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Isometric and invertible composition operators
on weighted Bergman spaces of Dirichlet series

Mazxime Bailleul

Abstract

We show that a composition operator on weighted Bergman spaces A%,
is invertible if and only if it is Fredholm if and only if it is an isometry.

1 Introduction

In [8], the authors defined the Hardy space H? of Dirichlet series with square-
summable coefficients. Thanks to the Cauchy-Schwarz inequality, it is easy to
see that H? is a space of analytic functions on Cy = {s € C, R(s) > i}
F. Bayart introduced in [3] the more general class of Hardy spaces of Dirichlet
series HP (1 < p < 4+00). In another direction, McCarthy defined in [12] some
weighted Bergman Hilbert spaces of Dirichlet series and these spaces have been
generalized in [2].

In order to recall how these spaces are defined, we need to recall the principle
of the Bohr’s point of view: let n > 2 be an integer, it can be written (in a
unique way) as a product of prime numbers n = pi"* -- pp* where p; =2, py =3
etc ...For s € C, we consider z = (21, 22,...) = (p1°, p3 °,...). Then, writing

+oo
F(s) = am~ (1)
n=1
we get

—+o0 —+oo
F8) = an(pr®)™ -+ (0)™ =Y an 2t - 2k
n=1 n=1
So we can see a Dirichlet series as a Fourier series on the infinite-dimensional
polytorus T = {(z1,29, ), |2;] = 1, Vi > 1}. We shall denote this Fourier
series D(f).

Let us fix now p > 1. The space HP(T°) is the closure of the set of analytic
polynomials with respect to the norm of LP(T°, m) where m is the normal-
ized Lebesgue measure on T*. Let f be a Dirichlet polynomial, D(f) is then
an analytic polynomial on T° by the Bohr’s point of view. By definition,
lfll2¢> == ID(f)|| zrr (o) and HP is the closure of the set of Dirichlet polynomi-
als with respect to this norm. The spaces H? and HP(T°) are then isometrically
isomorphic.

We recall now how we can define the weighted Bergman spaces of Dirichlet
series. For o > 0, f, will be the translate of f by o, i.e. f,(s) := f(o+s). We
shall denote by P the set of Dirichlet polynomials.

Let p > 1, P € P and p be a probability measure on (0,+00) such that

0 € Supp(p). Then
+o00 1/p
1Pl = ( / T du(0)> :



AP, is the completion of P with respect to this norm. When du(o) = 2e727 do,
these spaces are simply denoted by AP. It is shown in [2] that they are spaces
of convergent Dirichlet series on Cy /5.

In [7], the bounded composition operators on H?, in other words the analytic
functions @ : (C% — (C% such that for any f € H2, fo® € H2, are characterized.
In [3], F. Bayart generalized this result to the space H? when p > 1.

We denote by D the set of functions f which admit a representation by a
convergent Dirichlet series in some half-plane and for § € R, Cy will be the
following half-plane {s € C, R(s) > 0}. We shall denote C instead of Cy.

On the spaces AP, the following theorems have been proved in [1]:

Theorem 1 ([1],Thl). Let & : (C% — (C% be an analytic function of the form
D(s) = cos + p(s) where cg > 1 and ¢ € D. Then Cy is bounded on AP if and

only if ¢ converges uniformly in C. for everye > 0 and o(Cy) C Cy. Moreover
in this case, Cg is a contraction.

Theorem 2 ([1],Th2). Let ®:Cy — Cy be in D. Then

(i) If Cp is bounded on AP, then ® converges uniformly in Cc for every e >0
and <I>((C+) C C1/2-

(ii) If ® converges uniformly in C. for every ¢ >0 and ®(C,) C Cy /oy, with
some 1 > 0 then Cg is bounded on Ai.

In the sequel, we assume that p is a probability measure on (0, 400) such
that du(o) = h(o)do where h is a positive continuous function.

Example. Let a > —1, we denote p, the probability measure defined on

(0, +00) by
20¢+1

dpa(0) = m

We denote the corresponding space A% instead of AL .

a®e" 27 do.

Main Theorem. Let 1 < p < +o0o and Cg be a bounded composition operator
on AL. The following assertions are equivalent:

(i) Cs is inversible.
(ii) Cg is Fredholm.
(iii) Cg is an isometry.
(iv) ® is a vertical translation: there exists T € R such that for every s € C,
D(s) =s+ir.

We point out that the result is false on the spaces HP: F. Bayart proved that
(1), (41), (i4é) are still equivalent on HP but obtained a different characterization
for the isometric composition operators on H? (see [3]). For example, if ® is
defined for every s € C; by ®(s) = ¢ps with ¢g > 2, then Cg is an isometry
on HP but not on AP. The same phenomenon appears in the framework of
composition operators on the unit disk (see [10]).

Ir order to prove the main theorem, it suffices to show that (i7) = (iv) and
(#44) = (iv). Indeed, (i) = (ii), (iv) = (i) and (iv) = (4i7) are clear.



2 Background material

Let f be a Dirichlet series of form (1). We do not recall the definition of
abscissa of simple (resp. absolute) convergence denoted by o. (resp. o), see
[13] or [14] for more details. We shall need the two other following abscissas:

ou(f) = inf{a| The series (1) is uniformly convergent for $(s) > a}
= abscissa of uniform convergence of f.

op(f) = inf{a| the function f has an analytic, bounded extension for R(s) > a}
= abscissa of boundedness of f.

It is easy to see that o.(f) < ou(f) < gu(f). An important result is that
o.(f) and op(f) coincide: this is the Bohr’s theorem (see [5]). This result is
really useful for the study of H>°, the algebra of bounded Dirichlet series on
the right half-plane C (see [11]). We shall denote by || - |lco the norm on this
space:

[flloc := sup [f(s)]-
R(s)>0

We shall make a crucial use of the point evaluation in the proof of the Main
Theorem: for every p > 1, the spaces H” and Al are spaces of holomorphic
functions on C; /5 and more precisely if d; is the operator of point evaluation at
s € Cy 2, then by [3],Th3:

105l ()« = C(2R(s))

and by [2],Th1 the point evaluation is also bounded on the spaces Af,. Moreover
op(f) < 1/2 for any f € AY. For example when y = fi4, it is shown in [2],Corl
that there exists a positive constant c, j, such that for every s € Cy /2,

24«
R(s) 2
pye < _— .
H(SSH(AQ) = COC7P(2§R(8) _ 1)

When p = 2, Ai is a Hilbert space and it is easy to see that

+o0 1/2
1714z = (3 fanPno))
n=1

where for every n > 1,

+oo
wp(n) = /0 n"2h(o)do.

Thanks of the boundedness of the point evaluation at s € C; /5, we consider the
following reproducing kernels defined for every w € C, /5 by

Tt  _s—w

For every f € A2 and s € Cy 5, one has

f(S) =< faK;L(Sv ) >.Aﬁ :



Example. On the space A2, we simply denote (w®) the corresponding weight
and then for every n > 1,

(e

1
T log(m) + DT
Let @ : Cy — C; be an analytic function such that ®(s) = cos+ ¢(s) where

¢o is a nonnegative integer and ¢ € D. We shall say that @ is a symbol if Cg is
bounded on the spaces A5

For o > 0, we denote @, the translate of ® by o: ®,(s) := P(o + s).

When ¢g > 1, thanks to the Theorem 1 we know that ® is a symbol if and
only ¢ converges uniformly on C. for every ¢ > 0 and ¢(Cy) C C,. In this
case, it is easy to see that for every ¢ > 0, &, — o is also a symbol: indeed let
o >0 and s € Cy, then

R(®s(s) —0) = R(colo+5)) +R(p(o+s)) -0
> o(cg—1)+R(s) >0

because ¢(C;) C C4 and s € C;. Point out that this result can be seen as the
Schwarz’s lemma in this framework.

3 Proof of (ii) = (iv)

With help of Proposition 4.2 from [7], F. Bayart proved the following useful
lemma.

Lemma 1 ([3],Lem11). Let ® be a symbol. If ® is not a vertical translation
then there exists € and n > 0 such that

D(Ciya-c) CCopayy

Proof of (ii) = (iv). We follow ideas from [3],Th14. Assume that ® is not a
vertical translation. By the previous lemma, there exists € and n > 0 such that

P(Cyjo—c) C Cyyopy

We remark that each element of Im(Cs) is defined and bounded on C;/;_.:
indeed ®(Cy/3_.) C Cy/oqy and if f € AP, f is bounded on Cy /54, (because
o(f) £1/2).

Now by lemma [3],Lem9 we know that there exists f € HP such that the
line R(s) = 1/2 is both abscissa of convergence and natural boundary for f.
Because of the inclusion H? C AL, f belongs to AL. We consider the following
infinite dimensional subspace of AL:

F =span{n™°f, n > 1} = fP.

We shall show that F'NIm(Cg) = {0} and consequently Codim(Im(Csg))=400
which is a contradiction with (7).

Let h € F N Im(Cs), there exists P € P such that h = Pf. If h # 0, there
exists so such that R(sp) = 1/2 and P(s¢) # 0. But in this case, f extends
beyond C,/, and then we obtain a contradiction because the line J(s) = 1/2 is
a natural boundary for f. Finally F'NIm(Cs) = {0}. O



4 Proof of (iii) = (iv)

First we shall show that if C¢ is an isometry then ¢y > 1. We need the
following result.

L 2. i Sallarye = 1.
emma §R(s)1i>n+oo H ||(A‘1‘)

Proof. Let s € C;. By the reproducing kernel property on .Ai (or just by a
simple computation), for any Dirichlet polynomial we have

P(s) :/0 lim / P(o +it)K,(s, 0 +it) dtdu(o).

T—+o00 2T

Now by definition of the norm of Dirichlet polynomials in H! (see definition 1
from [3]), we have

“+o0o 1 T
I1Pll.az, = (/0 TEIEOOQT/_T|P(a+zt)|dtdu(a)>~

Consequently
[P(s)| < [I1P]lay < K (s, +)lloo-

Now
+oo —5+w +oo —?R(s)
(s, ) oo = sup | D ° Z
’LUEC+ n—=1 h n—=1
and we point out that wp(1) =1 so
T _R(s)
n
limsup ||ds Anys < lim =1
R(s)—+o00 Il §l“i(s)—>+<><>nZ::1 wp (n)

On the other hand, it is clear that ||ds[[(43) = 1 and then we obtain the result.
O

Proposition 1. Let ® be a symbol. If Cy is a contraction then ¢y > 1.

Proof. Let s € Cy /5. For every f € Al we have

|f o ®(s)] < [16sl(az)-

fo®| <ol ap)-

LA
and then
[0 (s) Iz~
105l a2y

By inclusion of the spaces AP and the fact that H? C AP, with || [[an <[ - [|3er
we obtain:

< [[Cell.

0@ (s) I (2er)=

< ICsll.
10l az)-

By Theorem 3 from [3], we obtain

CERR@E)Y x 18]y < 1Call



+oo
Now assume ¢y = 0, then ®(s) = ¢(s) = Z enn”® and R(c1) > 1/2 (see proof
n=1

of Lemma 3.3 from [7]). Finally thanks to the Lemma 2, when R(s) goes to
infinity we get
ICall = ¢2R(cr)/? > 1

and consequently Cg is not a contraction. O

Remark. In the previous Lemma we actually used that for every s € C, /s,
55 o C<I> = §<I>(s)'

Proof of (iii) = (iv). Assume that Cg is an isometry. By the last lemma, ¢y > 1
and then we know that ® : C; — C, thanks to the Theorem 1. One has

1272 1az = 1127 [Laz.-

Now by [2],Th6,

+oo
/0 12772, — 27+, dyu(o) = 0.

But
272+ o = 277Dy = [, (277 e

Thanks to the Schwarz’s lemma in this framework (recall that ¢y > 1) we know
that &, —o : C4 — C,. So by the Theorem 1, Cs_ _, is a bounded composition
operator on H? and ||Cp, | < 1. Then

127CF ) 3 < 127773

Consequently 277 = [|2777*|l%» = |27 %F*)|[3» for every o > 0 (recall that
h is a positive continuous function). Now by Lemma 1, if ® is not a vertical
translation, there exists ¢ and 1 > 0 such that ®(C,/,_.) C Cy/24, and then
for every o > 1/2 — ¢,

9= — ||2—<I>(a-',-o)||Hp < ||2_q>(g+')H’H°° < 2—1/2—77
and this is obviously false. O

Remark. Let p be a probability measure on (0,+00) such that 0 € Supp(p)
and dy = hdo where h is a nonnegative function. If there exists an open interval
I such that h is positive on I then the theorem still holds. It is a consequence
of the following lemma and some easy adaptations of the previous proof.

Lemma 3. Let ® be a symbol with co > 1. If ® is not a vertical translation
then for every e > 0, there exists n = n. > 0 such that ®(C;) C C.,,.

Proof. First we assume that ¢ is non constant then ¢ : C;. — C, and by Propo-
sition 4.2 from [7], there exists ¥ > 0 such that ¢(C.) C Cy and consequently
®(C.) C Ceyeto- In this case, it suffices to choose n = (co — 1)e + ¥ which is
positive because cg > 1.

If ¢ is constant equals to i7 (7 € R) and ¢y > 1 then ®(C.) C C,,. and it
suffices to choose 1 = (¢ — 1)e.

If ¢ is constant and equals to ¢; € C; and ¢o > 1, ®(C.) C C,\15(,) and
it suffices to choose n = (cog — 1)e + R(c1)-
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