
HAL Id: hal-00978579
https://hal.science/hal-00978579v1

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplified Compression of Redundancy Free Trellis
Sections in Turbo Decoder

Emmanuel Boutillon, José-Luis Sanchez-Rojas, Cédric Marchand

To cite this version:
Emmanuel Boutillon, José-Luis Sanchez-Rojas, Cédric Marchand. Simplified Compression of Redun-
dancy Free Trellis Sections in Turbo Decoder. IEEE Communications Letters, 2014, 18 Issue: 6 DOI:
10.1109/LCOMM.2014.2319257 Publication Year: 2014 Page(s): (6), pp.941 - 944. �hal-00978579�

https://hal.science/hal-00978579v1
https://hal.archives-ouvertes.fr

1

Simplified Compression of Redundancy Free Trellis

Sections in Turbo Decoder
Emmanuel Boutillon⊥, Senior Member, IEEE, José-Luis Sanchez-Rojas∗, Cédric Marchand⊥, Member, IEEE

⊥Lab-STICC, UMR 6582, Université de Bretagne Sud, 56100 Lorient, France
∗INICTEL-UNI, av. San Luis 1771, San Borja, Lima 41, Lima, Peru

Abstract—It has been recently shown that a sequence of
R = q(M − 1) redundancy free trellis stages of a recursive
convolutional decoder can be compressed in a sequence of
L = M − 1 trellis stages, where M is the number of states of
the trellis and q is a positive integer. In this paper, we show that
for an M state Turbo decoder, among the L compressed trellis
stages, only m = 3 or even m = 2 are necessary. The so-called
m-min algorithm can either be used to increase the throughput
for decoding a high rate turbo-code and/or to reduce its power
consumption.1

I. INTRODUCTION

The quality of an error control code design can be evalu-

ated in terms of decoding performance, implementation cost

(area, power dissipation) and decoding throughput. A general

overview of error control code decoders can be found in [1].

The recent specifications of wireless systems (LTE, HSPA [2])

propose the use of turbo-codes with very high code rates (typi-

cally, between 0.8 and 0.98). In contrast to code construction,

there are very few papers dedicated to decoders with such

high rates. Most of the reported architectures propose the basic

structure of a rate 1/3 decoder, with parameters (i.e. window

lengths) optimized for high rates to tradeoff performance

and decoding throughput. In [3], a method is proposed to

directly exploit the existence of long sequences (up to 100)

of Redundancy Free Trellis Sections (RFTS, or sequences of

bits without redundancy) to reduce the complexity of part of

the decoder: during the acquisition process, any RFTS of size

R is replaced by a shorter RFTS sequence of size L = M−1,

with additional (R mod L) steps of shuffling. In this paper,

we show that, in the context of a Max-Log-MAP decoder [5],

among the L steps of the compressed RFTS, only m = 3 or

m = 2 are really useful, which allows further architectural

optimization.

The remainder of the paper is divided into four sections.

Sec. II gives enough information about the trellis compression

to have a self-consistent paper. Then, Sec. III presents the

sub-optimal 3-min simplification; followed in Sec. IV by a

discussion about hardware implementation. Finally, Sec. V

concludes the paper.

II. PRINCIPLE OF THE RTFS TRELLIS COMPACTION

In this section, we will first recall the problem of acquisition

for high rate turbo-codes. Then, we will present the principle

1This work has been supported by the GIGADEC project from Brittany
region, as well as the CPER project PALMYRE II (Brittany region and
FEDER funding).

of trellis compaction at the encoding level before deriving it

at the decoding level.

A. Acquisition for high rate turbo-codes

The implementation of a turbo-code is a well investigated

area. The standard implementation uses the Log-MAP algo-

rithm or the Max-Log-MAP algorithm [5] along with the

sliding window algorithm [6]. This algorithm consists in

dividing the frame of length K into windows of length W and

processing the forward-backward steps on a W -sized block

instead of a whole K-sized block. To process the pth window,

an accurate estimation of the initial forward state metrics αpW

and backward state metrics βpW+W are required. One possible

scheduling is to perform the backward recursion directly from

index K down to 1 to obtain naturally the initial βpW+W

states and to obtain the αpW initial states by an acquisition

of size W ′, starting from state α0
pW−W ′ to state αpW (see

Fig. 1). This pre-processing is called “acquisition”. The initial

value α0
pW−W ′ can be either the all-zero state vector (if there

is no a priori knowledge on the initial state) or a forward state

vector stored from the previous iteration. This last method is

commonly called Next Iteration Initialization (NII) [7].

For high code rates, the length of the acquisition L′ needs

to be high enough to contain some non RFTS (i.e. trellis

sections associated with non-punctured redundancy bits). In

fact, starting from the all-zero state vector, if the acquisition

processes only RFTS, the final state will also be the all-

zero state vector and the acquisition process will thus be

Fig. 1. Schematic representation of the sliding-window algorithms, with
parameters W = K/4 and W ′ = W/2. The x-axis represents the time
index and the y-axis the index of the bit.

2

useless. By simulation, it is verified that a high value of L′

is required, even if the NII technique is used. This means

that the acquisition step consumes a significant portion of the

decoder’s processing effort, which reduces the efficiency and

throughput of the hardware implementation.

B. Compression of RFTS at the encoding level

Let us consider the trellis compression in the case of hard

information bits (a decision is made on the value of the

received bit, i.e., no soft value is available). For an 8-state

convolutional encoder, the state-space representation of [8]

gives

Xk+1 = AXk + BDk, (1a)

Vk = CXk + DDk, (1b)

where Xk, Dk and Vk are respectively the state of the encoder,

the input information bit and the output vector at time k. The

matrices (A,B,C,D) are respectively the state matrix, the

entry matrix, the output matrix and the feedforward matrix.

In (1a) and (1b), arithmetic is over GF(2). Moreover, for a

recursive code, the matrix A verifies A
L = Id, where Id

is the identity matrix. Fig. 2.a shows the structure of the

encoder (the generation of output bits, corresponding to (1.b),

is omitted). Starting from a state X0 and the bit sequence

Dk, k = 0, 1, . . . , R−1, the final state of the encoder is given

by

XR = A
R · X0 +

R−1
∑

k=0

A
k · B ·DR−1−k. (2)

Let us replace index k with qL+ l, where l = k mod L and

q = k−l
L

. For the sake of simplicity, k mod L will be denoted

k|L. Then (2) can be rewritten as

XR = A
RX0 +

L−1
∑

l=0

⌊R−1−l

L ⌋
∑

q=0

A
qL+l

BDR−1−qL−l. (3)

Since A
L = Id, AqL+l = A

l, thus (3) can be expressed as:

XR = A
R|LX0 +

L−1
∑

l=0

A
l
B

⌊R−1−l

L ⌋
∑

q=0

DR−1−qL−l

, (4)

where R|L = R mod L. We perform the change of variable

p =
⌊

R−1−l
L

⌋

− q in the last summation term of (4). Let

h(l) = (R− 1− l) mod L. We have

⌊R−1−l

L ⌋
∑

q=0

DR−1−qL−l =

⌊R−1−h(l)
L ⌋
∑

p=0

Dh(l)+pL. (5)

Let us give an example to illustrate (5) with R = 23, L = 7
and l = 3. The left term of (5) gives D19 +D12 +D5. Since

h(3) = (23− 1− 3) mod 7 = 5, the right term of (5) gives

D5 + D12 + D19 and both terms are equal. Let Da
h be the

“aggregated bit” corresponding to the bits having the same

residue h mod L: for h = 0, 1, . . . , L− 1

Da
h =

⌊R−1−h

L ⌋
∑

p=0

Dh+pL. (6)

Fig. 2. (a) 8-state LTE encoder structure, (b) Step of the trellis (c) Example
of RFTS to compute α1 from α0 and γ0 (see table I).

Note: when h ≥ L, Da
h is equal to Da

h mod L. Then, the

last summation of (4) can be expressed as Da
h(l). Let X′

0 =

A
R|LX0. Using the fact that A

LX′
0 = A

R|LX0, (4) can be

expressed recursively starting from state X′
0 to state X′

L = XR

as, for l = 0, 1, . . . , L− 1

X′
l+1 = AX′

l + BDa
h(L−1−l). (7)

Since h(L−1−l) = (R−1−(L−1−l)) mod L = (R|L+l)
mod L, (7) can be expressed simply as:

X′
l+1 = AX′

l + BDa
R|L+l. (8)

Note that (8) has the same structure as (1a). Moreover,

the computation of X′
0 = A

R|LX0 can be performed in R|L

steps of (1a) with dummy null input bits Dd
k = 0, k =

0, 1, . . . , R|L − 1. In other words, every RFTS sequence of

length R (i.e. R trellis stages with no redundancy) can be

reduced to an RFTS sequence of length R|L + L. The first

R|L RFTS are associated with a null dummy bit Dd
k = 0,

k = 0, 1, . . . , R|L−1 and the last L trellis stages are associated

with the aggregated bit Da
l , l = R|L, . . . , L − 1 + R|L. One

should note that shifting the position of an aggregated bit by

a multiple of L does not affect the result. Swapping the sub-

block of the last R|L aggregated bits with the sub-block of

the first R|R dummy bits leads to another valid compaction

of the trellis. In that case, the last R|L stages are associated

with dummy null bits. This solution was originally presented

in [3].

C. Trellis compaction

Let us recall the classical forward recursion of the MAP

decoder. Let αk be the forward state metrics at time k and γk
the branch metrics at time k. The recursion is given by

αk+1(s) = max∗(αk(s0) + γk(s0, s), αk(s1) + γk(s1, s)),
(9)

where s is the current state, (s0, s) is the branch in the trellis

associated with the input bit Dk = 0 connecting state s0 to the

3

state s. Similarly, (s1, s) is the branch in the trellis associated

with the input bit Dk = 1 connecting state s1 to state s. The

max∗ function is defined as

max∗(a, b) = max(a, b) + e−|a−b|. (10)

When the Max-Log-MAP algorithm is used, the max∗ oper-

ator in (9) is simply replaced by the max operator. Fig. 2.b

shows the computation of the state metric αk+1(s).
For an RFTS, there is no associated redundancy bit

and the branch metrics are simply γ(s0, s) = LLR(Dk)
and γ(s1, s) = −LLR(Dk), where LLR(Dk) is the Log-

Likelihood Ratio of the received bit, i.e. LLR(Dk) =

ln
(

P (Dk=0)
P (Dk=1)

)

. In the sequel, for the sake of simplicity,

LLR(Dk) will be denoted γk. Similarly, γa
l will represent the

LLR of the aggregated bit Da
l and γd

l the LLR of the dummy

null bit (γd
l = +∞ since Dd

l = 0).

As shown in Sec. II.B, at the encoder side, a sequence of

length R can be reduced to a sequence of length R|L with

dummy zero inputs and a sequence of length L of aggregated

bits. At the receiver side, this implies that the RFTS sequence

can be compressed into R|L steps of shuffling (using the

branch metric γd
l = +∞), followed by L trellis sections of

aggregated bits γa
l . Since summation in (6) is over GF(2), at

the receiver side, γa
l = LLR(Da

l) is given by

γa
l = 2 tanh−1

⌊R−1−l

L ⌋
∏

q=0

tanh
(γqL+l

2

)

. (11)

Thanks to the min-sum approximation, (11) can be simplified

by separating the modulus of γa
l and the sign of γa

l :

|γa
l | = min

{

|γqL+l|, q = 0, 1, . . . ,

⌊

R− 1− l

L

⌋}

, (12)

sign(γa
l) =

⌊R−1−l

L ⌋
∏

q=0

sign(γqL+l). (13)

D. Example of RFTS compaction

Let us consider the M = 8-state encoder defined in Fig.

2.a, a RFTS sequence of length R = 16 with initial state

metrics at time 0 equal to α0 = [35, 0, 20, 25, 17, 3, 16, 31]′.
The LLRs of the Dk values are equal to {γk}k=0,1,...,15 =
{−14, 31, 24, 12, 31, 20, 6, −31, 19, 15, −19, −8, 15,

12, 5, −11}2. Let us assume an RFTS sequence of length

R = 16. Table I shows the first forward state metrics and

the last forward state metrics of the RFTS sequence. In

order to bound the increasing values of the state metrics,

at each stage, the minimum value of the state metrics are

subtracted out (αk = αk − min(αk(i), i = 0, 1, . . . , 7)).
After this subtraction, the minimum metric is always equal

to zero. Fig. 2.c shows the details of the computation of α1

from α0 and γ0. Let us compute γa
2 . From (12), we obtain

|γa
2 | = min{|D2|, |D9|} = min{|24|, |15|} = 15. From (13),

we obtain sign(γa
2)) = 1. The computation for the other values

gives {γa
l }l=2,3,...,8 = {15,−12,−8, 15, 6, 5,−11}. Table II

TABLE I
CLASSICAL TRELLIS FOR R = 16

k 0 1 2 - 11 12 13 14 15 16

γk -14 31 24 - -8 15 12 5 -11 . . .
αk(0) 35 4 4 - 13 18 18 18 6 16
αk(1) 0 17 13 - 22 0 24 13 16 12
αk(2) 20 0 32 - 4 12 9 0 12 6
αk(3) 25 13 28 - 20 24 13 28 4 2
αk(4) 17 32 17 - 32 9 0 24 1 6
αk(5) 3 22 0 - 0 16 12 9 6 4
αk(6) 16 14 22 - 28 28 16 12 2 1
αk(7) 31 28 14 - 17 13 28 16 0 0

TABLE II
COMPRESSED TRELLIS (L-MIN ALGORITHM)

γd
l

γa
l

l 0 1 2 3 4 5 6 7 8 9

+∞ +∞ 15 -12 -8 15 6 5 -11 . . .
αl(0) 35 35 35 35 13 18 18 18 6 16
αl(1) 0 25 31 16 22 0 24 13 16 12
αl(2) 20 17 0 25 4 12 9 0 12 6
αl(3) 25 31 16 3 14 24 13 28 4 2
αl(4) 17 0 25 31 32 9 0 24 1 6
αl(5) 3 20 17 0 0 10 12 9 6 4
αl(6) 16 3 20 17 28 28 10 12 2 1
αl(7) 31 16 3 20 17 13 28 16 0 0

shows the 9 steps of the compressed trellis. As expected, the

last stage of the classical trellis (last column of Table I) and

the last stage of the compressed trellis are equal (last column

of Table II). This algorithm implies the use of L minima.

It is called the L-min algorithm. In terms of performance,

processing acquisition sequences of the sliding window algo-

rithm without or with trellis compression gives identical final

results. In the latter case, the number of clock cycles can be

significantly reduced, leading to a more efficient architecture,

as described briefly in [3]. Now the question arises whether

it is possible to further decrease the complexity of the L-min

algorithm by trading-off complexity and performance.

III. m-MINa AND m-MINg COMPUTATION

The analysis of the Max-Log-MAP algorithm for a sequence

of RFTS shows that a high magnitude of γ implies simply a

shuffling of the state metrics value α, while a low magnitude

of γ decreases significantly the dynamics of the α terms (i.e. a

low reliability bit gives more uncertainty on the current state

of the encoder). This indicates that it may be sufficient to

consider only a small subset of the initial γ values to process

the RFTS sequence. Let us define the m-mina method as an

extension of the L-min method where among the L LLRs of

the aggregated bits, the L−m highest γa modules are saturated

to sign(γ)×∞. Using this method with the example of the pre-

vious section, the 3-mina method now consists of replacing the

aggregated γa values {15,−12,−8, 15, 6, 5,−11} by keeping

only the 3 smallest magnitude values and saturating the others,

i.e., the set {+∞,−∞,−8,+∞, 6, 5,−∞}. Table III shows

the corresponding trellis. Compared to Table II, intermediate

state metrics can differ from the L-min and the 3-min methods,

but finally, both methods lead to the same final state. In the

2The MATLAB code used for this example can be downloaded at [9]

4

TABLE III
COMPRESSED TRELLIS (3-MIN ALGORITHM)

γd
l

γa
l

l 0 1 2 3 4 5 6 7 8 9

γd,a

l
∞ +∞ ∞ -∞ -8 ∞ 6 5 −∞ . . .

αl(0) 35 35 35 35 16 24 24 18 6 16
αl(1) 0 25 31 16 25 0 30 13 16 12
αl(2) 20 17 0 25 0 18 15 0 12 6
αl(3) 25 31 16 3 17 30 19 28 4 2
αl(4) 17 0 25 31 35 15 0 24 1 6
αl(5) 3 20 17 0 3 16 18 9 6 4
αl(6) 16 3 20 17 31 34 16 12 2 1
αl(7) 31 16 3 20 20 19 34 16 0 0

TABLE IV
REQUIRED Eb/No TO OBTAIN A FER OF 10−2 . HSPA TURBO-CODE OF

LENGTH K = 5144 FOR SEVERAL CODE RATES. FB =
FORWARD-BACKWARD, SW = SLIDING WINDOW, ACQUISITION WITH NII

AND W = W ′

rate W ′ = W FB FB-SW 2-ming 1-ming
r = 0.8 32 3.89 dB 3.92 dB 3.94 dB 4.05 dB
r = 0.9 64 4.87 dB 4.89 dB 4.91 dB 5.02 dB
r = 0.94 128 5.49 dB 5.51 dB 5.53 dB 5.71 dB

r = 0.98 32 6.73 dB 8.17 dB 8.18 dB 8.20 dB
64 6.73 dB 7.09 dB 7.10 dB 7.15 dB
128 6.73 dB 6.83 dB 6.84 dB 6.92 dB
256 6.73 dB 6.75 dB 6.77 dB 6.87 dB

general case, the final state metrics can differ slightly, even

using the 4-min or 5-min methods.

In practice, the only pertinent criterion to evaluate an

algorithm is the performance loss. To this end, we have run

several simulations performing all acquisitions using the m-

mina algorithm. We also tested a modified version of the m-

mina method, performing the saturation before the aggregation

of the bits. In this case, the R−m highest values of the RFTS

sequence are saturated prior to the aggregation method. This

variation of the m-mina method is called m-ming method.

Note that the m-mina and the m-ming methods lead to the

same result if m = 1. For m > 1, the two methods give the

same result only if the m minimum values before aggregation

have all distinct indices modulo L.

Table IV shows bit-true simulation results of an HSPA

Turbo decoder with K = 5144 using the sliding window

technique associated with the NII technique. For r = 0.98,

various acquisition lengths W ′ are given to illustrate the need

of high values of W ′ for very high code rate. In all cases,

the 3-min algorithm (not shown in the table) does not have

significant performance degradation. The 2-ming and 1-ming
algorithms degrade the performance by less than 0.02 dB and

0.2 dB respectively for all code rates.

IV. ARCHITECTURE OPTIMIZATION

In [3], the authors proposed to perform the bit aggregation

“on the fly” during the previous iteration. The time for process-

ing the acquisition is thus reduced and the decoding throughput

is increased. In this paper, we present new applications of

RFTS compression to reduce the power consumption of the

decoder. Let us focus on the 2-ming aggregation in an RFTS

acquisition sequence of length R. The RFTS compression

can be done on the fly in three steps. Step one: during the

Initialisation: sign(l) = +1, for l = 0, 1, . . . , L− 1;

(min1, ind1) = (+∞, 0); (min2, ind2) = (+∞, 1)
for k = 0 to R− 1 do

l = k mod L;

sign(l) = sign(l)× sign(γk)
if |γk| < min1 then

min2 = min1, min1 = |γk|
ind2 = ind1, ind1 = l

else if |γk| < min2 then
min2 = |γk|, ind2 = l

end

Algorithm 1: On the fly aggregation of the bit for the

2-ming algorithm.

first R − (R|L) − L clock cycles, the acquisition forward

unit is frozen (and thus saving energy). Step two: during the

next R|L clock cycles, permutations of state metrics are done

(processing of R|L dummy bits). Step 3: during the last L

clock cycles, the forward unit is processed with the aggregated

bit computed on the fly by algorithm 1. For R = 100 (code rate

0.98), this method allows the decoder to freeze the acquisition

forward unit 90% of the time while the low complexity bit

aggregation algorithm works. This method does not increase

the throughput but helps to save power dissipation.

V. CONCLUSION

In this paper, we showed that the compression of redun-

dancy free trellis stages using the L-min algorithm can be

further simplified by considering only 3, or even 2, minima

among the L values. Simulations on 3-min show no perfor-

mance loss and simulation on 2-min shows minor performance

loss (around 0.02 dB). The 3-min (or 2-min) algorithm opens

new architecture optimization, either to save power during the

acquisition or to increase the overall decoding throughput.

REFERENCES

[1] F. Kienle, N. Wehn, H. Meyr, “On Complexity, Energy- and
Implementation-Efficiency of Channel Decoders”, IEEE Trans. Commun.,
vol. 59, no. 12, pp. 3301-10, Dc 2011.

[2] http://www.3gpp.org/ftp/Specs/html-info/36212.htm, version 10.0.0.
[3] E. Boutillon, J.-L. Sanchez-Rojas, C. Marchand , “Compression of

redundancy free trellis stages in Turbo-Decoder”, Electronics Letters vol.
49, no. 7, pp. 460-462, Feb. 2013.

[4] L.Bahl, J.Cocke, F.Jelinek, and J.Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate”, IEEE Trans. Inf. Theory, vol. IT-20(2),
pp. 284-287, March 1974.

[5] E. Boutillon, C. Douillard, G. Montorsi, “Iterative decoding of concate-
nated convolutional codes: Implementation Issues”, Proceedings of the
IEEE, vol. 95, no.6, June 2007.

[6] A.J. Viterbi. “An intuitive justification and a simplified implementation of
the MAP decoder for convolutional codes”, IEEE J. Sel. Areas Commun.,
vol.16, pp. 260264, Feb. 1998.

[7] J. Dielissen, and J. Huisken, “State vector reduction for initialization of
sliding window MAP”, in Proc. 2nd Int. Symp. Turbo Codes, pp. 387-390,
Sept. 2000.

[8] C. Weiss, C. Bettstetter, S. Riedel, D.J. Costello “Turbo decoding with
tail-biting trellises”, International Symposium on Signal, System and
Electronics, pp. 343-348, Pisa, Italy, Sept. 1998.

[9] E. Boutillon, April 2014, http://www-labsticc.univ-ubs.fr/∼boutillon/tc
agglo/tc agglo.html.

