

25èmes Journées Scientifiques de l'Environnement,

Hôtel du département, Créteil, 18 février 2014

Un matériau biosourcé de choix : les fibres naturelles

Caractérisations et applications

Nicolas DUJARDIN, Maître de Conférences nicolas.dujardin@u-pec.fr

Equipe THEMACS : Thermique des Matériaux et Contrôle de Structures

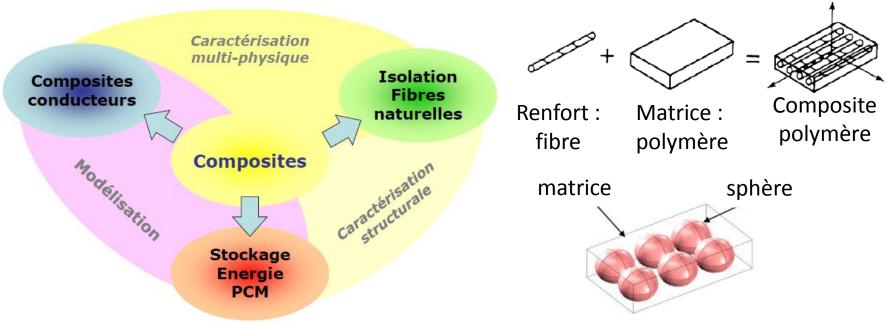
CERTES:

Centre d'études et de recherches en thermique, environnement, systèmes, EA 3481 www.certes-upec.fr

Plan détaillé de l'exposé

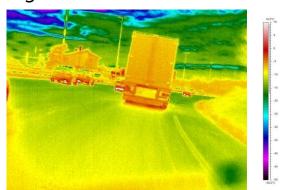
- I. Activités de l'équipe Themacs
- 1) Optimisation des propriétés thermophysiques de matériaux composites
- 2) Contrôle de Structures par thermographie infrarouge
- 3) Parc instrumental

- II. Présentation des fibres naturelles
- 1) De quoi parle-t-on?
- 2) Quelles ressources?
- 3) Quels avantages?
- 4) Quelles applications?
- 5) Techniques de caractérisation

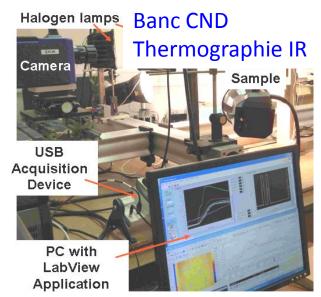

III. Exemples de résultats

- 1) Fibres exotiques / polymère (sisal, banane, PALF)
- 2) Fibres exotiques seules (palmier dattier)
- 3) Fibres de lin/epoxy

I. Activités de l'équipe Themacs


1) Optimisation des propriétés thermophysiques des matériaux composites

2) Contrôle de structures par thermographie infrarouge



Auscultation de chaussées et d'ouvrages d'art

I. Activités de l'équipe Themacs

3) Parc instrumental

Métrologie, caractérisation de caméras, mesures de propriétés radiatives, CND, mesures de terrain

Emissomètres

Mesures spectrales (UV, Visible, IR...)

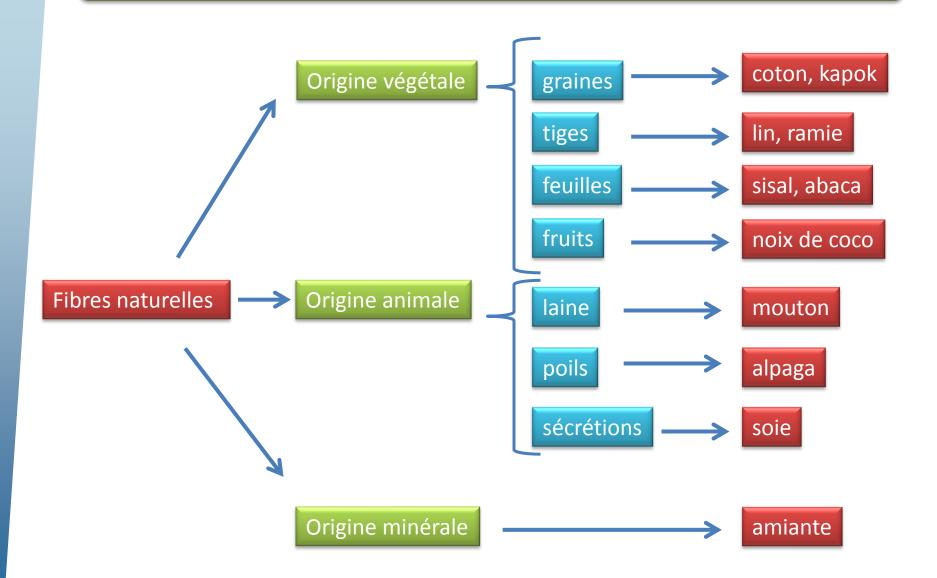
I. Activités de l'équipe Themacs

3) Parc instrumental

Etude des composites conducteurs, composites renforcés par des fibres naturelles, composites incluant MCP

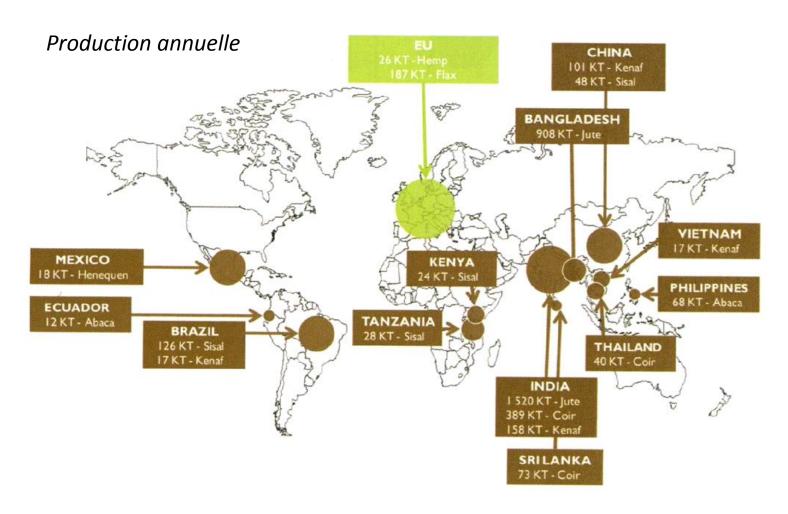
DICO: Diffusivité, Conductivité

Plan détaillé de l'exposé


- I. Activités de l'équipe Themacs
- 1) Optimisation des propriétés thermophysiques de matériaux composites
- 2) Contrôle de Structures par thermographie infrarouge
- 3) Parc instrumental

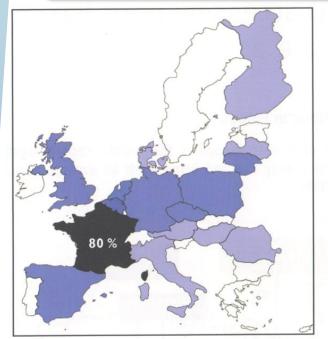
- II. Présentation des fibres naturelles
- 1) De quoi parle-t-on?
- 2) Quelles ressources?
- 3) Quels avantages?
- 4) Quelles applications?
- 5) Techniques de caractérisation

- III. Exemples de résultats
- 1) Fibres exotiques / polymère (sisal, banane, PALF)
- 2) Fibres exotiques seules (palmier dattier)
- 3) Fibres de lin/epoxy



II. Présentation des fibres naturelles

II. Les fibres végétales : quelles ressources ?



Disponibilité dans presque tous les pays du monde!

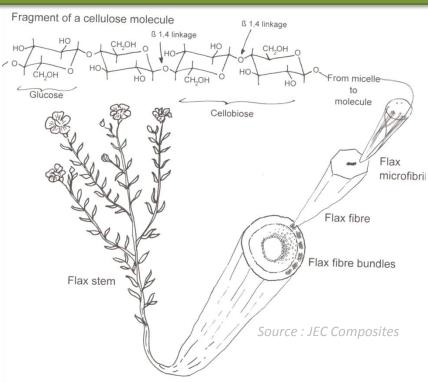
II. Les fibres végétales : quelles ressources ?

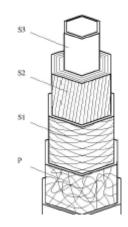
- 100,000 to 200,000
- 50,000 to 100,000
- 10,000 to 50,000
- 5,000 to 10,000
- 1,000 to 5,000
- 1 to 1,000

Le France représente 80% de la production européenne


Source : JEC Composites

Le Normandie représente
55% de la production
française de lin




II. Les fibres naturelles : Composition ?

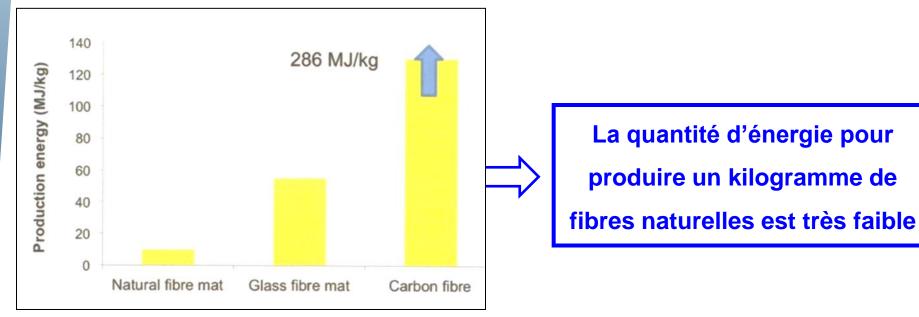
Exemple : Le lin

Fibre élémentaire

Fiber	Cellulose (wt%)	Hemicellulose (wt%)	Lignin (wt%)	Waxes (wt%)
Bagasse	55.2	16.8	25.3	_
Bamboo	26-43	30	21-31	_
Flax	71	18.6-20.6	2.2	1.5
Kenaf	72	20.3	9	-
Jute	61-71	14-20	12-13	0.5
Hemp	68	15	10	0.8
Ramie	68.6-76.2	13-16	0.6-0.7	0.3
Abaca	56-63	20-25	7-9	3
Sisal	65	12	9.9	2
Coir	32-43	0.15-0.25	40-45	_
Oil palm	65	_	29	_
Pineapple	81	_	12.7	_
Curaua	73.6	9.9	7.5	_
Wheat straw	38-45	15-31	12-20	_
Rice husk	35-45	19-25	20	14-17
Rice straw	41-57	33	8-19	8-38

Source: Faruk et al., Progress in Polymer Science 37, 2012, 1552-1596

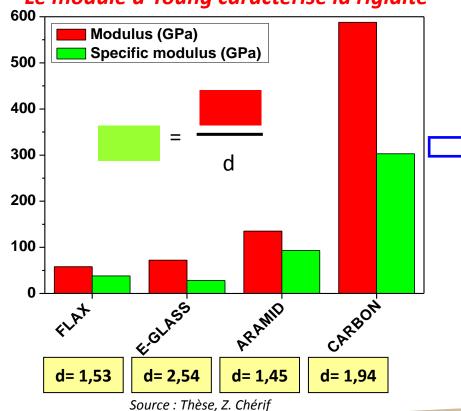
II. Les fibres végétales : quels avantages ?


- Grande variété de fibres disponible dans tous les pays du monde
- Faible coût (9 fois moins que les fibres de verre)
- Issues des parties renouvelables des plantes
- Faible impact environnemental Faible densité

II. Les fibres végétales : quels avantages ?

- Grande variété de fibres disponible dans tous les pays du monde
- Faible coût (9 fois moins que les fibres de verre)
- Issues des parties renouvelables des plantes
- Faible impact environnemental
- Faible densité

Source: JEC Composites



II. Les fibres végétales : quels avantages ?

- Grande variété de fibres disponible dans tous les pays du monde
- Faible coût
- Issues des parties renouvelables des plantes
- Faible impact environnemental Faible densité : Légèreté !

Gain de masse et bonnes propriétés spécifiques, Le lin, alternatif aux fibres de verre.

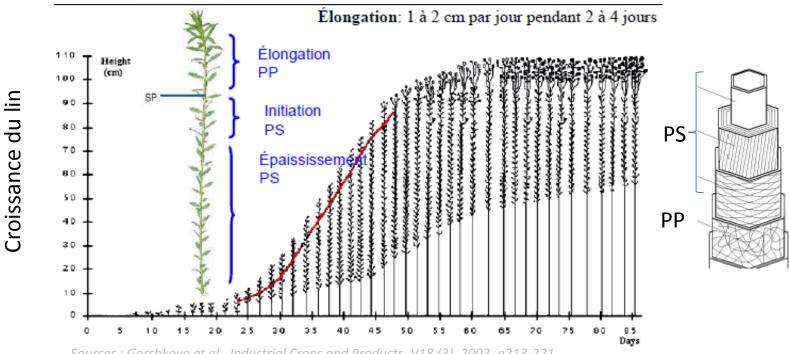
Intérêt pour le transport!



II. Les fibres végétales : quels inconvénients ?

- Irrigation
- Densité de semis
- Apport d'azote
- Date de récolte

Fibre élémentaire


- Forte variabilité de propriétés pour une même espèce, en fonction de plusieurs facteurs :

- Climat	- Âge de la plante	
- Taille	- Position de prélèvement	
- Composition	- Date de prélèvement	

II. Les fibres végétales : quels inconvénients ?

Sources : Gorshkova et al., Industrial Crops and Products, V18 (3), 2003, p213-221 C. Baley, Renforcement des polymères par des fibres végétales, Troyes, Septembre 2011

- Forte variabilité de propriétés pour une même espèce, en fonction de plusieurs facteurs :

- Climat	- Âge de la plante	
- Taille	- Position de prélèvement	
- Composition	- Date de prélèvement	

II. Les fibres végétales : Applications

Secteurs traditionnels : textile et papeterie

Secteurs grandissants : bâtiment, transports, loisirs

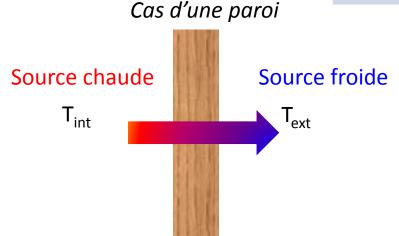
<u>Utilisation des fibres seules</u>:

Ouate de cellulose

Matériau Conductivité (W/(mK)

Polyuréthane 0,025

Laine de verre 0,034


Ouate de 0,035
cellulose

Laine de roche 0,038

Laine de chanvre 0,04

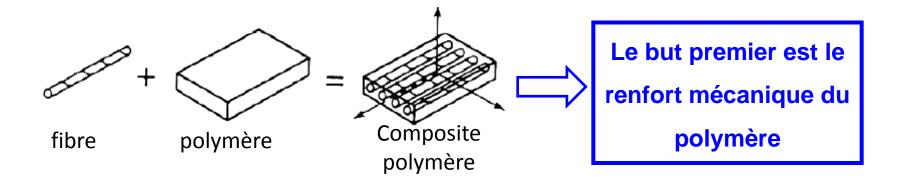
Laine de chanvre

$$\Theta = \frac{k}{e}.S.(T_{ext} - T_{int})$$

Où Θ : flux thermique (W)

k : conductivité thermique (W/(m.K))

S: surface (m²)


e : épaisseur (m)

II. Les fibres végétales : Applications

Secteurs traditionnels : textile et papeterie

Secteurs grandissants : bâtiment, transports, loisirs

Utilisation des fibres comme renforts de composites polymères :

II. Les fibres végétales : Applications

Secteurs traditionnels : textile et papeterie

Secteurs grandissants : bâtiment, transports, loisirs

Utilisation des fibres comme renforts de composites polymères :

Lin / epoxy
Source: LINEO NV

Citroen C2

RENAULT TWINGO

Chanvre / PP

Source: AFT Plasturgie

OPEL CORSA COUPE

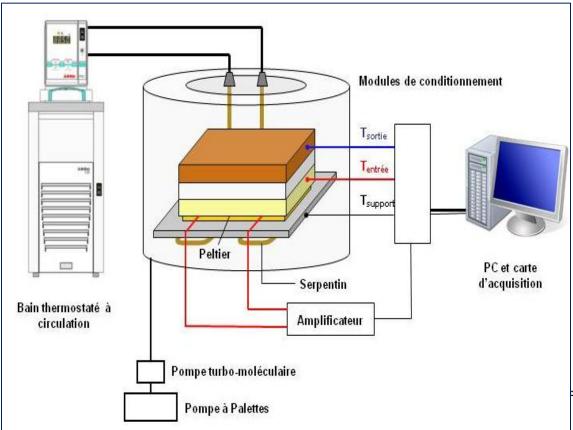
OPEL

CITROEN C5

II. Problématique et moyens mis en place

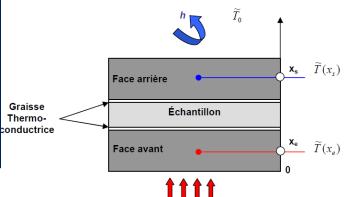
Quels paramètres étudiés ?

- Variété des fibres
- Zone de prélèvement
- Traitement des fibres
- Procédé de mise en œuvre
- Fraction volumique des fibres
- Porosité


$$arphi_{vol} = rac{V_{\mathit{fibre}}}{V_{\mathit{fibre}} + V_{\mathit{matrice}}}$$

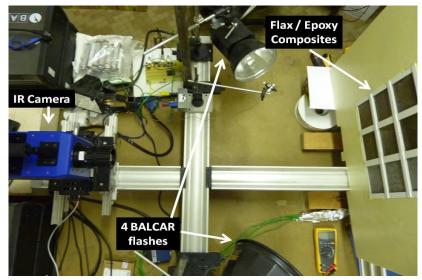
II. Technique de caractérisation : DICO

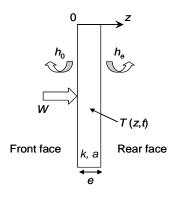
Dispositifs DICO:


DIffusivité, a COnductivité, k

Source: A. Boudenne, L. Ibos, E. Gehin, Y. Candau, A simultaneous characterization of thermal conductivity and diffusivity of polymer materials by a periodic method, J. Phys. D: Appl. Phys. V37, (2004), 132-139

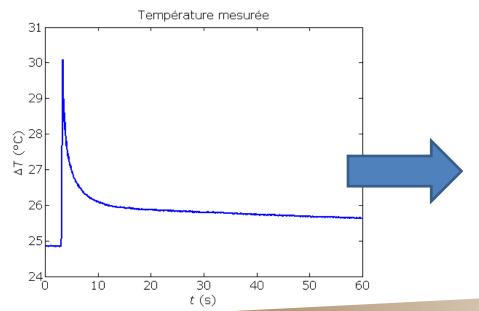
Dispositif DICO (diffusivité, conductivité)




Flux périodique

II. Technique de caractérisation : Thermographie infrarouge

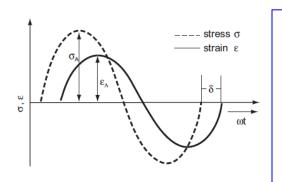
Dispositif expérimental

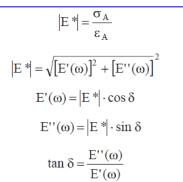


Modélisation thermique

$$DT(z,t) = 2G\sum_{n=1}^{\infty} \frac{X_n \left[X_n \cos(X_n d) + B_0 \sin(X_n d)\right]}{\left(X_n^2 + B_0^2\right) \left(1 + \frac{B_e}{X_n^2 + B_e^2}\right) + B_0} \exp\left(-\frac{X_n^2 t}{t}\right)$$

Mesure


Distributions de conductivité et diffusivité thermique



II. Technique de caractérisation : Analyse mécanique dynamique

Intérêt: Permet de déterminer les propriétés mécaniques d'un matériau viscoélastique

Principe: Application d'une sollicitation sinusoïdale / mesure la déformation correspondante

DMA donne accès E', G':
module élastique,
module de stockage,
module de conservation

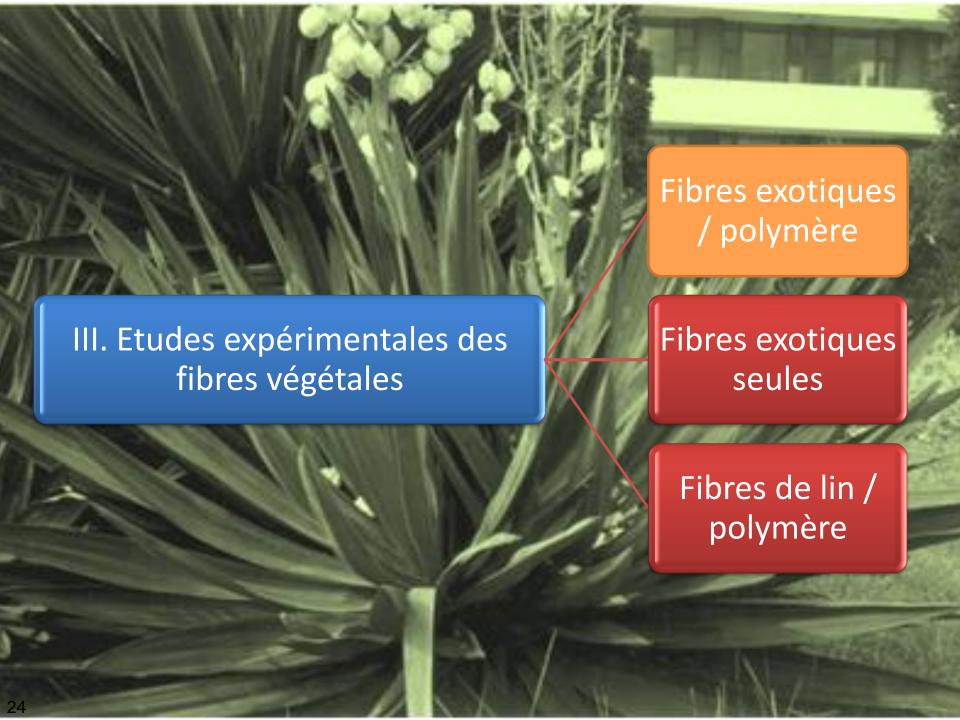
E ", G": module de perte, module dissipatif

Appareil utilisé: DHR2 de TA Instrument

DMA en torsion **G', G"**

« Qualité » de l'interface fibre/matrice

Plan détaillé de l'exposé


- I. Activités de l'équipe Themacs
- 1) Optimisation des propriétés thermophysiques de matériaux composites
- 2) Contrôle de Structures par thermographie infrarouge
- 3) Parc instrumental

- II. Présentation des fibres naturelles
- 1) De quoi parle-t-on?
- 2) Quelles ressources?
- 3) Quels avantages?
- 4) Quelles applications?

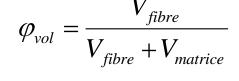
III. Exemples de résultats

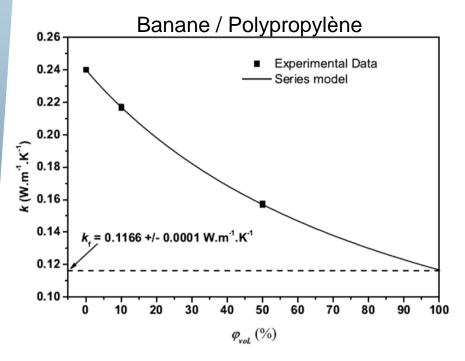
- 1) Fibres exotiques / polymère
- 2) Fibres exotiques seules (palmier dattier)
- 3) Fibres de lin / epoxy

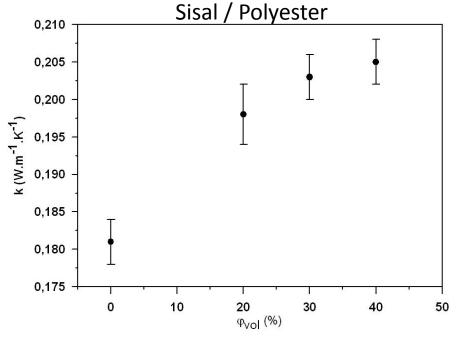
a) Présentation des systèmes étudiés

Fibres	Matrice	$\varphi_{vol}\left(\%\right)$	Mise en oeuvre
Banane/Sisal	Résine	20, 40	Imprégnation,
Hybrides ratio 1 :1	Polyester		Polym. sous pression
PALF/Verre	Résine	40	Imprégnation,
Hybrides ratios variables	Polyester		Polym. sous pression
Banane	Polypropylène	10, 50	Moulage par
Commingled			compression
Sisal	Résine	20, 30, 40	Resin Transfer
	Polyester		Molding (RTM)

$$arphi_{vol} = rac{V_{\mathit{fibre}}}{V_{\mathit{fibre}} + V_{\mathit{matrice}}}$$


- 2 types de matrice
- 3 procédés de mis en œuvre
- 3 types de fibres végétales

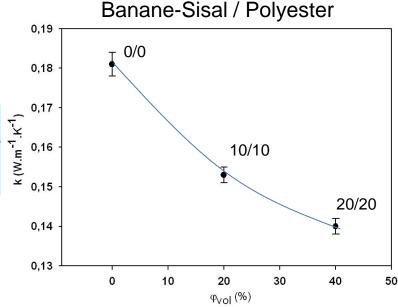



b) <u>Identification des facteurs d'influence</u>

La quantité de fibres

- Comportements opposés :

 | k | quand φ | que le polypropylène |
 |- Fibres de banane s | que le polypropylène |
 |- Fibres de sisal contuit
- Fibres de banane sont plus isolantes que le polypropylène
 - -Fibres de sisal sont plus conductrices que la résine polyester


- Moyen d'estimer k_{fibre banane}

b) <u>Identification des facteurs d'influence</u>

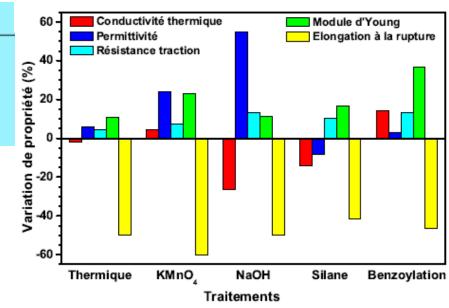
L'hybridation des fibres (mélange de plusieurs types de fibres)

Composites	φ_{vol} $(\%)$	Ratio	$(W.m^{-1}.K^{-1})$
Polyester + fibres hybrides	0	-	0.181 ± 0.003
Banane : Sisal	20	10:10	0.153 ± 0.002
	40	20:20	0.140 ± 0.002

Observation: k \ quand φ \ \ \ \

Les propriétés thermophysiques sont fixées par la fibre la plus isolante

b) <u>Identification des facteurs d'influence</u>



Traitement des fibres

Problématique majeure dans les composites : l'adhésion fibre/matrice

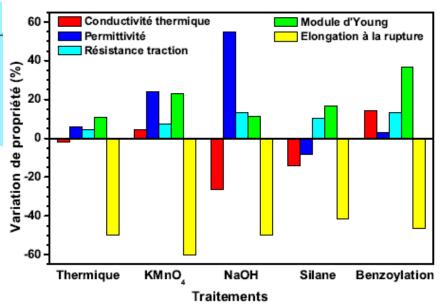
Littérature abondante sur propriétés mécaniques, très peu sur propriétés thermophysiques

Composites	φ_{vol}	Traitement	k
	(%)		$(W.m^{-1}.K^{-1})$
Polyester/	40	Aucun	0.205 ± 0.003
fibres sisal	40	Thermique 100 °C	0.201 ± 0.003
	40	Benzoylation	0.234 ± 0.003
	40	$KMnO_4$	0.214 ± 0.007
	40	NaOH 5%	0.151 ± 0.003
	40	Silane	0.176 ± 0.003

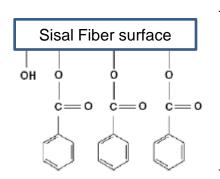
2 types de traitements

Amélioration du transfert de chaleur KMnO₄, Benzoylation

Peu d'effet ou diminution de la conductivité thermique Thermique, NaOH, Silane


b) <u>Identification des facteurs d'influence</u>

Problématique majeure dans les composites : l'adhésion fibre/matrice

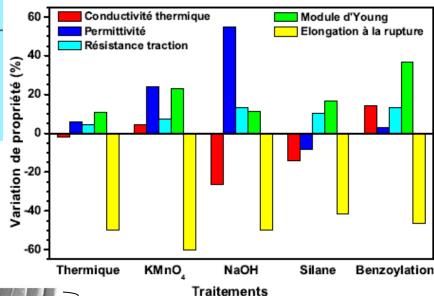

Littérature abondante sur propriétés mécaniques, très peu sur propriétés thermophysiques

Composites	φ_{vol}	Traitement	k
	(%)		$(W.m^{-1}.K^{-1})$
Polyester/	40	Aucun	0.205 ± 0.003
fibres sisal	40	Thermique 100 °C	0.201 ± 0.003
	40	Benzoylation	0.234 ± 0.003
	40	$KMnO_4$	0.214 ± 0.007
	40	NaOH 5%	0.151 ± 0.003
	40	Silane	0.176 ± 0.003

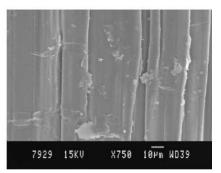
Amélioration du transfert de chaleur :

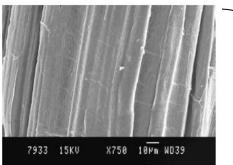
Benzoylation

Réduction de l'hydrophilicité
Augmentation la compatibilité fibre / matrice


b) <u>Identification des facteurs d'influence</u>

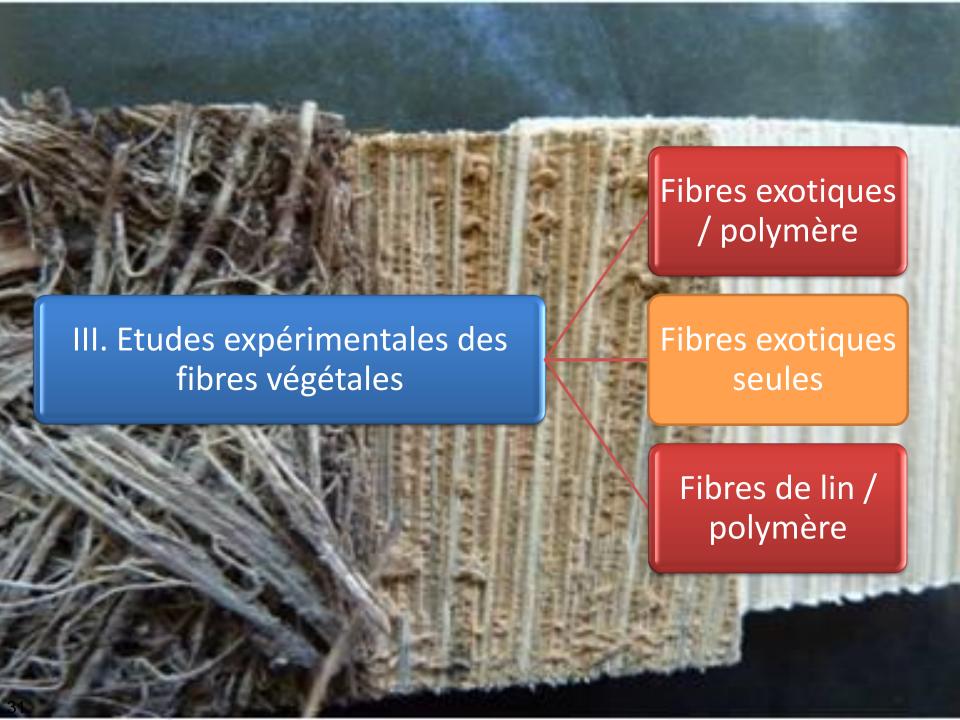
Problématique majeure dans les composites : l'adhésion fibre/matrice


Littérature abondante sur propriétés mécaniques, très peu sur propriétés thermophysiques


Composites	φ_{vol}	Traitement	k
	(%)		$(W.m^{-1}.K^{-1})$
Polyester/	40	Aucun	0.205 ± 0.003
fibres sisal	40	Thermique 100 °C	0.201 ± 0.003
	40	Benzoylation	0.234 ± 0.003
	40	$KMnO_4$	0.214 ± 0.007
	40	NaOH 5%	0.151 ± 0.003
	40	Silane	0.176 ± 0.003

Diminution de tranfert de chaleur :

NaOH



Fibrillation

 \int de la surface de contact

Diminution de k

Application dans le domaine du bâtiment, remplacement des matériaux d'isolation classique Exploitation annuelle : Potentiel de 2 Mtonnes annuelles (parties renouvelables)

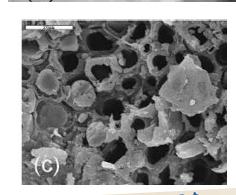
■ <u>Influence de la variété de bois et de la zone de prélèvement</u> :

Tronc

Variété de bois: ElGhers, Deglet-Nour, Mech-Degla k (W.m⁻¹.K⁻¹) Grappe Liffe Pétiole Fruit Palme

100µа

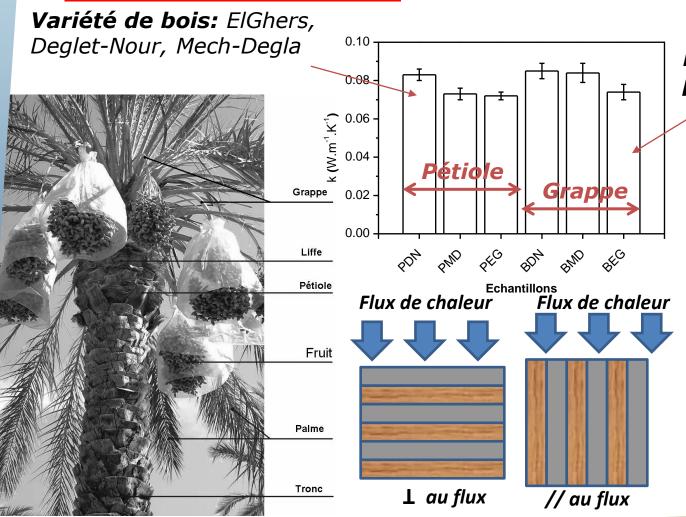
plante

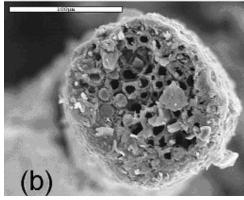

Prélèvement dans la

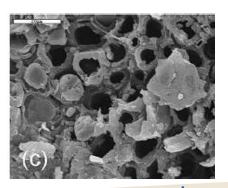
P : Pétiole B : Grappe

DN : Pétiole Deglet Nour

MD : Pétiole Mech-Degla

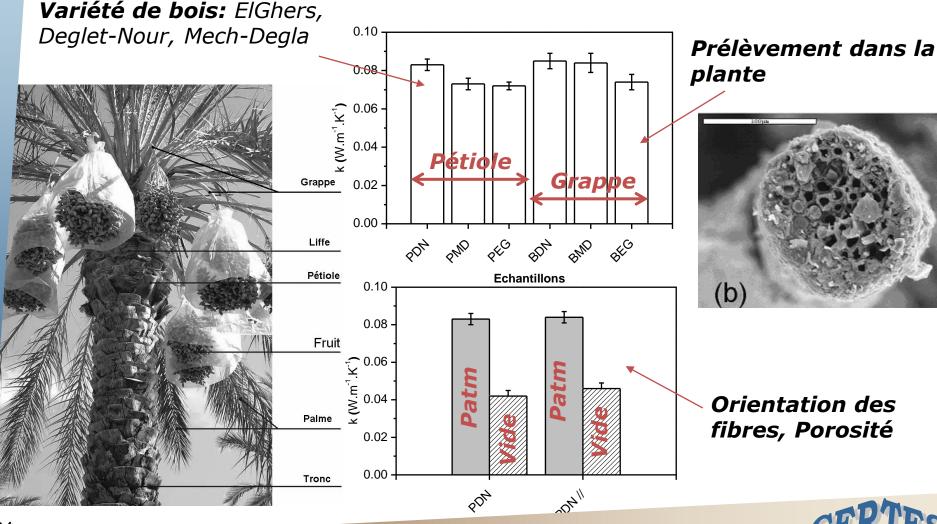

EG: Pétiole ElGhers


DICO

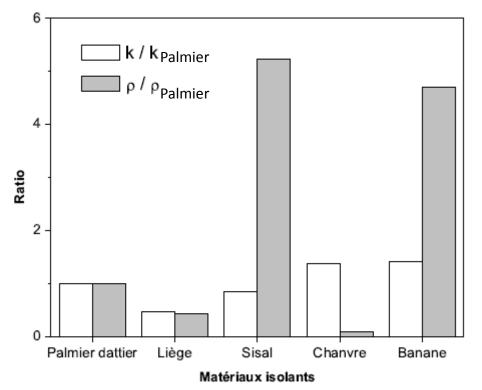

Application dans le domaine du bâtiment, remplacement des matériaux d'isolation classique Exploitation annuelle : Potentiel de 2 Mtonnes annuelles (parties renouvelables)

■ <u>Influence de l'orientation des fibres</u> :

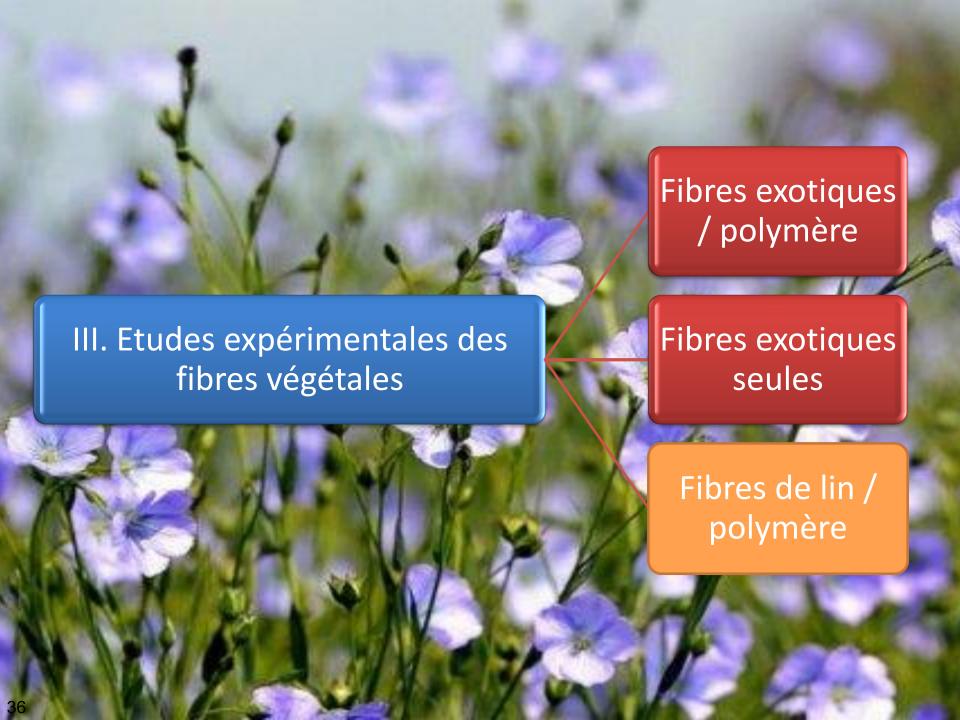
Prélèvement dans la plante



Application dans le domaine du bâtiment, remplacement des matériaux d'isolation classique Exploitation annuelle : Potentiel de 2 Mtonnes annuelles (parties renouvelables)

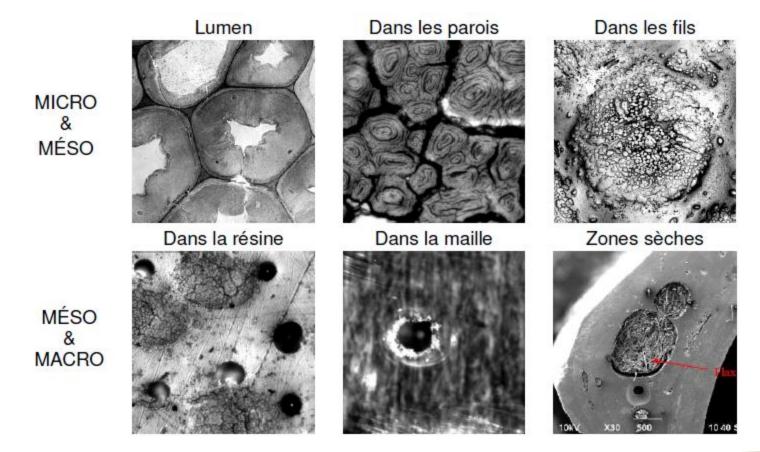

■ <u>Influence de l'orientation des fibres et de la pression</u> :

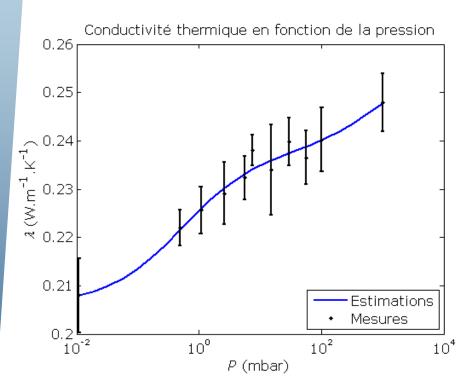
Application dans le domaine du bâtiment, remplacement des matériaux d'isolation classique Exploitation annuelle : Potentiel de 2 Mtonnes annuelles (parties renouvelables)


Comparaison à d'autres matériaux naturels

Conclusion:

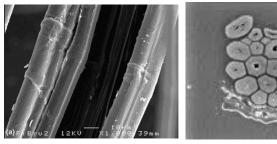
- Les parties renouvelables du bois de palmier constituent un bon isolant thermique
- Effet de l'orientation des fibres n'est pas significatif
- Effet important de la porosité

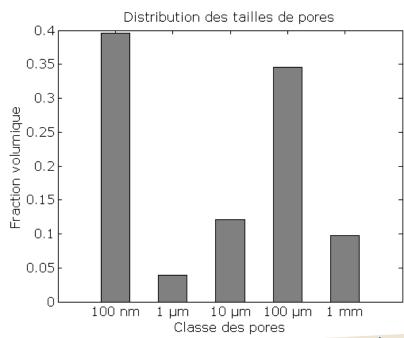


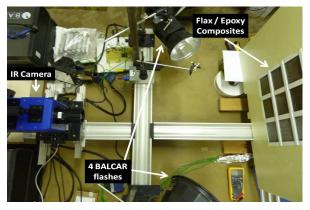

III.3) Porosité de composites lin/epoxy par méthode thermique

Variations de k en fonction de la pression : essais sur composites Epoxy / fibres de Lin ; collab (U. Caen)

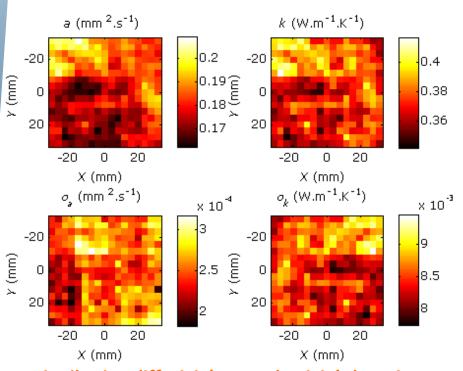
Objectifs: Obtenir la distribution de taille pores pour remonter aux types de porosité




Variations de k en fonction de la pression : essais sur composites Epoxy / fibres de Lin ; collab (U. Caen)


Conductivité thermique de l'air :

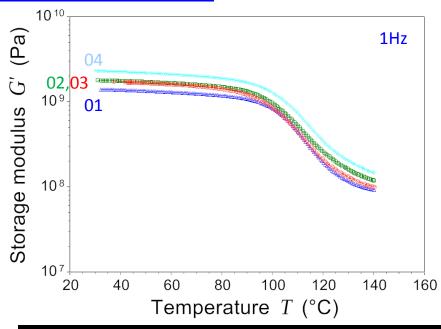
- Effet Knudsen :
$$\lambda_{air} = \frac{\lambda_{air,atm}}{1 + C \left(\frac{T}{Pd}\right)}$$

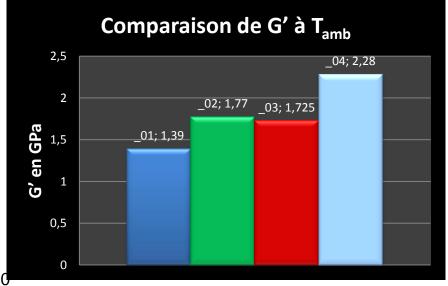


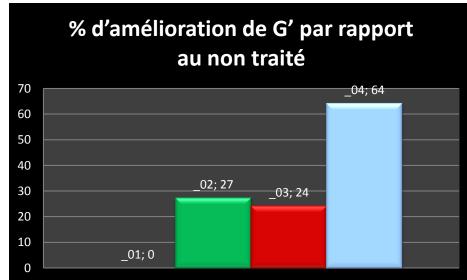
III.3) Porosité de composites lin/epoxy par thermographie IR

Dispositif expérimental

Sample 3 - porosity rate=6% 10 Number 0.19 0.2 0.21 0.22 0.15 0.18 $a \text{ (mm}^2.s^{-1})$ Sample 4 - porosity rate=12% Number 10 0.21 0.22 $a \text{ (mm}^2.s^{-1})$ Sample 5 - porosity rate=7% 10 Number 0.15 0.18 0.19 0.2 0.21 0.22 0.17 $a \text{ (mm}^2.s^{-1})$ Sample 6 - porosity rate=12% Number 10 0.15 0.16 0.21 0.22 $a \text{ (mm}^2.s^{-1})$


Distribution diffusivité et conductivité thermique




III.3) Etude thermomécanique des systèmes lin / epoxy

Influence des traitements chimiques sur les propriétés mécaniques

Echantillon	Nom	Traitement textile
01	Non traité	Non treated tissue
02	Lessivé	Leaching of tissue with a detergent
03	Blanchi	Bleaching of tissue with peroxide
04	Mercerisé	Mercerization of tissue with NaOH at T=20-30 C

Conclusion et Perspectives

- Les fibres végétales : utilisation en pleine expansion, renouvelables, légères
- Mise en évidence de plusieurs facteurs d'influence :

Taux fibres, hybridation ,traitement des fibres, variétés des fibres, orientation des fibres, porosité...

- Prochaines études :
 - Prolongation de l'étude sur la porosité : Influence du procédé de mise en œuvre sur le taux de porosité
 - Les études futures devraient à l'avenir privilégier :
 - l'utilisation de ressources locales
 - l'utilisation de résidus de végétaux actuellement non valorisés
 - l'utilisation de matières naturelles pour le traitement des fibres

Actuellement, collaborations universitaires et industrielles... d'autres applications ?

