N
N

N

HAL

open science

Minotor: Monitoring Timing and Behavioral Properties
for Dependable Distributed Systems
Olivier Baldellon, Jean-Charles Fabre, Matthieu Roy

» To cite this version:

Olivier Baldellon, Jean-Charles Fabre, Matthieu Roy. Minotor: Monitoring Timing and Behavioral
Properties for Dependable Distributed Systems. The 19th IEEE Pacific Rim International Symposium

on Dependable Computing (PRDC 2013), Dec 2013, Vancouver, Canada. 10p. hal-00978475

HAL Id: hal-00978475
https://hal.science/hal-00978475

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00978475
https://hal.archives-ouvertes.fr

MINOTOR: Monitoring Timing and Behavioral Properties
for Dependable Distributed Systems

Olivier Baldellon**, Jean-Charles Fabre*¥, Matthieu Roy* !
* CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
T Univ de Toulouse, LAAS, F-31400 Toulouse, France
Y Univ de Toulouse, INP, LAAS, F-31400 Toulouse, France

Abstract—Assessing the correct behavior of a given
system at run-time can be achieved by monitoring its
execution, and is complementary to off-line analysis
such as static verification.

In this work, we focus on run-time monitoring of
system properties that include both causality and tim-
ing constraints, in distributed and time-constrained
systems. Based on a description of a property that
includes events and temporal constraints, expressed
as a timed-arc Petri net, we show how to automati-
cally transform it into a an executable and distributed
monitoring engine.

To that aim, we introduce a modification of the
semantics of Petri nets to be able to execute it online
on partial executions and distributed observation
environments. We show how to use this formal frame-
work to provide MINOTOR, a model-driven distributed
monitoring system, describe its implementation and
show its applicability on a transportation use-case.

Keywords-Distributed Systems; Time-constrained
Systems; Online Monitoring; Fault-tolerant Systems;
Petri nets.

INTRODUCTION

Supervising or monitoring applications states is a requi-
site to detect a possible violation of system specification
and envisage a recovery action. Alas, on-line monitoring
of complex, distributed and real-time systems is a highly
complex task that, to our knowledge, has not yet been
fully tackled. On-line monitoring of applications, be them
distributed or not, in a centralized way is an active
research domain (see, e.g., [MRI10], [JRRO94], [BLS06],
[REROS], [ZSLL0Y]), but, as we will see in Section[l] these
solutions do not provide a distributed implementation of
monitors that can handle both distributed and real-time
specifications.

Most formalisms available to express event-based
behavioral properties are inherently centralized, partly
because they were developed to model check the system
before its deployment, a step that does not require a
distribution of the verification process. In our approach,
we want to verify an application in operation, and thus
distributing the monitoring process is a crucial issue.

This work has been partially supported by ANR French national
program MURPHY (grant #ANR-10-BLAN-0306).

The first step towards the distribution of monitoring is
to use a formalism in which the state of the system is
distributed.

Following this reasoning, timed-arc Petri nets are
good candidates for modeling a distributed embedded
system with timing constraints, since this formalism is
decentralized by nature, and allows to express local timing
constraints. The dual nature of the formalism thus allows
to reason both on temporal and behavioral properties
that may be distributed among a set of nodes.

In this paper, we focus on the run-time monitoring of
system properties expressed as timed-arc Petri nets. More
precisely, the monitoring system uses timed events to
trigger transitions in a Petri net that describes behavioral
and temporal properties of the system. We assume a
global clock enables events to be time-stamped.

The structure our approach is schematized in Figure
Intuitively, the system under supervision raises timed
events — i.e., couples (e;,7;) meaning that event e;
happened at time 7; — which are then captured by the
monitor system that triggers the firing of transitions
in the Petri net that models behavioral and temporal
properties of the system.

61, T1
62, ’7'2
Monltor - --> Alarm handler
63, T3
Figure 1. General approach

We aim at detecting violation of system properties:

1) events not generated by the actual distributed
system in operation (missing events);

2) wrong order of raised event (event ey appears before
e1 whereas ey should have happened after e;);

3) deadline missed by some event.

The detection of the above properties should be
performed as soon as possible, for obvious detection
latency reasons, without requiring a perfect observation:
due to the distribution of generated events, and the
time required to dispatch events to the monitoring

system, events may be received in an order that does not
correspond to their real-time occurrence.

We assume that the specification (i.e., correct behavior)
of the monitored application is provided as a Petri net.
In a classical weak Petri net semantics [BROS], the firing
of a given transition results in the removal of tokens in
input places and the creation of others in output places.
Thus, a transition is fireable if and only if the tokens are
already present in the input places.

Intuitively, we propose to fire a transition as soon as
the corresponding system event is received, no matter if
tokens are present in input places or not. We introduce
the concept of negative tokens to mark the fact that a
transition was fired, independently from the marking of
input places. Allowing negative tokens permits us to fire
a transition associated to an event as soon as the event
is captured without blocking the execution of the model.

The main benefit of this approach is that transitions
can be fired independently as soon as the corresponding
system event appears. This has two major interests: firstly,
it allows to perform most of computation locally, reducing
required communication and synchronization between
processes. Secondly, it allows to completely distribute
the monitoring process and to optimize it based on system
topology, enabling a better resources utilization.

Summary of contributions.: In this paper, we de-
scribe in details a monitoring strategy that was briefly
presented in [BFR12]. Based on a modification of Petri
net semantics, we provide algorithms that implement ef-
ficiently this strategy, and develop a thorough analysis of
timing hypotheses required to implement our monitoring
framework. We provide measurements on automatically
generated patterns to test the scalability of the approach,
and model, for proof-of-concept, a simplified automated
railway transportation scenario.

In a first part, we compare our approach with other
related techniques of on-line monitoring. Section [[I] briefly
presents the formalism used, and in particular the exten-
sion of Petri nets to include negative tokens. Section [[T]]
describes a protocol to distribute the monitoring engine,
based both on the Petri net and on physical mapping
considerations. Section [[V] describes our implementation.
Section [V] exemplifies the applicability of the approach.

I. STATE OF THE ART

Most previous works on monitoring of real-time prop-
erties are based on centralized monitoring of properties
expressed using Linear Temporal Logic (LTL) formulas
or Timed Automata [MRI10], [BLS06], [RER0S|. Unfor-
tunately, both logic formulas and timed automata are
inherently centralized and cannot be easily adapted
for distributed monitoring. Usually, an LTL formula is
mapped to its corresponding timed automata equivalent
for run-time evaluation. A timed automata has an

instantaneous state that has no natural decomposition
in sub-states and thus cannot be easily distributed.

Other approaches explicitly target the distribution
of the monitoring process [ZSLL09], [JRR94]. [JRR94]
allows a distributed monitoring of properties that are
expressed as conjunction of simple logic properties, while
[ZSLLO9] proposes, in some cases, the distribution of
properties expressed in the temporal logic based MEDL
specification language. Yet, in both approaches, the
formalism proposed is not as expressive as timed-arc Petri
nets, that can express complex and, more importantly,
distributed behaviors.

Centralized monitoring of asynchronous [FBHJ05|] or
real-time [CJ05] distributed systems using Petri nets
has also been studied. In the above works, the main
challenge solved consists in finding, from an observed
events sequence, a corresponding Petri net execution to
“explain” the observation. The aim we are pursuing here is
different: to simplify the event/transition correspondence,
we require that an event corresponds to exactly one
transition. Moreover, we are interested in distributed
monitoring of systems, and thus we need to accommodate
with delayed observations, missing events and faulty
behaviors.

In the distributable nets approach [Hop91], one ex-
ecutes a Petri net in a distributed network, following
a location function such that if a place is an input of
a transition, then this place and this transition must
be on the same node — that means that the decision
of firing a transition can be done locally. Although
distributable nets are not directly related to the work
presented here, we adapted the location function concept
while overcoming the “same node” requirement, in order
to be able to fire transitions as soon as events are caught.

II. PETRI NETS FOR SYSTEM PROPERTIES

As mentioned in the introduction, our monitor tool,
MINOTOR, is a distributed service that executes a model
of the system expressing temporal and behavioral prop-
erties on reception of timed events from the system, cf.
Figure [1} In this section, we first recall some classical
definitions on timed-arc Petri nets, before describing
informally its new semantics. Finally, the generalization
of timed events is presented and discussed.

A. Timed-Arc Petri Nets

A timed-arc Petri net is a tuple (P, T, *(-), (-)*, My,
I), where P is a finite set of places, T is a finite set of
transitions, My is the initial marking (a function that
associates to each place a set of tokens), *(-) (respectively
(-)*) is the backward (resp. forward) incidence function
that associates to each transition the set of places from
which the transition starts (resp. to which the transition
ends), and I a time constraint function that associates

a time interval to every arc from a place to a transition.
We say that there is an arc from a place p to a transition
tifpe°t.

We assume there is a bijection between transitions and
events generated by the system. Thus a timed event
(e;,7;) can always be written (¢;,7;) where ¢; is the
transition associated to e;.

B. Petri Net Execution

As explained in the previous part, the properties on
system events that need to be monitored are expressed
using the timed-arc Petri net formalism. Our approach
consists in executing a Petri net on-the-fly to detect
failures. The monitoring tool takes as an input a sequence
of events, i.e., a sequence of couples (¢,7) where ¢
represents the transition associated to an event and 7
the date of the event. The monitoring tool executes the
model using such events sequence, and possibly raises an
alarm when it detects an incorrect behavior.

A simple execution: Let us take as an example
the simple Petri net depicted in Figure [2} if the mon-
itor receives, in this order, the sequence of events
(t1,10); (t2,15); (¢, 21), it will first fire ¢; and remember
that this firing was done at time 10. When the event
corresponding to to is received, the transition t¢s is fired
because 72 — 71 = 15 — 10 € [3,6]. The reception of
(t3,21) will raise an error because the event occurred
too late; the token stayed in the place of ®t3 six units
of time (73 — 7@ = 21 — 15 = 6), which is out of the
specified interval [0, 5]. However, as the corresponding
event happened, the transition t3 will still be fired to
enable the execution of the Petri net model to continue,
and an error will be reported.

t to ts
0,00 3,6 0,5
OO0 H 0O

Figure 2. A simple Petri net

In this scenario, notice that the minimal amount
of information to detect a failure is (f2,15);(¢3,21):
whatever the occurrence time of t1, t3 happened too
late with respect to t5. If the monitor only receives
(t2,15); (t3,21) but (t1,10) is not yet received, the usual
semantics of Petri nets forbids to fire the transitions
to and t3; in other words, to fire ¢35 and consequently
t3, the transition ¢; needs to have been already fired.
This crucial issue can be solved using negative tokens, as
shown below.

An execution with negative tokens: Our approach
consists in firing a transition ¢ as soon as it is received
and anticipating the removal of tokens in places of *¢ by
“adding” negative tokens in these places. Figure [3] shows

the result of firing ¢35, with a negative token represented
as a black circle, a positive token as a black disk.

Po tq b1 to D2 ts D3
@[0700] M) 3:6] M Q) [0, 5] D_)O
| L 2
Figure 3. After the firing of to

The firing of t3 will add one negative token in po
and one positive token in ps, as shown in Figure [
The removal of a positive token always depends on
the presence of its negative counterpart. To know how
long the positive token stayed in the place ps, we need
to compare the date of the event that created the
negative token with the date of the event that created the
positive one. If the difference is not in the time interval
I(p2,t3) = [0,5], then an error is raised. In all cases, both
tokens are removed.

Po tq P1 to P2 t3 p3

O—{~O—{l-o—{I-®

Figure 4. After the firing of t3

In summary, the main difference between our approach
and classical semantics is that, in the classical one, a
transition is allowed to be fired only if it all required
tokens are present. In our approach, transitions are always
fired speculatively, and the fireability property is checked
a posteriori.

C. Tags

As classical Petri nets tokens are extended to include
both positive and negative tokens, this implies that the
monitoring system has to add information to be able to
know unambiguously to which negative token a positive
one may be associated to. In particular, the problem
of having to distinguish between tokens may appear
when a given transition is fired several times in the same
execution, at different dates, within a cycle.

As an example, let us consider the Petri net of
Figure and the following execution (t1,71); (t2, 72);
(t1,73); (t2,74) in which the token moves to ps, goes back
to p1, moves again to ps and finally returns in p;. Let us
suppose that events (¢2,72) and (1, 73) were not received.
The observed execution is then (¢1,71); (t2,74) and the
resulting Petri net state is the one of Figure

The missing event (ta,72) would have created a neg-
ative token in po, corresponding to the positive one
generated by (t1,71). Similarly, the missing event (¢1, 73)
would have created a positive token corresponding to
the negative one generated by (t2,74). Consequently, the
positive and negative tokens present in place ps do not

match: the positive token was produced by (t1,71) while
the negative one was created by (ta,74).

a) Beginning of Execution (b) With missing events

Figure 5. Token and tags

To give a more concrete example, let us suppose that ¢,

corresponds to the beginning of an action and 5 to its end.

The value 75 — 7 corresponds to the time taken by the
first occurrence of this action and 74 — 73 is the time taken
by the second occurrence execution; however, the value
T4 — T1 represents the time taken by two occurrences, and
thus does not correspond to timing constraints expressed
in the specification.

The issue to answer is “given a positive and a negative
token, do those two tokens match?”. To address this
issue, we introduce the notion of tags. A tag is a unique
identifier added to tokens. A positive and a negative
tokens are related if and only if they have the same tags
(cf. Figure @ The main difference with colored tokens
is the following: colored tokens are used to extent the
expressivity of a Petri net while tagged tokens are only
used to allows an out-of-order execution of a given Petri

net.
| |

Figure 6. Two tokens that cannot match

As a consequence, two nodes of the monitor in charge
of generating tokens for a same place need to agree on
tag generation for the tokens of the place. If agreement is
not possible, then it is impossible to monitor properties
in presence of missing events without false negatives, i.e.,
undetected errors may occur. One can easily notice that
being able to compute the running time of a task requires
to unambiguously associate the two events corresponding
to its beginning and its end.

D. Ewents

Until now, events were described as couples (¢, 7) where
t is a transition and 7 a date. Now we need to refine this
definition to take into account tags.

Since tags are added at event generation, a tagged
event is a tuple (¢, 7, f) where t is a transition, 7 a date
and f the tag function defined on ®¢ U ¢®. The function
f associates to each place of *¢t Ut® a tag. Then, at the

reception of the event (¢, 7, f), a positive token, tagged
f(p), is added in every place p of t* and a negative token,
tagged f(p), is added in every place p of °t.

On the example of Figure [5] a simple implementation
of f is to tag each token by the occurrence number of
the corresponding action (i.e., the first firing of ¢; and
to is tagged 1, the second occurrence is tagged 2, etc.)

III. MONITORING WITH NEGATIVE TOKENS

The first part of this section describes the protocol
main ideas, and provides a relatively straightforward
transcription of the execution semantics described pre-
viously with negative tokens. A second part deals with
the timing aspects of the monitoring engine: given a fully
synchronous communication system, we show how to
compute the timeouts for handling deadline misses and
missing events. Then, we dig into the physical mapping
of the monitoring engine on a distributed set of nodes.

A. Protocol description

The protocol assigns a monitoring thread to each place
and each transition of the Petri net. When the system
generates an event, this event is sent to the thread
associated to the corresponding transition. In return,
transition threads send tokens to threads associated to
places when they receive events and fire transitions.

The transition thread for transition ¢ is described in
Algorithm [I} notation “p ! msg” means that message
msg is sent to the thread associated to place p, and Pre
and Post variables refer to the two sets *t and t°.

Algorithm 1 Thread associated to transition ¢
: procedure TRANSITION(Pre,Post)
When an event e = (¢, 7, f) is received do
forpe Predop ! (—,t,7, f(p))

1

2

3

4: end for

5: forpe Postdop ! (+,t,7,f(p))
6

7

8

end for
done
: end procedure

The place thread is described in Algorithm 2} When a
thread associated to a place receives a token, it checks
if it already received the negative version of this token
(same tag, but opposite sign). In this case, the place
thread needs to compute the difference between the
two dates and to compare it with the corresponding
timing interval given by the I function before deleting
the two corresponding tokens. The detection of the
violation of temporal properties is partially done during
this comparison: the comparison of the two dates may
raise an error if timing assumptions are violated.

If no opposite sign token has been received before,
the token is stored and a new timer is started, to be
able to detect a deadline miss of the opposite sign

token. The timer is required in addition to the difference
and comparison mechanism described above: if the
opposite counterpart of a token is never received, then
the comparison mechanism will not be triggered. To
be able to trigger an alarm for a missing event, this
timeout mechanism is implemented in the timer function
described in Section [[TI-B] Interestingly, this mechanism
allows also for the detection of deadline misses as soon
as they are detectable.

The main goal of the SETTIMER function is to detect
the fact that an event did not arrive on time. The exact
computation of the value of the timeout is described in
the next section. The timer runs in a separate thread
that sends to the place a message timeout(token) when
the timer expires. If a place receives such message when
the corresponding token is still in memory, tokens are
erased, and a timing error is raised up.

Algorithm 2 Place thread associated to p

1: procedure PLACE([])

2 When token = (sign,t, 7, tag) is received do
3 if Jtoken’ = (—sign,t’,7’,tag) € Mem then
4: Mem < Mem—token'

5: CANCELTIMER(token’)

6 if sign = +

7 then ok = ((T’ —7) € I(p, t’))

8: else ok = ((T —1') e I(p, t))

9: end
10: if —ok then RAISE(timing failure)
11: else
12: Mem < Mem+token
13: SETTIMER(token,t,p)
14: end if
15: done
16: When timeout(token) is received do
17: Mem < Mem—token
18: RAISE(timing failure)
19: done

20: end procedure

B. Timers

The very existence of timeouts is conditioned by the
ability to bound both message transfer delays and reac-
tion delays. In this part, we explore timer computation
in an optimistic fashion —we want a timer to expire only
when there is for sure a timing error in the system—, since
most timing verifications will be handled by the difference
and comparison mechanism (lines 7-8 of Algorithm .

For this purpose, we need to introduce additional
assumptions on the communication layer, both for the
actual system in operation and for the monitoring system.
Notice that the existence of such bounds seems natural in
any system that implements real-time mechanisms with
timeouts in the specification, which is the core target of
our approach.

We assume that there are bounds on message transfer
delays in the whole system. More precisely, we assume
that a message sent by a thread th at time 7 will be
received by time 7+ Ay, 4,0 by thread th'. We also assume
the existence of a second function ¢ that gives, for any
transition, the delay needed for an event to be received by
the thread associated to a transition. If an event happens
in the system at time 7, then the corresponding transition
t will receive this event before time 7 + §(¢).

The existence of those two functions A and ¢ implies
that all links in the system are synchronous. Indeed,
A and 0 exactly represent the time needed to route
a message between the different participants of the
monitoring system.

Now we dig into timers computations; when a token
is received by a place thread in Algorithm [2] and no
corresponding opposite signed token exists, a timer is
set (line 13) and, would the timer expire, it would raise
a timing failure. Notice that all computations here are
optimistic, i.e., we want a timer to expire only when there
is for sure a timing error in the system.

Let us consider a place p in which a transition ¢; creates
a positive token at time 71, and t5 produces its negated
version at time 75 (for example, Figure [5| with place po).
Now if the arc to the transition o is time constrained by
I(p,t2) = [a,b], then by definition of the semantics,

a<to—71 <b ()

A positive token is received first: In this case, the
worst case corresponds to an immediate token transfer,
i.e., the positive token is received as soon as event
corresponding to ¢; is fired (see Figure 7).

(6177__1) (%277—2)

\Q

.

S Afrzyp

Events

~
—

Transitions

iS!

09—

Place

Ty —T1 < 6(t2)

<sup(I(p,t2)) =b
Figure 7. Timer computation : positive token is received first

For any transition t5 in p*®, the worst case corresponds
to an event fired at time 7, 4+ b, by the above inequality
(x). Now for transfer delay times, the worst case is d(t2) +
Ay, p, and hence, place p has to receive the corresponding
negative token by time 7 + sup (I(p,t2)) + 0(t2) + As, p
(cf. Figure[7)).

As place p does not know which transition of p® will
create the negative token, the same reasoning applies to
all transitions of p®, and we can finally deduce that p

needs to wait until 71 + T (p) with:
Ti(p) = max{Aep +0(t) +sup (I(p.1))} - (1)

A negative token is received first: As in the previous
case, the worst case corresponds to an immediate token
transfer, i.e., the negative token is received as soon as
the event corresponding to t» is fired (see Figure [§).

Ty — T1 >

inf(I(p,t2)) = a
—_——

(61,;1) (62,7'2)

Events

Transitions L 2
\PW[\ p

Place

S 5(t1) S Atbp

Figure 8.

Timer computation: negative token is received first

Using inequality (*), it is easy to check that (e, 1)

happens at most at time 75 — inf(I(p,t2)) = ™ — a.

Now, considering worst case communication delays, p
receives the token associated to e; at most at time
1o —inf (I(p, t2)) +0(t1) + A, p (cf. Figure . Contrarily
to the previous case, here p knows which transition of
p® to wait for, and hence p arms a timer that expires at
7o + T_(p,t2) with:

T-(p,t2) = max{Qyp +0(1)} —inf (I(p,12)) (2

The description of the SETTIMER algorithm used by
the place thread of Algorithm [2| to arm watchdogs when
waiting events is described in Algorithm

Algorithm 3 SetTimer procedure

1: procedure SETTIMER(token,to,p)

2 if token.sign > 0 then

3 T = maXiepe {At,p + 6t + Sup(Ip,t)}
4: else

5: T= maxteop{At,p + 6t} — inf(Ip,tO)
6: end if

7 wait T

8 p | timeout(token)

9: end procedure

C. Physical mapping

An important question that needs to be addressed
now concerns the physical mapping of the threads of
the protocol. Intuitively, an adequate placement strategy
would locate the transition thread as close as possible to
the node where the corresponding event is generated.

In the case a transition thread is located on the node
that generates the event of its transition, the failure of

the node will result in the failure of the place thread.
This case is not problematic: the failure of the transition
thread th; will result in a timeout for associated tokens in
place threads that depends on transition ¢. Such timeouts
will raise timing failures (see Algorithm [2)) : the failure
will be detected.

Contrarily, if a place thread is collocated to transition
threads it depends on, the crash of the node will not
be detected, since only place threads may raise errors.
Indeed, the optimal placement of place threads is the
result of a trade-off between low detection latency and
fault tolerance.

In order to attain a low latency detection while
preserving fault tolerance properties, and mitigate the
above mentioned trade-off, we use a classical replication
mechanism. In this strategy, place threads are duplicated
on several node, and events are sent to the set of replicas
using a uniform reliable broadcast service. Let us suppose
that the thread associated to a place p is replicated on
k nodes. To maintain consistency between replicas, we
want the k replicas receive the same set of tokens. Notice
that, since our approach allows out-of-order reception of
tokens, the required service is a simple Uniform Reliable
Broadcast [Ray10], thus does not require costly consensus-
based Atomic Broadcast.

IV. IMPLEMENTATION

We have developed Minotorﬂ an implementation of the
approach in the Erlang language. The implementation
heavily uses multithreading, assigning one lightweight
thread per place and one per transition. Indeed, the
implementation has proved to be very scalable, since we
were able to run series of tests on Petri nets of size up
to 229 (more than one million) transitions and places.

A. Timing hypotheses

We assumed we have an upper bound D of A, + 6(t)
for every place p and transition ¢. Intuitively, this means
than when an event occurs in the system at time 7, the
corresponding tokens will be received by the places before
7 + D. Equations [T] and [2] of Section [[II-B] become:

T (p) < D + maxepe {sup (I(p, 1))}
T_(p,t2) < D —inf(I(p, t2))

To compute the two above values to set timers, place
p needs to know the intervals I(p,t) for transitions t of
p®. Thanks to this simplification, in the implementation
a place p needs to be aware of transitions in p® only, but
not of the ones in *p.

1 http://www.olivier.baldellon.eu/documents/minotor-prdc.tar.gz

http://www.olivier.baldellon.eu/documents/minotor-prdc.tar.gz

© 00~ Uk W+

=
B W= O

B. Petri net deployment

To create an arc, a message is sent to the target
transition thread. When the arc concerns an input
place, for instance {arc, "p1", "ti", 0, infinity},
the transition thread t1 sends to the place thread p1
the interval [0, +00]. The processing of this message will
be described in the next section, when explaining the
transition thread code. When the arc concerns an output
place, as {arc, "t1", "p2" }, no message needs to be
sent to places t®, due to the simplification explained
above.

The deployment philosophy is to be as dynamic as
possible: places, transitions and arcs can be added at any
time to be able to update the model at runtime.

C. Transition thread in action

The code of the transition thread, presented in List-
ing [1l is a direct transcription of the algorithm described
in Section [[TT, with some additional machinery required
to create and deploy dynamically the Petri net.

then the value of the interval I(p,t) is sent to the place
using the Pid value: Pid ! new_arc,Name,Min,Max (line
12).

Monitoring: When an event is received, tokens
must be sent to the two sets Pre and Post. Negative
tokens are sent to Pre by means of the statement:
send_token(Pre,minus,Tags,Time,Name), line 6. Pos-
itive tokens are sent to Post by means of the state-
ment: send_token(Post,plus,Tags,Time,Name), line 7.
Finally, the loop function is called back with the same
parameters: loop(Name,Pre,Post) at line 8.

—module(transition).

loop (Name, Pre, Post) —>
receive
{event , Tags,Time} —>
send__token (Pre, minus, Tags, Time,Name) ,
send__token (Post , plus , Tags, Time,Name) ,
loop (Name, Pre, Post) ;
{new_arc,Place ,Pid} —>
loop (Name, Pre, [{Place ,Pid} | Post]);
{new_arc, Place ,Pid , Min,Max}—>
Pid ! {new_arc,Name,Min, Max},
loop (Name, [{Place ,Pid}|Pre] ,Post)
end.

Listing 1. Code for transitions

In brief, the function loop has three parameters: the
transition name and two lists, one representing the input
places set called Pre, and the other one representing the
output places set called Post. When the function is first
launched, the two sets are initialized to the empty list.
The loop function waits for the reception of messages,
does some action and calls itself again with updated
parameters. This is the common way of implementing
threads in Erlang, definitely recursive.

Three types of messages can be received: an “event”
message and two “new arc” messages. “Event” messages
correspond to monitoring messages, while “new arc’
messages correspond to deployment operations.

Deployment: When a transition ¢ is asked to create a
new arc with a place, it just needs to call recursively the
loop function with updated parameters Pre and Post. For
example, line 10 (loop(Name,Pre, [Place,Pid|Post]))
corresponds to the creation of a new arc between place
Place and the current transition. The Post set is updated
with a couple containing both the name Place and the
address Pid of the place. In the case of a new place in ¢°,

)

start (Timeout , Pid, {plus ,Tag,Tp}) —>
receive
{token ,{minus, Tag,Tm} ,{Min,Max}} —>
case timer:now_ diff(Tm,Tp) of
D when D > Max —>
Pid ! {too_late,Tag,D};
D when D < Min —>

Pid ! {too_early ,Tag,D};
D —>
Pid ! {ok,Tag,D}
end
after Timeout —>
Pid ! {plus_timeout ,Tag}
end.
start (Timeout , Pid , {minus, Tag,Tm} ,{Min,Max}) —>
receive

{token , {plus ,Tag,Tp} } —>
case timer:now_ diff (Tm,Tp) of
D when D > Max —>
Pid ! {too_late, Tag,D};
D when D < Min —>
Pid ! {too_early ,Tag ,D};
D —> Pid ! {ok,Tag,D}
end
after Timeout —>
Pid ! {minus_timeout,Tag}
end.

Listing 2. Code for timers

D. Places and timers

We do not give in this paper the full implementation
of place thread, but rather focus on timing constraint
verification. In Listing [2 we show the current imple-
mentation of the verification of timing constraints using
timers threads.

When a positive token is received by a place p,
the place starts a new timer with the parameters
start (Timeout,Placeld,plus,Tag,Tp). The first pa-
rameter, Timeout corresponds to the value T' (p), the
second one corresponds to the address of p and the last
one corresponds to the token with the sign (here plus),
the Tag and the creation date Tp. The timer thread
waits for the reception of the negative token within the
corresponding timing interval [Min, Max].

Depending on the value Tm — Tp, i.e. the time spent by
the token in the place (line 4), the timer will inform the
place of the result. It can be either ok (line 10), too_late
(line 6) or too_early (line 8). If the negative token is
not received before the timer expires, then the place is

© 00O Utk WN

informed by a message PlaceIld ! plus_timeout,Tag
(line 13).

Similarly, the handling of timers for negative tokens is
described lines 15-27.

E. Performance and scalability

To test the scalability of our approach, we conducted
tests on a simple square Petri net described in Figure [0}
This Petri net consists of n concurrent sub Petri nets
(n “lines”), every one being a sequence of n actions. We
generated the associated Petri nets for n = 2F with
k = 0..10 and conducted the experiments on a 8-core
HP machine running Debian GNU/Linux (2.89 GHz
with 8 GB of memory). The monitor was controlled
from an other computer where events were generated.
Notice that for £ = 10 there are 1 048 576 places and
1 049 600 transitions and thus about 2.1 million threads.
The memory footprint was measured with Erlang VM
running on a single core.

Pin
D pl}\ A g ..) D
1Y LI U
DPn,1 Pnn
0 A2 n . A2 N
| LI U
Figure 9. Test Petri net

The table in Figure [I0] shows the memory footprint
with respect to the value of n. We show that for big
enough values of n there is a proportional relation
between the number of threads and the payload. The
payload corresponds to the difference between the VM
memory footprint after the creation and deployment of
the Petri net with the initial VM footprint.

n 1...32 | 64 128 | 256 | 512 1024

Mem. (MB) 410 417 | 435 | 746 | 1731 | 5664

Payload (mB) 0 7 25 336 | 1321 | 5254

#Threads/Payload - - - 390 397 399
(2n + 1)n/Payload

Figure 10. Memory footprint for large Petri nets (table)

For small Petri nets, memory footprint is always 410
MB. This value corresponds to the size of the virtual
machine. This value is relatively big because the virtual
machine was configured for all tests to be able to run
large Petri nets (more than 2 millions of threads), In
practice, for small Petri net (n = 16, i.e. 496 transitions
or places), a virtual machine of 30MB has proved to be
sufficient.

Finally, in term of CPU time, the deployment of the
Petri net is a costly operation (about 40s to generate the
2 millions thread Petri net). However, the execution, i.e.
the processing of received events, is negligible on each
node.

Memory footprint (MB)
6000

5000

4000

3000

2000

1000 OTotal footprint
Payload

0 250 500 750 1000 Pattern
size (n)

Figure 11. Memory footprint for large Petri nets (graph)

To conclude, the Erlang implementation was a success-
ful proof of concept in terms of feasibility and perfor-
mance. A more significant implementation of MINOTOR
in the Xenomai real-time system as a kernel driver is
being developed (work in progress)

V. DERIVING MODELS FROM A CONCRETE EXAMPLE

The monitoring system presented in this paper needs,
as an input, a description of the time- and event-based
specification of correct behaviors in terms of an timed-arc
Petri net. This step has not been fully addressed yet, and,
indeed, devising a correct specification as a Petri net is
usually not considered to be an easy task.

Fortunately, when considering critical systems, most
designers provide clear specification of interactions within
the system, in order to run unit tests, and to use
as an input for model-checking interactions between
components. Such specifications may be provided as
linear temporal logic formulas, timed automata, state
charts, etc. Then, one can use one of the possible
automated translations from a given formalism to a Petri
net, e.g., [Srb05], [RPC0O2).

Hence, we assume that we can reuse a description
that has already been provided to developers as early as
during the testing phase of the system.

To motivate our approach, we here consider a railway
transportation supervision system, and show how a model
of its behavior can be developed incrementally from its
simplest form up to a complex model that encompasses
advanced techniques such as nominal and degraded modes
of operation.

A. Railway supervision system: overview

In the introduction of this paper we advocated that
our approach was able to detect the violation of system
properties without blocking despite wrong order of events
and deadline misses by some events. In real systems,
detection is not enough and thus we assume that the
nominal behavior of a given system is complemented

sensor

station section station
T T

Network

(a) A fully-automated train supervision system

Figure 12.

by at least one alternative behavior, targeting possibly
several degraded modes of operation.

In this last part, we briefly illustrate this problem by
means of an example. We consider a fully-automated
train control system made up of a network of lines,
each composed of a set of railway track sections, as
depicted in Figure Control of a train is supervised
from a central command and control system but the
trains have some autonomic behavior, i.e. automatic
train driving is carried out simply by assigning each
train a “target station”. In other words, each train starts
from an initial station and has a target destination,
with several intermediate stations in between. Between
each station the tracks are divided into sections, each
equipped with sensors reporting the passing of the train.
In a nutshell, each train has to pass through several
checkpoints between stations. The first objective of our
distributed monitor is to check that the trains do obey
some timing properties, the violation of them leading to
possible catastrophic failure. The distributed monitors
are located on computers (PC) at each station.

In this scenario, signals for abnormal behaviors are
classified in two different classes: a warning signal corre-
sponds to a violation of the specification that may not
lead to a catastrophic failure and can be recovered, while
a error signal corresponds to the system entering a state
where a drastic action has to be taken to ensure safety
of passengers.

On the monitoring side, the detection of a timing fault
can be i) a warning (timing overhead on a single given
section) that is part of the specification and does not
require the monitoring system to raise an alarm, or i) a
real error signal that may lead to a catastrophic failure.

On the system operational side, a warning is handled
by triggering a degraded mode of operation of the system
(e.g. alternate route, skip of intermediate stations, etc.).
The error leads the system to start a recovery action that
will put it in a safety state, e.g., stopping the train on
an alternate track.

Errors are raised by the monitor when detected.
Additionally, if a warning was detected and the train
does not use the degraded mode of operation, then an
error must also be raised. However, the train may use
the degraded mode even if neither warning nor error was

T2 Q4

[0,d

q2
1

q1
Jd, od]
o—{—o0
p1 t1

0,0 U
p2 to

(b) Handling warning states and missing events

Railway supervision system

detected.

B. Timing constraints

The monitoring system must signal an error if the
train stays more than D units of time in a section, and
a warning if it stays more than d time units in the first
section; in this case, the degraded mode corresponds to
a shorter path to try to recover with the time table.

As our monitoring tools deals with missing events, if
the property “the train stayed more than d time units in
the first section” does not hold, then an error will have
to be raised if the degraded mode is not used.

C. Railway supervision system: Petri net modeling

Stations and sections are represented by places. The
initial station is represented by pi, the four sections
are represented by po, p3, ps and p, and the final
station by ps. Sensors detecting the entrance in a section
are represented by transitions ty,...,t4,%,. In other
words, each time a sensor is activated, the corresponding
transition will receive an event.

The nominal mode is represented in green and red
in Figure [12(b)l There are two paths: the long path
P1, D2, P3, P4, Ps is the nominal one, in green, while the
short one p1, p2, pw, ps is the degraded one, in red. The
label [0, D] between places and transitions indicates that
a train cannot stay more than D units of time in any
of the sections; if such a constraint were to be violated,
then an error would have to be raised by the monitor.

D. Dealing with warning states

The last part of the Petri net, represented in blue in
Figure takes into account warnings. This blue part
must be interpreted with a slightly different semantics:
the firing of transitions must not be triggered by the
reception of an event, but by the monitoring system
as soon as they are fireable. We call these transitions
with different semantics logical transitions, to distinguish
them from event transitions. Notice that such transitions
represent classical Petri nets transitions, i.e., they are not
event-triggered, and thus their firing is straightforward
and not described in this paper.

To detect if the long path can be taken by the train,
the monitoring system needs to receive both events
corresponding to t; and t9. Indeed, if one of these two

events is missing, the monitor will ensure the train uses
the short path, otherwise the monitoring system will raise
an error.

We briefly show below how logical transitions allow to
increase the expressiveness of the approach.

Let us assume that ¢; and t» were fired at time 7 and
79 respectively (with 72 > 71). As soon as both events
are received by the monitor, one of the two transitions,
r1 or 1o is fireable. Notice that the token in place ¢; has
waited 75 — 77 time units since its creation at the firing
of t1. Thus, either r; or 3 can be fired, but not both due
to the disjoint timing constraints on arcs. Since none of
these transitions are associated to an event, the monitor
will fire the correct transition at time 7o (before 72, no
token was present in place g2).

To sum up, the monitoring system verifies that the
system is in one of the two mutual excluding execution
branches:

— if the train stayed less than d time units in the
first section, then ro will be fired and tokens will
appear in place g3 and qq4, allowing the train to use
its nominal path,

— if the train stayed more than d time units in the
first section, transition r; is fired and blocks any
firing of t3 or t4: the train is forced to run in the
degraded mode (or fast path).

VI. CONCLUSION

MINOTOR is a contribution towards the on-line mon-
itoring of distributed systems. MINOTOR improves the
detection coverage of timing faults thanks to a model of
the correct behaviors of the system that is animated at
runtime through system events.

We impose the specification to be described as an
timed-arc Petri net, a powerful formalism to express
both distributed and timed behaviors.

Differently of static analysis, MINOTOR receives system
events on the fly, and possibly out-of-order. To cope with
this problem, we introduce the notion of signed token,
i.e. we execute every transition associated to an event as
soon as this event is caught by the monitoring system,
no matter the current state of the Petri net. The actual
monitoring of timing constraints and events ordering is
performed a posteriori by checking respective dates of
signed tokens.

The decoupling of transitions firing and timing con-
straints monitoring allows us to completely distribute
the monitoring, as we show in the article. Our strategy
is to associate to each transition, and each place in the
Petri net a conceptual thread, in charge of executing an
atomic sub part of the Petri net and verifying locally
that timing constraints are valid.

In our experiments, complexity is manageable, in terms
of memory footprint, but also in terms of execution time.

The definition of the model remains a complex issue. In
some cases, such event-based specification may already
be available to system developers, as it is one of the
formalisms used for model checking, or static analysis of
programs. This means that, Even for a complex physical
system, the complexity of the model can be limited,
abstracting all implementation details, while providing
early detection mechanisms.

REFERENCES

O. Baldellon, J-C. Fabre, and M. Roy. Distributed
monitoring of temporal system properties using
petri nets. In SRDS, 2012.

[BFR12]

[BLS06] A. Bauer, M. Leucker, and C. Schallhart. Monitor-

ing of real-time properties. FSTTCS, 2006.
[BRO8] M. Boyer and O. H. Roux. On the compared
expressiveness of arc, place and transition time
Petri nets. Fundamenta Informaticae, 2008.
[CJO05] T. Chatain and C. Jard. Time supervision of
concurrent systems using symbolic unfoldings of
time petri nets. Formal Modeling and Analysis of
Timed Systems, pages 196-210, 2005.

[FBHJ05] E. Fabre, A. Benveniste, S. Haar, and C. Jard.
Distributed monitoring of concurrent and asyn-
chronous systems. Discrete Event Dynamic Sys-
tems, 15(1):33-84, 2005.

[Hop91] R. Hopkins. Distributable nets. Advances in Petri

Nets 1991, pages 161-187, 1991.

[JRR94] F. Jahanian, R. Rajkumar, and S.C.V. Raju. Run-

time Monitoring of Timing Constraints in Dis-

tributed Real-Time Systems. Real-Time Systems,

7(3):247-273, 1994.

[MR10] P. Meredith and G. Rosu. Runtime Verification

with the RV system. In Proceedings of the First

international conference on Runtime verification,

pages 136-152. Springer-Verlag, 2010.

[Rayl0] M. Raynal. Communication and Agreement Ab-

stractions For Fault Tolerant Distributed Systems.

Morgan & Claypool, 2010.

[RFR0O8] T. Robert, J.C. Fabre, and M. Roy. On-line

monitoring of real time applications for early error

detection. In PRDC), pages 24-31. IEEE, 2008.

[RPC02] V. Ruiz, J. Pardo, and F. Cuartero. Translating

tpal specifications into timed-arc petri nets. In

ICATPN’02, pages 414-433. Springer-Verlag, 2002.

J. Srba. Timed-arc petri nets vs. networks of timed
automata. In ICATPN, pages 385402, 2005.

[Srb05]

[ZSLL09] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee.
DMaC: Distributed Monitoring and Checking. Lec-
ture Notes in Computer Science, 5779:184, 2009.

	State of the art
	Petri Nets For System Properties
	Timed-Arc Petri Nets
	Petri Net Execution
	Tags
	Events

	Monitoring with Negative Tokens
	Protocol description
	Timers
	Physical mapping

	Implementation
	Timing hypotheses
	Petri net deployment
	Transition thread in action
	Places and timers
	Performance and scalability

	Deriving Models from a Concrete Example
	Railway supervision system: overview
	Timing constraints
	Railway supervision system: Petri net modeling
	Dealing with warning states

	Conclusion
	References

