined as in Figure 1, and  , the 
maximum shear stress. 
The procedure for shifting the interface nodes is the following: extraction of the calculation 
data at the interface, determination of the erosion time step in agreement with a CFL (Courant 
Friedrichs Lewy) type condition applicable to Eq. (16), ordering of the nodes composing the 
fluid/material interface, determination of the shift associated with each node by a first order 
Euler type graph and reordering and shifting of the nodes. The time step is chosen so that the 
largest displacement of the interface cannot reach more than a tenth peak of the smallest 
interface cell size, to ensure a very good stability of the erosion model. 
 

4. Model validation of a jet impinging on a non erodible wall 
4.1. Geometry and limit conditions of the flow 

The geometry of the computation domain is 2D axisymmetric, representative of the 
configuration developed by Hanson et al. [16], as presented in Figure 2.  
The water flow enters the controlled pressure injection cylinder, passes through a nozzle and 
impinges on the surface of the material. The water is discharged through lateral orifices, in 
agreement with the axisymmetric geometry. The free surface corresponding in reality to 
overtopping is modelled symmetrically. The condition of symmetry is a null flux condition, 
whatever the variable considered, with null mean velocity and null gradients for the shear 
stress. A sliding condition is imposed, thus we could also consider a frictionless wall.  
One should consider the free surface using VOF free surface models, but this would uselessly 
increase the complexity and the computational time, whereas the free surface is relatively far 
from the core of the problem and should have only a very slight effect on the erosion kinetics.  
A differential pressure of 3x104 Pa is imposed. The distance separating the 6.35 mm diameter 
nozzle from the water/material interface is 146.5 mm. 

4.2. Mesh density 

The first point to be validated concerns the independence of the results with respect to 
meshing. Several factors have to be taken into account: the mesh fineness of the nozzle and 
the surface of impingement between the two elements. The influence of the rest of the mesh 
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on the modelling results is lower, apart from the outlet mesh density, due to possible 
convergence problems.  
Table 1 groups the characteristics of the different meshes tested: the number of mesh nodes at 
the outlet orifice varies from 10 to 100 and the limit layer at the water/soil interface from 350 
to 7,000, for a total number of cells ranging from about 27,000 to nearly 1,200,000 elements. 
Meshes A to M are characterised by the variation of the number of mesh nodes at the jet 
outlet orifice. Meshes N to S present a number of mesh nodes on the sublayer which varies as 
a function of the number of mesh nodes at the orifice of the jet outlet. Meshes T, U and V 
differ by the number of mesh nodes in the tank as a function of the two other parameters. This 
sensitivity analysis was performed using solely the    turbulence model. 
The results obtained for the shear stress and the total pressure at the water/soil interface are 
shown in Figures 3a and 3b. They indicate that, regarding the sensitivity study of mesh 
density at the outlet orifice, the shear stress curves oscillate around the results provided by 
meshes K, L and M for a very dense mesh at the nozzle. The results are independent of mesh 
density to within 5%, taking into account a mesh density close to 30 cells at the outlet orifice. 
The independence of the results with respect to the mesh density of the water tank was 
obtained with the first mesh tested. Varying the number of cells in the tank had less effect in 
this case. 
Increasing the number of cells at the water/soil interface leads to a reduction and a shift of the 
maximum stress to the left of the maximum peak obtained for a mesh of 350 cells in the 
sublayer. The reduction of the maximum pressure and shear stress is greater than 5%. The 
width of the pressure curve at mid-height is much lower in the case of a dense mesh at the 
interface.  
In the case of meshes composed of 350 elements at the interface, we obtain y+9. For those 
with 3,000 elements at the interface, y+1 and for 7,000 elements, we obtained y+0.5. In the 
three cases, and whatever the mesh considered, the turbulent Reynolds number at the wall 
remained less than 200 and the one-equation model of Wolfshtein [17] can therefore be used 
to solve the flow at the wall. 
However, the similarity of the results given by meshes P, Q, R and S permits deducing that, 
for this geometry, the precision of the results is independent of meshing as from 0.9<y+<1 in 
the near wall zone. The increase in computation time can nonetheless quickly become a 
severe handicap as mesh density at the interface increases. The appearance of potential 
instabilities can be observed for mesh elements whose size is too small. 
The erosion law given in Eq. (19) relies only on the influence of the shear stress, using all the 
results obtained above and shown in Figure 3a. It appears that mesh P is the most suitable, 
since it combines independence of the results from the mesh, whatever the mesh considered, 
with an optimal number of cells in order to reduce the computing time. However, the large 
number of cells on the water/soil interface allows only a very short erosion time step and the 
oscillations of the shear stress curve are non negligible. Therefore priority will be given to the 
use of mesh I. 

4.3. Influence of the turbulence model 

This study of the turbulence model influence on the numerical results was performed by 
comparing the results of   ,    and RSM turbulence models with results from 
literature: Beltaos et al. [23], Hanson et al. [24], Looney et al. [11], Poreh et al. [25], Viegas et 
al. [26]. The parameters governing the flow are the velocity on the jet centerline, the pressure 
field and the shear stress at the interface. 
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The velocity of the flow at the outlet orifice 0U  can be compared to the Hanson et al. [24] 
formula, with ΔH  being the height of the water column and g  gravitational acceleration:  

0 2= ΔU g H  (20) 
The potential core, i.e. the core forming immediately at the outlet of the jet, is characterised 
by a velocity on the jet centerline which remains constant and equal to 0U . The length of the 
potential core, denoted l , has been the subject of many studies, especially those of Beltaos et 
al. [23], Looney et al. [11]. Thus, with d0 the diameter of the outlet orifice, the most 
commonly used empirical formula reads: 

06.2l d≈  (21) 
The auto-similarity of non-impinging jets has also been the subject of much research: Tritton 
[19], Hanson et al. [24]. Let us denote the normal component of the velocity at any point of 
the median axis of the jet as ( )U z , with z  being the ordinate of the point considered in the 
geometrical reference presented in Figure 2. The distribution of the velocity outside the 
potential core at the jet centerline is then: 

( ) 0  if lU z U z l
z

= >  (22) 

Beltaos et al. [23] and Hanson [24] gave empirically the value of the pressure peak on the 
impingement surface at the jet centerline, denoted maxP , and the distribution of pressure on the 
flat, non erodible surface, ( )P r . Here r denotes the distance to the jet centerline and 0z the 
distance separating the height of the jet outlet and the interface: 

2
0

max 2
0 0( / )

 
=  

 
wUP C

z d
ρ  (23) 

( ) 2
0114( / )

max

r zP r
e

P
−=  (24) 

The value of coefficient C found experimentally by Beltaos et al. [23] in air with a planar jet 
is 25.0. Poreh et al. [25] obtained 30.2 in water whereas Hanson et al. [24] obtained 27.8 in 
water with a circular jet. 
Beltaos et al. [23] give the following empirical expressions for the maximum shear stress on 
the impingement surface and the radial distribution of shear stress for a range of distances to 
the jet centerline less than 00 22r . z< : 

2
0

max 2
0 0

0.16
( / )

wU
z d
ρτ

 
=  

 
 (25) 

( )
2

0 2
0

114( / )
114( / )

0
max 0

( ) 10.18 9.43 /
/

r z
r zr e r z e

r z
τ
τ

−
− −= −  

 
 (26) 

Viegas et al. [26] give an empirical formulation of the shear stress distribution for a range of 
distances to the median axis of the jet higher than 00 22r . z>  : 

( )
0.078
00.8780.256

0 0
max

( ) 0.67 / dr d r zτ
τ

−−=  (27) 

Hanson et al. [24] established empirical formulas of the shear stress distribution and the 
maximum shear stress at the interface: 

( ) 0.6
07.68( / )

0
max

( ) 66.5 / r zr r z eτ
τ

−=  (28) 
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0.742
0

max 2
0 0

0.56
( / )

wU
z d
ρτ

 
=  

 
 (29) 

Phares et al. [27] give an empirical formula of the maximum shear stress at the interface, with 
  the Reynolds number of the flow at the jet outlet orifice: 

0

2
2 0.5 0

max 0
0

44.6 w e
zU R
d

τ ρ
−

−  
=  

 
 (30) 

Table 2 reports the percentage errors obtained by comparing the results of different turbulence 
models with results from the literature. Figure 4 shows the comparison of numerical and 
experimental results. 
The results for pressure are shown in Figures 4a and 4b. It can be seen that the    model 
presents results that fit better with the empirical formulas in the literature than the RSM 
model, with a relative average error of 20% and 37% respectively. As for the    model, it 
is far below the maximal pressures obtained in the literature, with an error ranging from 65 to 
100% according to the empirical model considered. The results on the half length of the 
pressure profile show the same trend. On the contrary, the results on the maximum shear 
stress are closer to the results in the literature in the case of the    and RSM models, to 
within 10 and 12% respectively, and are very far from the empirical formulas in the case of 
the    model, with an error of 82% (Figures 4c and 4d). Regarding the velocity of the 
flow close to the jet nozzle (Figure 4e) the results obtained for the three turbulence models are 
in good agreement with the empirical results in the literature, especially the RSM model 
which presents an error of about 3%. 
Globally, the RSM model comes closest to the empirical results in the literature. The    
model presents the results closest to the results in the literature for flow velocity and pressure. 
The    model presents the results closest to those in the literature for shear stress. As 
expected, we infer that the    turbulence model is more adapted to the numerical 
modelling of jets than the    model. However, the shear stress on the interface obtained 
with the    turbulence model is closer to bibliographic data. 
The three types of turbulence models,   ,    and RSM, were considered for modelling 
the erosion of a cohesive soil by a turbulent flow. However, the difficulty of implementing the 
RSM model made it difficult to use due to the successive remeshing of the calculation 
domain. Despite its accuracy, the RSM model presents a considerable degree of instability. 
Therefore its use is not adapted to successive remeshings. A quite good convergence of the 
RSM is ensured by initialising the model with    results. Between each remeshing, a 
   numerical model must be carried out; the RSM should then be used. This leads to a 
considerable increase of the calculation time and the convergence of the erosion model is still 
not guaranteed. Therefore, only the results obtained for the    and    turbulence 
models are presented in the following paragraphs. 

5. Validation of the model with erosion 
5.1. The results of the numerical model with erosion  

The characteristics of the soil, obtained using the model of Hanson et al. [16], are 
51 10  m².s/kgdk −= ×  and 11 Pacτ = . These parameters are standard values of results obtained 

for a soil in the classification of Hanson et al. [16]. In addition to this standard case, a 
parametric study of the critical shear stress and the erosion coefficient will be presented in 
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order to better understand the influence of these parameters on the erosion law and on the 
results of our numerical modelling. 
Given the considerable computing times generated by this type of numerical simulation, a 
coarser mesh than mesh I was used for this study, otherwise two months of calculation on a 
cluster of 8 CPUs with Intel Xeon EMT64 3.2 GHz dual processors would have been 
required. Mesh D was used for the model without erosion, leading to an error of 15% in 
comparison to the results obtained with the denser meshes tested, but requiring only half the 
calculation time. 
To illustrate the evolution of both the hydrodynamics and soil’s boundary, Figure 5 shows the 
evolution of the fluid velocity field and the geometry of the soil/water interface as a function 
of erosion times obtained with the    and    turbulence models.  
Let z∞  denote the distance separating the height of the jet outlet and the soil’s interface at the 
median axis of the jet, at the end of the erosion process (at time = +∞t ). The master 
equations of the semi-empirical model of Hanson et al. [16] can be rewritten as follows: 

 




 


    
   

   
  


 

                                   

       
   

 (31) 





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





  with 




  




  
  (32) 







   with 

      (33) 

with a friction coefficient Cf=0.00416 determined empirically and   the reference shear 
stress. 
Figure 6 illustrates the evolution of the soil/water interface as a function of erosion time, in 
the case of models    (a) and    (b). In conformity with the results obtained when 
comparing the turbulence models, where the shear stress was much lower in the case of the 
   turbulence model than in the case of the    model, the erosion process follows the 
same trend. At the end of the erosion process, when the shear stress becomes lower than the 
critical shear stress at every point of the interface and the soil is no longer subject to erosion, 
the maximum scouring with model    is about 1.74 cm whereas it is about 5.03 cm with 
the    model. 
The portion of the water/soil interface affected by the erosion is larger with the    model, 
in line with the observations of Figure 4d, with a larger half-width of the shear stress profile 
for the    model. For the moment, we did not implement a limit to the interface slope. 
Figure 7a presents the evolution of scouring depth a function of erosion time for the two 
turbulence models tested, in comparison to the results of the erosion model of Hanson et al. 
[16]. For the study without erosion, the    model presents a profile and maximum shear 
stress close to the literature results. However, when modelling erosion, the comparison of 
maximum scouring as a function of erosion time shows better correspondence between the 
numerical results and the semi-empirical model, as illustrated in Figure 7a. The relative error 
on the final maximum scouring depth, between the numerical and semi-empirical results is 
17.7% with the    model whereas it reaches 71.6% for the    one. 
Figure 7b shows the evolution of the maximum shear stress as a function of scouring depth at 
different erosion times for    and    models in comparison to the results given by the 
semi-empirical model. For the evolution of the shear stress as a function of time, the semi-
empirical model proposes the following expression for the median axis of the jet:  
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

  
 



 

 
    

 (34) 

We observe Figure 7b that the    model is initially rather close to the empirical model 
whereas the    model presents a high percentage error. The end of the curve shows an 
inversion of the trend when increasing erosion time. The slope of the maximum shear stress 
curve as a function of maximum scouring is much higher in the case of the    model than 
for the model, thereby leading to a rapid stop of the erosion process. With the    model, 
the slope of the curve of the maximum tangential stress curve as a function of scouring depth 
is also very high. The error between the results given by the    model and those given by 
the semi-empirical model decreases as erosion time increases. A clear break in the curve in 
the case of the    model can be seen for a scouring depth of around 2 cm. Detailed 
observation of the flow parameters at different erosion times is carried out hereafter to 
understand this phenomenon. 
Figure 8 shows the evolution of the different flow variables as a function of erosion time: the 
velocity field on the median axis of the jet, the shear stress and static pressure on the 
soil/water interface. Generally, these curves fluctuate more than those for a jet without 
erosion, obtained using the    turbulence model. After a certain time of erosion, the 
pressures at the extremities of the interface become negative, prefiguring the appearance of 
recirculation zones within the flow. As shown in Figure 8a, the shape of the shear stress at the 
interface clearly changes as from the first remeshing of the entire zone affected by meshing 
deformation. Regarding the other flow variables, the velocity profile at the median axis of the 
jet (cf. Figure 8b) and static pressure at the interface (cf. Figure 8c), a significant increase of 
the maxima between the state with no erosion and the first remeshing is also observed. Then, 
whatever the flow variable considered, the values fall until stabilising at the final equilibrium 
regime when the erosion process ceases. There is an obvious and sudden fall in all the flow 
variables between the curves at 106.4 s and 130.4 s, a drop corresponding to that observed in 
Figure 7b. 
Figure 9 shows the pressure profiles obtained at different erosion times, the start and end of 
the erosion process, and at 106 st  and 130 st  , obtained with turbulence models    
and   , with the former shown above the latter. The upper part of Figure 9 shows the 
pressure profiles obtained with the    model at different erosion times: the start and end 
of the erosion process, and at    and  . Between the last two profiles a brutal fall 
of all the flow variables is observed. The scale represented corresponds to 10% of the full 
spectrum of the pressure field in the flow. The corresponding graphs clearly show the 
appearance of recirculation zones above the convexity zone of the soil/water interface 
between times 106 s and 130 s, with the    model. A change of flow regime occurs at a 
scouring depth of about 2 cm. With the    model, the evolution of the pressure field 
presented in the lower part of Figure 9 reveals a flow regime similar to that found with the 
   model for the same depths, except for the fact that lateral diffusion of the jet is larger 
with the    model. The jet therefore impinges on the soil/water interface with less power, 
and whatever the depth of the cavity it is seen that the flow at the outlet of the cavity remains 
at a tangent to the horizontal plane. Conversely, in the framework of the    model, the 
impingement of the jet at the bottom of the cavity with a larger power permits the resurgence 
of the flow in an almost vertical direction at the outlet of the cavity, once the depth of the 
latter exceeds approximately 2 cm. As is widely documented, the    does not perform 
very well for turbulent boundary layer flows with streamwise pressure gradient or wall 
curvature, for which the    is known to perform much better [28,29]. This probably 
explains what is observed on Figure 9, even though a more specific study would be required 
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to analyze these results in more detail. This specific study could include, for instance, the 
comparison of standard    and SST    results. 

5.2. Parametric study of the erosion coefficient and critical shear stress 

A parametric study of the influence of critical shear stress and erosion coefficient on the 
evolution of scouring depth as a function of erosion time was carried out using the    
turbulence model. For an unchanged erosion coefficient of    , the influence of 
the critical shear stress is presented for cτ  equal to 0, 5, 9, 13 and 20 Pa, in addition to the 
initial case 11 Pacτ = , in Figure 10a. The influence of the erosion coefficient is presented for 

dk  equal to -5 -62 10  and 5×10  m².s/kg×  in Figure 10b, for a constant 11 Pacτ = . The cases 
9 Pacτ = , -65×10  m².s/kgdk =  and 9 Pacτ = , -63×10  m².s/kgdk =  were also modelled and 

plotted in Figure 10b. As can be seen in Figure 10a, a differential critical shear stress of only 
2 Pa, i.e. about 20% in relative value, leads to a difference of more than 8 mm in the 
maximum scouring depth, i.e. a relative difference of about 15%. Likewise, cf. Figure 10b, a 
difference of 50% on the erosion coefficient could lead to a difference of almost 50% over the 
time required to reach equilibrium state. The parametric study demonstrates that the results 
obtained by numerical modelling agree quite well with results obtained with the semi-
empirical model. A considerable error on one of the parameters, critical shear stress or erosion 
coefficient, would give rise to considerable differences between the numerical and semi-
empirical results, on the evolution of the scouring depth as a function of time. 
Figure 11 shows the magnitude of the velocity as well as the shape of the soil/water interface 
profile obtained for these different sets of parameters at times: 6 s, 200 s, 600 s, 15,000 s, and 
in the final state. The erosion figures and velocity fields show the influence of the critical 
shear stress and erosion coefficient on the shape of the eroded surface and on the 
characteristics of the flow. In line with the observations made on the direction of the flow as a 
function of cavity depth, when the depth of the cavity formed is close to 2 cm, the flow at the 
outlet of the cavity changes quickly from a tangential direction to one perpendicular to axis r. 
This transient phase is shown clearly by the two final images corresponding to the last 
combination of parameters tested, 20 Pacτ = , -51×10  m².s/kgdk = . The variation of the 
erosion coefficient only appears to affect the kinetics to reach the final state. It is necessary to 
check that z∞  only depends on the critical stress, as suggested by the images corresponding to 
the numerical simulations performed with the following sets of parameters: 9 Pacτ =  with 

dk  equal to -63 10× , -65 10×  and -51 10  m².s/kg×  or 11 Pacτ =  with dk  equal to -65 10× , 
-51 10  ×  and -52 10  m².s/kg× . When the erosion process stops, the erosion figures 

corresponding to the same cτ  are indeed strictly alike. Consequently dk  has no influence on 
the shape of the final erosion configuration. 
The variation of the critical shear stress also affects the shape of the eroded area as well as the 
maximum scouring depth and the kinetics. For a null stress, the entire surface of the material 
is eroded; in the last two images of case 0 Pacτ = , -51 10  m².s/kg= ×dk  the walls of the 
mould, with a thickness of 2 mm, became apparent. Erosion stops only when all the soil 
contained in the mould has been eroded, but, given the long computing times involved, the 
numerical simulation was stopped at t=1,000 s, thus the maximum distance reached by the 
erosion is therefore only 1 cm from the bottom of the mould. The higher the critical shear 
stress, the more the zone affected by erosion decreases with, notably, a decrease of the 
maximum depth reached. Less material is eroded and the cavity formed is narrower and less 
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deep. Figure 10a also provides a good illustration of the differences observed on the scouring 
depth and also on the influence of the critical shear stress on the erosion kinetics. The higher 
the critical shear stress, the shorter the time required to reach the moment when the erosion 
process stops. However, Figure 10b shows that, for the same erosion coefficient and similar 
threshold stresses, such that 9 Pacτ =  and 11 Pacτ = , the times required to reach equilibrium 
are almost the same whereas in the case 9 Pacτ =  a variation of only -62×10  m².s/kg  on dk  
leads to a difference of over 1,500 s in the time required to reach equilibrium. Thus, initially, 
the erosion coefficient governs the kinetics of the process, although the time required to reach 
stable flow is not independent of the critical shear stress. Thus, at 1/ 2t , the time at which the 
erosion depth reaches half of 0z z∞ − , it is necessary to check that: 

( )cz f τ∞ =  (35) 

( )1/ 2 d ct g k ,τ=  (36) 
with f  and g  being functions whose curves are plotted in Figure 12. 
Figure 12a shows the time necessary for the erosion process to reach half the maximum 
scouring reached when the erosion process stops, as a function of the erosion coefficient, for 

11 Pa=cτ . Figure 12b shows scouring as a function of critical shear stress for 
-51 10 m².s/kg= ×dk . Figure 12c presents the time required for the erosion process to reach 

half the maximum scouring reached when the erosion process stops, as a function of the 
critical shear stress, for -51 10 m².s/kg= ×dk . From Eq. (31), the semi-empirical model gives: 

 
  

 

 


   
   

   
 


 

                                 

      
   

 (37) 

with 
 

 
  

 
  (38) 

Figure 12 compares the numerical results found during this parametric study with those 
obtained with the semi-empirical model. Before the start of the erosion process, the shear 
stress exerted by the fluid on the material is much lower in the case of the semi-empirical 
model than for the numerical model. This point explains why the semi-empirical curve starts 
at much lower critical shear stresses than the numerical model, cf. Figure 12b. Nonetheless, 
the semi-empirical and numerical curves remain quite close. As for the total duration of the 
erosion process as a function of the erosion coefficient, cf. Figure 12a, apart from a quite 
considerable shift, the shapes of the semi-empirical and numerical curves remain similar. The 
lower the values of dk  are, the higher the error between the numerical and semi-empirical 
results will be. The curve representing the influence of the critical shear stress on the erosion 
kinetics, cf. Figure 12c, is also very close to the results of the semi-empirical model. As with 
the values of dk , the lower the values of cτ , the higher the error between the numerical and 
semi-empirical results. 

6. Discussion 
The main subject of discussion related to this study concerns the significant differences 
obtained for the results given by the    and    turbulence models.  
For jets impinging on a wall with no erosion, since the    type models tend to become 
over-diffusive, it seems normal that this type of model attenuates the flow variables at the 
interface. Furthermore, the study on the influence of the turbulence model shows that 
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Reynolds Stress Model type model provides results very close to those in the literature. For all 
the flow quantities considered, these results fall between those given by the    model and 
those given by the the    model. However, it was not possible, in the present state of this 
study, to obtain the convergence of the RSM when modelling erosion. A small number of 
successive remeshing steps are sufficient to cause divergence of the numerical computation. 
The results given by the    and    models nonetheless complement each other. 
To our knowledge, very few studies have focused on the distribution of shear stress imposed 
on a wall by an impinging jet flow. However, the results we found in the literature show that 
the    turbulence model gives the best results on the maximum shear stress on the wall for 
a flat interface. Nonetheless, the results of the model with erosion show an inversion of this 
trend in favour of the    model. Unlike the   , the    turbulence model does not 
perform very well for turbulent boundary layer flows with streamwise pressure gradient or 
wall curvature. This could explain the inversion of this trend. It is also difficult to estimate the 
error margin to be taken into account on the semi-empirical results found in the literature. 
Given the current state of progress of this study, it is not possible to conclude with certainty as 
to the pertinence of the    and    type models. But whatever the case, the orders of 
magnitude obtained for both models tested correspond quite well to the semi-empirical model. 
The results obtained herein show that the soil erosion corresponding to JET tests presents a 
subtle balance between the pressure in the jet flow and the shear stress generated by the flow 
established on the surface of the soil. Further analysis is obviously required to better 
understand the physical mechanisms involved in impinging jet erosion, in order to derive a 
specific erosion law for that particular situation, and generalize the usual erosion laws which 
were derived for tangential flow erosion. 

7. Conclusion 
The objective of this work was to build a pertinent numerical model of the erosion of a 
cohesive soil by an impinging turbulent jet flow. 
The modelling method developed is a combined Euler-Lagrange method, involving a 
turbulent Navier-Stokes model of the flow with adaptive remeshing. A Lagrangian algorithm 
was implemented for the displacement of the interface to model the erosion of the soil/water 
interface. The hypotheses of slow erosion and diluted flow made it possible to perform loose-
coupling sequential modelling of the erosion. 
The erosion law was adapted successfully to take into account the stagnation point, in the 
specific case of an impinging jet. A simple model was made of the spatial fluctuations of 
turbulent structures in the impingement zone, which probably explains the smoothing of the 
peak of the theoretical non eroded soil at the stagnation point of the jet flow. 
The results obtained by the modelling method developed were first validated for a flat surface 
configuration. The study of the influence of the turbulence model on the modelling results 
without erosion led to the conclusion that, globally, the RSM model gave the best 
correspondence with the results in the literature. However, it was difficult to implement and 
could not be used for modelling erosion. The k-ε  and k-ω type turbulence models appeared 
complementary: the k-ε  and k-ω models presented the results closest to the results in the 
literature on shear stress and pressure respectively. The choice of using both models for the 
numerical modelling of the erosion of a cohesive soil by an impinging jet was performed. 
The results obtained for numerical modelling with erosion show that the calculations based on 
a k-ω turbulence model are closer to the semi-empirical results obtained by the model of 
Hanson and al. [16]. This study highlighted the appearance of recirculation zones and a 
change in orientation of flow at the outlet of the cavity, when the convexity of the soil/water 
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interface becomes significant in the case of the k-ω turbulence model. The numerical results 
obtained with the k-ε  type turbulence model remain consistent with the orders of magnitude 
of the results given by the semi-empirical model. 
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10. Nomenclature 
 
  celerity of the mobile interface 
Cf friction coefficient 
C constant 
d0 diameter of the outlet orifice 
  symmetrical part of the mean velocity gradient 
DR turbulent diffusion and mean pressure contributions 

,f g  functions 
g  gravitational acceleration 
  kinetic energy of velocity fluctuations 
  erosion coefficient 
  gauge of the soil’s hydraulic permeability close to the interface 
  erosion number 

l  length of the potential core 
  characteristic length of the fluid domain 
  characteristic dimension of the zone close to the interface 
  flux of eroded mass 
  unit normal to   oriented towards the soil 
n porosity 
  mean static pressure 

maxP  pressure peak on the impingement surface at the jet centerline 
( )P r  distribution of pressure on the flat, non erodible surface 

  source term of production of   
  source term of production of   
  source term of production (RSM model) 

r distance to the jet centerline 
  turbulent stress tensor 
  Reynolds number of the flow 

  Reynolds number of the flow at the jet outlet orifice 
Re y  turbulent Reynolds number 
T  Cauchy stress tensor 
  characteristic erosion time 
1/ 2t  time at which the erosion depth reaches half of 0z z∞ −  

u  mean velocity of the flow 
  velocity fluctuations 
  value of      on   

  value of  , flow side 
Uτ  friction velocity at the wall 

0U  velocity of the flow at the outlet orifice 
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( )U z  normal component of the velocity at any point of the median axis of the jet 

  erosion kinetics 
  erosion velocity 
  flow velocity gauge 
( )tx  position at time t  

y+  dimensionless distance from the centre of the first cell at the wall 
y  distance from the centre of the first cell at the wall 
  source term of dissipation of   
  source term of dissipation of   
  source term of dissipation (RSM model) 
  concentration close to the wall 

z  distance separating the height of the jet outlet and the soil’s interface 
z∞  z  at the end of the erosion process 

0z  distance separating the height of the jet outlet and the interface 
 
Greek Letter 

wΩ  fluid domain 

  stagnation zone of the jet flow 
  solid/fluid interface 
  soil specific density 

wρ  fluid specific density 

  turbulent viscosity 
wµ  molecular viscosity of the water 

  molecular kinematic viscosity of the water 
  shear stress on   
  reference shear stress 

  critical shear stress 
  shear stress gauge on the interface 
  maximum shear stress 

ΔH  height of the water column 
  pressure drop along   

ΠR pressure-deformation term 
  dissipation rate of turbulent kinetic energy 
  specific dissipation rate 
  constant or function of the mean deformation and   and   
l characteristic length of Chen et al. [4] 
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 Number of cells on 

the nozzle 
Number of cells on the 

limit layer 
y+ Total number of 

cells 
A 10 350 7.05 27,263 
B 15 350 9.5 38,574 
C 18 350 8.9 47,658 
D 20 350 8.4 54,208 
E 22 350 8.7 59,962 
F 25 350 8.8 69,116 
G 27 350 8.9 77,326 
H 30 350 8.9 86,764 
I 40 350 9.0 124,214 
J 50 350 9.1 171,997 
K 60 350 9.3 228,389 
L 70 350 9.3 293,389 
M 100 350 9.2 549,003 
N 20 3000 1.0 98,954 
O 20 7000 0.5 161,120 
P 40 3000 1.1 192,618 
Q 40 7000 0.6 256,962 
R 100 3000 1.1 257,521 
S 100 7000 0.6 322,117 
T 20 350 8.2 81,579 
U 20 350 8.7 204,322 
V 100 350 9.1 1,199,877 

 
Table 1. Mesh parameters studied for the analysis of independence of the results with respect 
to meshing density. 
 
 
 

Flow variable (% error) 


 


 RSM 
Velocity of jet at the outlet orifice (U0) 0.9 1.0 0.9 

Length of potential core (l) 12.4 9.8 4.3 

Maximum pressure differential (Beltaos exp.) 19.1 83.3 41.2 

Maximum pressure differential (Poreh) 16.2 87.9 44.8 

Maximum pressure differential (Hanson) 9.68 99.1 53.4 

Half-width of pressure profile (Beltaos exp.) 19.9 52.2 33.7 

Half-width of pressure profile (Poreh) 20.6 53.1 34.5 

Half-width of pressure profile (Hanson) 20.9 53.5 34.9 

Maximum stress (Beltaos) 97.3 0.5 15.3 

Maximum stress (Hanson) 91.6 3.4 12.0 

Maximum stress (Phares) 56.2 26.9 9.5 

 
 
Table 2. Comparison of the turbulence models with the results from the literature. 
 
 
 
 
 

Author-produced version of the article published in European Journal of Mechanics - B/Fluids, 2014, 45, 36-50 
The original publication is available at http://www.sciencedirect.com 
Doi:10.1016/j.euromechflu.2013.12.001



24 

 
Fig. 1. Shear stress profile on a plate for an impinging jet and theoretical curve shape of 
erosion for the so-called classical erosion law. The erosion figure is given at t = 0 s and its 
shape is illustrated for the next time step. The jet stagnation area is within Ω , between the 
shearstress maxima. 
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Fig. 2. Standard geometry and meshing of the configuration used for modelling the erosion of 
a cohesive soil by a turbulent impinging jet. The soil water interface is illustrated at several 
time steps. The scour depth is increasing with time. 
 
 

 
Fig. 3. Influence of meshing density on numerical results, turbulence model   . a) shear 
stress and b) pressure on the soil/water interface at null erosion time 
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Fig. 4. Comparison of turbulence models with the results from the literature, a) dimensionless 
static pressure and b) static pressure on the soil/water interface, c) norm of the shear stress 
and d) norm of the dimensionless shear stress on the soil/water interface, d) mean velocities 
on the jet centerline. 
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Fig. 5. Mean velocity field in the case of the    model (above) and the    model 
(below), at several erosion time and at the end of the erosion process. 
 

 
 
Fig. 6. Evolution of the soil/water interface profile as a function of erosion time for the    
model (a) and for the    (b) model. 
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Fig. 7. Evolution of (a) the scouring depth as a function of erosion time, (b) the maximum 
shear stress as a function of scouring depth at different erosion times, for models    and 
   in comparison with the results given by the model of Hanson and Cook [16]. 
 
 

 
 
Fig. 8. Evolution of (a) the shear stress on the soil/water interface, (b) the mean velocity field 
on the jet centerline and (c) the static pressure on the soil/water interface, as a function of 
erosion time. 
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Fig. 9. Evolution of the pressure field as a function of erosion time. Results obtained with the 
   model above and with the    model below are represented. Only the values lower 
than 10% of the full range are represented. 
 

 
 
Fig. 10. Parametric study of (a) the influence of the critical shear stress and (b) the erosion 
kinetics coefficient, on the evolution of scouring depth as a function of erosion time for the 
   turbulence model with   

   and    or    
respectively. 
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Fig. 11. Mean velocity field relating to the parametric study at erosion times   , 
  ,    and at the end of the erosion process, model   . 
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Fig. 12. (a) Time to reach z1/2 as a function of the erosion coefficient,   , (b) 

Maximum scouring as a function of the critical shear stress,   
   and (c) 

Time to reach z1/2 as a function of the critical shear stress,   
  , comparison 

between numerical data and semi-empirical model of Hanson and Cook [16]. 
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