
HAL Id: hal-00978358
https://hal.science/hal-00978358v1

Submitted on 4 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dual subgradient algorithms for large-scale nonsmooth
learning problems

Bruce Cox, Anatoli B. Juditsky, Arkadii S. Nemirovski

To cite this version:
Bruce Cox, Anatoli B. Juditsky, Arkadii S. Nemirovski. Dual subgradient algorithms for large-
scale nonsmooth learning problems. Mathematical Programming, 2014, 148 (1), pp.143-180.
�10.1007/s10107-013-0725-1�. �hal-00978358�

https://hal.science/hal-00978358v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

30
2.

23
49

v2
 [

m
at

h.
O

C
]

 2
6

A
ug

 2
01

3

Dual subgradient algorithms for large-scale nonsmooth learning

problems

Bruce Cox∗ Anatoli Juditsky† Arkadi Nemirovski‡

November 17, 2018

Abstract

“Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent
algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to
have optimal (theoretical) complexity estimates which do not depend on the problem dimen-
sion. However, to attain the optimality, the domain of the problem should admit a “good
proximal setup”. The latter essentially means that 1) the problem domain should satisfy cer-
tain geometric conditions of “favorable geometry”, and 2) the practical use of these methods
is conditioned by our ability to compute at a moderate cost proximal transformation at each
iteration. More often than not these two conditions are satisfied in optimization problems
arising in computational learning, what explains why proximal type FO methods recently
became methods of choice when solving various learning problems. Yet, they meet their
limits in several important problems such as multi-task learning with large number of tasks,
where the problem domain does not exhibit favorable geometry, and learning and matrix
completion problems with nuclear norm constraint, when the numerical cost of computing
proximal transformation becomes prohibitive in large-scale problems.

We propose a novel approach to solving nonsmooth optimization problems arising in
learning applications where Fenchel-type representation of the objective function is available.
The approach is based on applying FO algorithms to the dual problem and using the accuracy
certificates supplied by the method to recover the primal solution. While suboptimal in terms
of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for
the primal problem but requires the problem domain to admit a Linear Optimization oracle

– the ability to efficiently maximize a linear form on the domain of the primal problem.

1 Introduction

Motivation and background. The problem of interest in this paper is a convex optimization
problem in the form

Opt(P) = max
x∈X

f∗(x) (P)

where X is a nonempty closed and bounded subset of Euclidean space Ex, and f∗ is concave
and Lipschitz continuous function on X. We are interested in the situation where the sizes
of the problem put it beyond the “practical grasp” of polynomial time interior point methods
with their rather computationally expensive in the large scale case iterations. In this case the

∗US Air Force
†LJK, Université J. Fourier, B.P. 53, 38041 Grenoble Cedex 9, France, Anatoli.Juditsky@imag.fr
‡Georgia Institute of Technology, Atlanta, Georgia 30332, USA, nemirovs@isye.gatech.edu

Research of the third author was supported by the ONR grant N000140811104 and the NSF grants DMS 0914785,
CMMI 1232623.

1

http://arxiv.org/abs/1302.2349v2

methods of choice are the First Order (FO) optimization techniques. The state of the art of
these techniques can be briefly summarized as follows:
• The most standard FO approach to (P) requires to provide X, Ex with proximal setup
‖ · ‖, ω(·), that is to equip the space Ex with a norm ‖ · ‖, and the domain X of the problem –
with a strongly convex, modulus 1, w.r.t. ‖ · ‖ distance-generating function (d.-g.f.) ω(·) with
variation over X bounded by some Ω2

X . After such a setup is fixed, generating an ǫ-solution
to the problem (i.e., a point xǫ ∈ X satisfying Opt(P) − f∗(xǫ) ≤ ǫ) costs at most N(ǫ) steps,
where

• N(ǫ) = O(1)
Ω2

X
L2

ǫ2
in the nonsmooth case, where f∗ is Lipschitz continuous, with constant

L w.r.t. ‖ · ‖ (Mirror Descent (MD) algorithm, see, e.g., [11, Chapter 5]), and

• N(ǫ) = O(1)ΩX

√
L
ǫ in the smooth case, where f∗ possesses Lipschitz continuous, with

constant L, gradient: ‖f ′∗(x)− f ′∗(x
′)‖∗ ≤ L‖x− x′‖, where ‖ · ‖∗ is the norm conjugate to

‖ · ‖ (Nesterov’s algorithm for smooth convex optimization, see, e.g., [18, 20]). Here and in
the sequel O(1)’s stand for positive absolute constants. Note that in the large scale case,
these convergence rates are the best allowed under circumstances by Information-Based
Complexity Theory (for details, see, e.g., [17, 19]).

A step of a FO method essentially reduces to computing f∗, f ′∗ at a point and computing
prox-mapping (“Bregman projection”) (x ∈ X, ξ ∈ Ex) 7→ argminu∈X {ω(u) + 〈ξ − ω′(x).u〉},
construction originating from J.-J. Moreau [13, 14] and L. Bregman [3].
• A different way of processing (P) by FO methods, originating in the breakthrough paper of
Nesterov [20], is to use Fenchel-type representation of f∗:

f∗(x) = min
y∈Y

[F (x, y) := 〈x,Ay + a〉+ ψ(y)] , (1)

where Y is a closed and bounded subset of Euclidean space Ey, A : Ey 7→ Ex is a linear
mapping, and ψ(y) is a convex function. Representations of this type are readily available for
a wide family of “well-structured” nonsmooth objectives f∗; moreover, usually we can make ψ
to possess Lipschitz continuous gradient or even to be linear (for instructive examples, see, e.g.,
[20, 21] or [11, Chapter 6]). Whenever this is the case, and given proximal setups (‖·‖x, ωx(·)) and
(‖ · ‖y, ωy(·)) for (Ex,X) and for (Ey, Y), proximal type algorithms like Nesterov’s smoothing
[20] and Dual Extrapolation [21], or Mirror Prox [15] allow to find an ǫ-solution to (P) in
O(1/ǫ) proximal type iterations, the factors hidden in O(·) being explicitly given functions of
the variations Ω2

X of ωx and Ω2
Y of ωy and of the partial Lipschitz constants of ∇F w.r.t. x and

to y.
Clearly, to be practical, methods of the outlined type should rely on “good” proximal setups

– those resulting in “moderate” values of ΩX and ΩY and not too difficult to compute prox-
mappings, associated with ωX and ωY . This is indeed the case for domainsX arising in numerous
applications (for instructive examples, see, e.g., [11, Chapter 5]). The question addressed in this
paper is what to do when one of the domains, namely, X does not admit a “good” proximal
setup. Here are two instructive examples:

A. X is the unit ball of the nuclear norm ‖σ(·)‖1 in the space Rp×q of p × q matrices (from
now on, for a p × q matrix x, σ(x) = [σ1(x); ...;σmin[p,q](x)] denotes the vector comprised by
singular values of x taken in the non-ascending order). This domain arises in various low-rank-
oriented problems of matrix recovery. In this case, X does admit a proximal setup with ΩX =
O(1)

√
ln(pq). However, computing prox-mapping involves full singular value decomposition

2

(SVD) of a p× q matrix and becomes prohibitively time-consuming when p, q are in the range of
tens of thousand. Note that this hardly is a shortcoming of the existing proximal setups, since
already computing the nuclear norm (that is, checking the inclusion x ∈ X) requires computing
the SVD of x.

B. X is a high-dimensional box – the unit ball of the ‖·‖∞-norm of Rm with large m, or, more
generally, the unit ball of the ℓ∞/ℓ2 norm ‖x‖∞|2 = max1≤i≤m ‖xi‖2, where x = [x1; ...;xm] ∈
E = Rn1 × ... ×Rnm . Here it is easy to point out a proximal setup with an easy-to-compute
prox mapping (e.g., the Euclidean setup ‖ · ‖ = ‖ · ‖2, ω(x) = 1

2 〈x, x〉). However, it is easily seen
that whenever ‖ · ‖ is a norm satisfying ‖ej‖ ≥ 1 for all basic orths ej ,

1 one has ΩX ≥ O(1)
√
m,

that is, the (theoretical) performance of “natural” proximal FO methods deteriorates rapidly as
m grows.

Note that whenever a prox-mapping associated withX is “easy to compute,” it is equally easy
to maximize over X a linear form (since Proxx(−tξ) converges to the maximizer of 〈ξ, x〉 over X
as t→ ∞). In such a case, we have at our disposal an efficient Linear Optimization (LO) oracle –
a routine which, given on input a linear form ξ, returns a point xX(ξ) ∈ Argmaxx∈X〈ξ, x〉. This
conclusion, however, cannot be reversed – our abilities to maximize, at a reasonable cost, linear
functionals over X does not imply the possibility to compute a prox-mapping at a comparable
cost. For example, when X ∈ Rp×q is the unit ball of the nuclear norm, maximizing a linear
function 〈ξ, x〉 = Tr(ξxT) over X requires finding the largest singular value of a p × q matrix
and associated left singular vector. For large p and q, solving the latter problem is by orders
of magnitude cheaper than computing full SVD of a p × q matrix. This and similar examples
motivate the interest, especially in Machine Learning community, in optimization techniques
solving (P) via an LO oracle for X. In particular, the only “classical” technique of this type –
the Conditional Gradient (CG) algorithm going back to Frank and Wolfe [10] – has attracted
much attention recently. In the setting of CG method it is assumed that f is smooth (with
Hölder continuous gradient), and the standard result here (which is widely known, see, e.g.,
[7, 8, 24]) is the following.

Proposition 1.1 Let X be a closed and bounded convex set in a Euclidean space Ex such that

X linearly spans Ex. Assume that we are given an LO oracle for X, and let f∗ be a concave

continuously differentiable function on X such that for some L <∞ and q ∈ (1, 2] one has

∀x, x′ ∈ X : f∗(x
′) ≥ f∗(x) + 〈f ′∗(x), x′ − x〉 − 1

q
L‖x′ − x‖qX , (2)

where ‖ · ‖X is the norm on Ex with the unit ball 1
2 [X −X]. Consider a recurrence of the form

xt 7→ xt+1 ∈ X : f∗(xt+1) ≥ f∗
(
xt +

2
t+1 [xX(f

′
∗(xt))− xt]

)
, t = 1, 2, ..., (3)

where xX(ξ) ∈ Argmaxx∈X〈ξ, x〉 and x1 ∈ X. Then for all t = 2, 3, ... one has

ǫt := max
x∈X

f∗(x)− f∗(xt) ≤
22q

q(3− q)
· L
(t+ 1)q−1

. (4)

1This is a natural normalization: indeed, ‖ej‖ ≪ 1 means that j-th coordinate of x has a large Lipschitz
constant w.r.t. ‖ · ‖, in spite of the fact that this coordinate is “perfectly well behaved” on X – its variation on
the set is just 2.

3

Contents of this paper. Assuming an LO oracle for X available, the major limitation in
solving (P) by the Conditional Gradient method is the requirement for problem objective f∗ to
be smooth (otherwise, there are no particular requirements to the problem geometry). What
to do if this requirement is not satisfied? In this paper, we investigate two simple options
for processing this case, based on Fenchel-type representation (1) of f∗ which we assume to
be available. Fenchel-type representations are utilized in various ways by a wide spectrum of
duality-based convex optimization algorithms (see, e.g., [5] and references therein). Here we
primarily focus on “nonsmooth” case, where the representation involves a Lipschitz continuous
convex function ψ given by a First Order oracle. Besides this, we assume that Y (but not X!)
does admit a proximal setup (‖·‖y , ωy(·)). In this case, we can pass from the problem of interest
(P) to its dual

Opt(D) = min
y∈Y

[
f(y) := max

x∈X
F (x, y)

]
. (D)

Clearly, the LO oracle for X along with the FO oracle for ψ provide a FO oracle for (D):

f(y) = 〈x(y), Ay + a〉+ ψ(y), f ′(y) = ATx(y) + ψ′(y), x(y) := xX(Ay + a).

Since Y admits a proximal setup, this is enough to allow to get an ǫ-solution to (D) in N(ǫ) =

O(1)
L2Ω2

Y

ǫ2 steps, L being the Lipschitz constant of f w.r.t. ‖·‖y . Whatever slow the resulting rate
of convergence could look, we shall see in the mean time that there are important applications
where this rate seems to be the best known so far. When implementing the outlined scheme,
the only nontrivial question is how to recover a good optimal solution to the problem (P)
of actual interest from a good approximate solution to its dual problem (D). The proposed
answer to this question stems from the pretty simple at the first glance machinery of accuracy
certificates proposed recently in [16], and closely related to the work [22]. The summary of our
approach is as follows. When solving (D) by a FO method, we generate search points yτ ∈ Y
where the subgradients f ′(yτ) of f are computed; as a byproduct of the latter computation,
we have at our disposal the points xτ = x(yτ). As a result, after t steps we have at our
disposal execution protocol yt = {yτ , f ′(yτ)}tτ=1. An accuracy certificate associated with this
protocol is, by definition, a collection λt = {λtτ}tτ=1 of nonnegative weights λtτ summing up to
1:
∑t
τ=1 λ

t
τ = 1. The resolution of the certificate is, by definition, the quantity

ǫ(yt, λt) = max
y∈Y

t∑

τ=1

λtτ 〈f ′(yτ), yτ − y〉.

An immediate observation is (see section 2) that setting ŷt =
∑t
τ=1 λ

t
τyτ , x̂

t =
∑t
τ=1 λ

t
τxτ , we

get a pair of feasible solutions to (D) and to (P) such that

[f(ŷt)−Opt(D)] + [Opt(P)− f∗(x̂
t)] ≤ ǫ(yt, λt).

Thus, assuming that the FO method in question produces, in addition to search points, accuracy
certificates for the resulting execution protocols and that the resolution of these certificates goes
to 0 as t → ∞ at some rate, we can use the certificates to build feasible approximate solutions
to (D) and to (P) with nonoptimalities, in terms of the objectives of the respective problems,
going to 0, at the same rate, as t→ ∞.

The scope of the outlined approach depends on whether we are able to equip known methods
of nonsmooth convex minimization with computationally cheap mechanisms for building “good”
accuracy certificates. The meaning of “good” in this context is exactly that the rate of conver-
gence of the corresponding resolution to 0 is identical to the standard efficiency estimates of the

4

methods (e.g., for MD this would mean that ǫ(yt, λt) ≤ O(1)LΩY t
−1/2). [16] provides a positive

answer to this question for the most attractive academically polynomial time oracle-oriented
algorithms for convex optimization, like the Ellipsoid method. These methods, however, usu-
ally are poorly suited for large-scale applications. In this paper, we provide a positive answer
to the above question for the three most attractive oracle-oriented FO methods for large-scale
nonsmooth convex optimization known to us. Specifically, we consider

• MD (where accuracy certificates are easy to obtain, see also [22]),
• Full Memory Mirror Descent Level (MDL) method (a Mirror Descent extension of the

Bundle-Level method [12]; to the best of our knowledge, this extension was not yet described in
the literature), and

• Non-Euclidean Restricted Memory Level method (NERML) originating from [2], which
we believe is the most attractive tool for large-scale nonsmooth oracle-based convex optimiza-
tion. To the best of our knowledge, equipping NERML with accuracy certificates is a novel
development.

We also consider a different approach to non-smooth convex optimization over a domain
given by LO oracle, approach mimicking Nesterov’s smoothing [20]. Specifically, assuming, as
above, that f∗ is given by Fenchel-type representation (1) with Y admitting a proximal setup, we
use this setup, exactly in the same way as in [20], to approximate f∗ by a smooth function which
then is minimized by the CG algorithm. Therefore, the only difference with [20] is in replacing
Nesterov’s optimal algorithm for smooth convex optimization (which requires a good proximal
point setup for X) with although slower, but less demanding (just LO oracle for X is enough)
CG method. We shall see in the mean time that, unsurprisingly, the theoretical complexity of
the two outlined approaches – “nonsmooth” and “smoothing” ones – are essentially the same.

The main body of the paper is organized as follows. In section 2, we develop the components
of the approach related to duality and show how an accuracy certificate with small resolution
yields a pair of good approximate solutions to (P) and (D). In section 3, we show how to equip
the MD, MDL and NERML algorithms with accuracy certificates. In section 4, we investigate
the outlined smoothing approach. In section 5, we consider examples, primarily of Machine
Learning origin, where we prone the usage of the proposed algorithms. Section 6 reports some
preliminary numerical results. Some technical proofs are relegated to the appendix.

2 Duality and accuracy certificates

2.1 Situation

Let Ex be a Euclidean space, X ⊂ Ex be a nonempty closed and bounded convex set equipped
with LO oracle – a procedure which, given on input ξ ∈ Ex, returns a maximizer xX(ξ) of
the linear form 〈ξ, x〉 over x ∈ X. Let f∗(x) be a concave function given by Fenchel-type
representation:

f∗(x) = min
y∈Y

[〈x,Ay + a〉+ ψ(y)] , (5)

where Y is a convex compact subset of a Euclidean space Ey and ψ is a Lipschitz continuous
convex function on Y given by a First Order oracle.

In the sequel we set
f(y) = max

x∈X
[〈x,Ay + a〉+ ψ(y)] ,

5

and consider two optimization problems

Opt(P) = max
x∈X

f∗(x) (P)

Opt(D) = min
y∈Y

f(y) (D)

By the standard saddle point argument, we have Opt(P) = Opt(D).

2.2 Main observation

Observe that the First Order oracle for ψ along with the LO oracle for X provide a First Order
oracle for (D); specifically, the vector field

f ′(y) = ATxX(Ay + a) + ψ′(y) : Y → Ey,

where ψ′(y) ∈ ∂ψ(y) is a subgradient field of f .
Consider a collection yt = {yτ ∈ Y, f ′(yτ)}tτ=1 along with a collection λt = {λτ ≥ 0}tτ=1 such

that
∑t
τ=1 λτ = 1, and let us set

y(yt, λt) =
∑t
τ=1 λτyτ ,

x(yt, λt) =
∑t
τ=1 λτxX(Ayτ + a),

ǫ(yt, λt) = max
y∈Y

∑t
τ=1 λτ 〈f ′(yτ), yτ − y〉.

In the sequel, the components yτ of yt will be the search points generated by a First Order
minimization method as applied to (D) at the steps 1, ..., t. We call yt the associated execution
protocol, call a collection λt of t nonnegative weights summing up to 1 an accuracy certificate
for this protocol, and refer to the quantity ǫ(yt, λt) as to the resolution of the certificate λt at
the protocol yt.

Our main observation (cf. [16]) is as follows:

Proposition 2.1 Let yt, λt be as above. Then x̂ := x(yt, λt), ŷ := y(yt, λt) are feasible solutions
to problems (P), (D), respectively, and

f(ŷ)− f∗(x̂) = [f(ŷ)−Opt(D)] + [Opt(P)− f∗(x̂)] ≤ ǫ(yt, λt). (6)

Proof. Let F (x, y) = 〈x,Ay + a〉 + ψ(y) and x(y) = xX(Ay + a), so that f(y) = F (x(y), y).
Observe that f ′(y) = F ′

y(x(y), y), where F
′
y(x, y) is a selection of the subdifferential of F w.r.t.

y, that is, F ′
y(x, y) ∈ ∂yF (x, y) for all x ∈ X, y ∈ Y . Setting xτ = x(yτ), we have for all y ∈ Y :

ǫ(yt, λt) ≥
t∑

τ=1

λτ 〈f ′(yτ), yτ − y〉 =
t∑

τ=1

λτ 〈F ′
y(xτ , yτ), yτ − y〉

≥
t∑

τ=1

λτ [F (xτ , yτ)− F (xτ , y)] [by convexity of F in y]

=
t∑

τ=1

λτ [f(yτ)− F (xτ , y)] [since xτ = x(yτ), so that F (xτ , yτ) = f(yτ)] (7)

≥ f(ŷ)− F (x̂, y) [by convexity of f and concavity of F (x, y) in x].

We conclude that
ǫ(yt, λt) ≥ max

y∈y
[f(ŷ)− F (x̂, y)] = f(ŷ)− f∗(x̂).

The inclusions x̂ ∈ X, ŷ ∈ Y are evident.

6

Remark 2.1 In the proof of Proposition 2.1, the linearity of F w.r.t. x was never used, so that in fact
we have proved a more general statement:
Given a concave in x ∈ X and convex in y ∈ Y Lipschitz continuous function F (x, y), let us associate with

it a convex function f(y) = maxx∈X F (x, y), a concave function f∗(x) = miny∈Y F (x, y) and problems (P)
and (D). Let F ′

y(x, y) be a vector field with F ′

y(x, y) ∈ ∂yF (x, y), so that with x(y) ∈ Argmaxx∈X F (x, y),
the vector f ′(y) = F ′

y(x(y), y) is a subgradient of f at y. Assume that problem (D) associated with F
is solved by a FO method using f ′(y) = F ′

y(x(y), y) which produced execution protocol yt and accuracy

certificate λt. Then setting

x̂ =
∑

τ

λτx(yτ), and ŷ =
∑

τ

λτyτ ,

we ensure (6).
Moreover, let δ ≥ 0, and let xδ(y) be a δ-maximizer of F (x, y) in x ∈ X: for all y ∈ Y ,

F (xδ(y), y) ≥ maxx∈XF (x, y)− δ.

Suppose that (D) is solved by a FO method using approximate subgradients f̃ ′(y) = F ′

y(xδ(y), y), and pro-

ducing execution protocol yt = {yτ , f̃ ′(yτ)}tτ=1 and accuracy certificate λt. Then setting x̂ =
∑

τ λτxδ(yτ)
and ŷ =

∑
τ λτyτ , we ensure the δ-relaxed version of (6) – the relation

f(ŷ)− f∗(x̂) ≤ ǫ(yt, λt) + δ, ǫ(yt, λt) = max
y∈Y

t∑

τ=1

λtτ 〈f̃ ′(yτ), yτ − y〉.

All we need to extract the “Moreover” part of this statement from the proof of Proposition 2.1 is to set
xτ = xδ(yτ), to replace f ′(yτ) with f̃

′(yτ) and to replace the equality in (7) with the inequality

t∑

τ=1

λτ [F (xτ , yτ)− F (xτ , y)] ≥
t∑

τ=1

λτ [f(yτ)− δ − F (xτ , y)] .

Discussion. Proposition 2.1 says that whenever we can equip the subsequent execution proto-
cols generated by a FO method, as applied to the dual problem (D), with accuracy certificates,
we can generate solutions to the primal problem (P) of inaccuracy going to 0 at the same rate
as the certificate resolution. In the sequel, we shall point out some “good” accuracy certificates
for several most attractive FO algorithms for nonsmooth convex minimization.

3 Accuracy certificates in oracle-oriented methods for large-

scale nonsmooth convex optimization

3.1 Convex minimization with certificates, I: Mirror Descent

3.1.1 Proximal setup.

As it was mentioned in the introduction, the Mirror Descent (MD) algorithm solving (D) is given
by a norm ‖ · ‖ on Ey and a distance-generating function (d.-g.f.) ω(y) : Y → R which should
be continuous and convex on Y , should admit a continuous in y ∈ Y o = {y ∈ Y : ∂ω(y) 6= ∅}
selection of subdifferentials ω′(y), and should be strongly convex, modulus 1, w.r.t. ‖ · ‖, that
is,

∀y, y′ ∈ Y o : 〈ω′(y)− ω′(y′), y − y′〉 ≥ ‖y − y′‖2.
A proximal setup (‖ · ‖, ω(·)) for Y,Ey gives rise to several entities, namely,

7

• Bregman distance Vy(z) = ω(z) − ω(y) − 〈ω′(y), z − y〉 (y ∈ Y o, z ∈ Y). Due to strong
convexity of ω, we have

∀(z ∈ Y, y ∈ Y o) : Vy(z) ≥
1

2
‖z − y‖2; (8)

• ω-center yω = argminy∈Y ω(y) of Y and ω-diameter

Ω = Ω[Y, ω(·)] :=
√
2

[
max
y∈Y

ω(y)−min
y∈Y

ω(y)

]
.

Observe that
〈ω′(yω), y − yω〉 ≥ 0, (9)

(see Lemma A.1), so that

Vyω(z) ≤ ω(z) − ω(yω) ≤
1

2
Ω2, ∀z ∈ Y, (10)

which combines with the inequality Vy(z) ≥ 1
2‖z − y‖2 to yield the relation

∀y ∈ Y : ‖y − yω‖ ≤ Ω; (11)

• prox-mapping
Proxy(ξ) = argmin

z∈Y
[〈ξ, z〉+ Vy(z)] ,

where ξ ∈ Ey and y ∈ Y o. This mapping takes its values in Y o and satisfies the relation
[4]

∀(y ∈ Y o, ξ ∈ Ey, y+ = Proxy(ξ)) : 〈ξ, y+ − z〉 ≤ Vy(z) − Vy+(z)− Vy(y+) ∀z ∈ Y. (12)

3.1.2 Mirror Descent algorithm

MD algorithm works with a vector field

y 7→ g(y) : Y → Ey, (13)

which is oracle represented, meaning that we have access to an oracle which, given on input
y ∈ Y , returns g(y). From now on we assume that this field is bounded:

‖g(y)‖∗ ≤ L[g] <∞, ∀y ∈ Y, (14)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖. The algorithm is the recurrence

y1 = yω; yτ 7→ gτ := g(yτ) 7→ yτ+1 := Proxyτ (γτgτ), (MD)

where γτ > 0 are stepsizes. Let us equip this recurrence with accuracy certificates, setting

λt =
(∑t

τ=1
γτ
)−1

[γ1; ...; γt]. (15)

8

Proposition 3.1 For every t, the resolution

ǫ(yt, λt) := max
y∈Y

t∑

τ=1

λτ 〈g(yτ), yτ − y〉

of λt on the execution protocol yt = {yτ , g(yτ)}tτ=1 satisfies the standard MD efficiency estimate

ǫ(yt, λt) ≤ Ω2 +
∑t
τ=1 γ

2
τ ‖g(yτ)‖2∗

2
∑t
τ=1 γτ

. (16)

In particular, if γτ =
γ(t)

‖g(yτ)‖∗ , γ(t) :=
Ω√
t
for 1 ≤ τ ≤ t 2,

ǫ(yt, λt) ≤ ΩL[g]√
t
. (17)

The proof of the proposition follows the lines of the “classical” proof in the case when g(·) is
the (sub)gradient field of the objective of a convex minimization problem (see, e.g., Proposition
5.1 of [11]), and is omitted.

Solving (P) and (D) using MD In order to solve (D), we apply MD to the vector field
g = f ′. Assuming that

Lf = sup
y∈Y

{‖f ′(y)‖∗ ≡ ‖A∗x(y) + ψ′(y)‖∗} <∞ [x(y) = xX(Ay + a)], (18)

we can set L[g] = Lf . For this setup, Proposition 2.1 implies that the MD accuracy certificate
λt, as defined in (15), taken together with the MD execution protocol yt = {yτ , g(yτ) = f ′(yτ) :=
A∗ x(yτ)︸ ︷︷ ︸

xτ

+ψ′(yτ)}tτ=1, yield the primal-dual feasible approximate solutions

x̂t =
t∑

τ=1

λtτxτ , ŷ
t =

t∑

τ=1

λtτyτ (19)

to (P) and to (D) such that
f(ŷt)− f∗(x̂

t) ≤ ǫ(yt, λt).

Combining this conclusion with Proposition 3.1, we arrive at the following result:

Corollary 3.1 In the case of (18), for every t = 1, 2, ... the t-step MD with the stepsize policy3

γτ =
Ω√

t‖f ′(xτ)‖∗
, 1 ≤ τ ≤ t

as applied to (D) yields feasible approximate solutions x̂t, ŷt to (P), (D) such that

[f(ŷt)−Opt(P)] + [Opt(D)− f∗(x̂t)] ≤ ΩLf√
t

[Ω = Ω[Y, ω(·)]]
(20)

In particular, given ǫ > 0, it takes at most

t(ǫ) = Ceil

(
Ω2L2

f

ǫ2

)
(21)

steps of the algorithm to ensure that

[f(ŷt)−Opt(P)] + [Opt(D)− f∗(x̂
t)] ≤ ǫ. (22)

2We assume here that gτ 6= 0 for all τ ≤ t. In the opposite case, the situation is trivial: when g(yτ∗) = 0, for
some τ∗ ≤ t, setting λt

τ = 0 for τ 6= τ∗ and λt
τ∗ = 1, we ensure that ǫ(yt, λt) = 0.

3We assume that f ′(yτ) 6= 0, for τ ≤ t; otherwise, as we remember, the situation is trivial.

9

3.2 Convex minimization with certificates, II: Mirror Descent with full mem-

ory

Algorithm MDL – Mirror Descent Level method – is a non-Euclidean version of (a variant of) the
Bundle-Level method [12]; to the best of our knowledge, this extension was not presented in the
literature. Another novelty in what follows is equipping the method with accuracy certificates.

MDL is a version of MD with “full memory”, meaning that the first order information on
the objective being minimized is preserved and utilized at subsequent steps, rather than being
“summarized” in the current iterate, as it is the case for MD. While the guaranteed accuracy
bounds for MDL are similar to those for MD, the typical practical behavior of the algorithm is
better than that of the “memoryless” MD.

3.2.1 Preliminaries

MDL with certificates which we are about to describe is aimed at processing an oracle-represented
vector field (13) satisfying (14), with the same assumptions on Y and the same proximal setup
as in the case of MD.

We associate with y ∈ Y the affine function

hy(z) = 〈g(y), y − z〉 [≥ f(y)− f(z) when g is the subgradient field of convex function f],

and with a finite set S ⊂ Y the family FS of affine functions on Ey which are convex combinations
of the functions hy(z), y ∈ S. In the sequel, the words “we have at our disposal a function
h(·) ∈ FS” mean that we know the functions hy(·), y ∈ S, and nonnegative weights λy, y ∈ S,
summing up to 1, such that h(z) =

∑
y∈S λyhy(z).

The goal of the algorithm is, given a tolerance ǫ > 0, to find a finite set S ⊆ Y and h ∈ FS
such that

max
y∈Y

h(y) ≤ ǫ. (23)

Note that our target S and h are of the form S = {y1, ..., yt}, h(y) =
∑t
τ=1 λτ 〈g(yτ), yτ −y〉 with

nonnegative λτ summing up to 1. In other words, our target is to build an execution protocol
yt = {yτ , g(yτ)}tτ=1 and an associated accuracy certificate λt such that ǫ(yt, λt) ≤ ǫ.

3.2.2 Construction

As applied to (13), MDL at a step t = 1, 2, ... generates search point yt ∈ Y where the value
g(yt) of g is computed; it provides us with the affine function ht(z) = 〈g(yt), yt − z〉. Besides
this, the method generates finite sets It ⊂ {1, ..., t} and

St = {yτ : τ ∈ It} ⊂ Y.

Steps of the method are split into subsequent phases numbered s = 1, 2, ..., and every phase is
associated with optimality gap ∆s ≥ 0.

To initialize the method, we set y1 = yω, I0 = ∅ (whence S0 = ∅ as well), ∆0 = +∞.
At a step t we act as follows:

• given yt, we compute g(yt), thus getting ht(·), and set I+t = It−1 ∪ {t}, S+
t = St−1 ∪ {yt};

10

• we solve the auxiliary problem

ǫt = max
y∈Y

min
τ∈I+t

hτ (y) = max
y∈Y

min
λ={λτ}

τ∈I
+
t

∑

τ∈I+t

λτhτ (y) : λ ≥ 0,
∑

τ∈I+t

λτ = 1

(24)

By the von Neumann lemma, an optimal solution to this (auxiliary) problem is associated
with nonnegative and summing up to 1 weights λtτ , τ ∈ I+t such that

ǫt = max
y∈Y

∑

τ∈I+t

λtτhτ (y),

and we assume that as a result of solving (24), both ǫt and λtτ become known. We set
λtτ = 0 for all τ ≤ t which are not in I+t , thus getting an accuracy certificate λt = [λt1; ...;λ

t
t]

for the execution protocol yt = {yτ , g(yτ)}tτ=1 along with ht(·) =∑t
τ=1 λ

t
τhτ (·). Note that

by construction
ǫ(yt, λt) = max

y∈Y
ht(y) = ǫt.

If ǫt ≤ ǫ, we terminate – h(·) = ht(·) satisfies (23). Otherwise we proceed as follows:

• If (case A) ǫt ≤ γ∆s−1, γ ∈ (0, 1) being method’s control parameter, we say that step t
starts phase s (e.g., step t = 1 starts phase 1), set

∆s = ǫt, It = {τ : 1 ≤ τ ≤ t : λtτ > 0} ∪ {1}, St = {yτ : τ ∈ It}, ŷt = yω

otherwise (case B) we set
It = I+t , St = S+

t , ŷt = yt.

Note that in both cases we have

ǫt = max
y∈Y

min
τ∈It

hτ (y) (25)

• Finally, we define t-th level as ℓt = γǫt and associate with this quantity the level set
Ut = {y ∈ Y : hτ (y) ≥ ℓt ∀τ ∈ It}, specify yt+1 as the ω-projection of ŷt on Ut:

yt+1 = argmin
y∈Ut

[
ω(y)− 〈ω′(ŷt), y〉

]
(26)

and loop to step t+ 1.

3.2.3 Efficiency estimate

Proposition 3.2 Given on input a target tolerance ǫ > 0, the MDL algorithm terminates after

finitely many steps, with the output yt = {Y ∋ yτ , g(yτ)}tτ=1, λ
t = {λtτ ≥ 0}tτ=1,

∑
τ λ

t
τ = 1 such

that

ǫ(yt, λt) ≤ ǫ. (27)

The number of steps of the algorithm does not exceed

N =
2Ω2L2[g]

γ4(1− γ2)ǫ2
+ 1 [Ω = Ω[Y, ω(·)]]. (28)

For proof, see Section A.1.

11

Remark 3.1 Assume that ω(·) is continuously differentiable on the entire Y , so that the quan-
tity

Ω+ = Ω+[Y, ω] := max
y,z∈Y

Vy(z)

is finite. From the proof of Proposition 3.2 it follows immediately that one can substitute the
rule “ŷt = yω when t starts a phase and ŷt = yt otherwise” with a simpler one “ŷt = yt for all
t,” at the price of replacing Ω in (28) with Ω+.

Solving (P) and (D) via MDL is completely similar to the case of MD: given a desired
tolerance ǫ > 0, one applies MDL to the vector field g(y) = f ′(y) until the target (23) is
satisfied. Assuming (18), we can set L[g] = Lf , so that by Proposition 3.2 our target will be
achieved in

t(ǫ) ≤ Ceil

(
Ω2L2

f

γ4(1− γ2)ǫ2
+ 1

)
[Ω = Ω[Y, ω(·)]] (29)

steps, with Lf given by (18). Assuming that the target is attained at a step t, we have at our
disposal the execution protocol yt = {yτ , f ′(yτ)}tτ=1 along with the accuracy certificate λt = {λtτ}
such that ǫ(yt, λt) ≤ ǫ (by the same Proposition 3.2). Therefore, specifying x̂t, ŷt according to
(19) and invoking Proposition 2.1, we ensure (22). Note that the complexity t = t(ǫ) of finding
these solutions, as given by (29), is completely similar to the complexity bound (21) of MD.

3.3 Convex minimization with certificates, III: restricted memory Mirror

Descent

The fact that the number of linear functions hτ (·) involved into the auxiliary problems (24),
(26) (and thus computational complexity of these problems) grows as the algorithm proceeds
is a serious shortcoming of MDL from the computational viewpoint. NERML (Non-Euclidean
Restricted Memory Level Method) algorithm, which originates from [2] is a version of MD
“with restricted memory”. In this algorithm the number of affine functions hτ (·) participating
in (24), (26) never exceeds m + 1, where m is a control parameter which can be set to any
desired positive integer value. The original NERML algorithm, however, was not equipped with
accuracy certificates, and our goal here is to correct this omission.

3.3.1 Construction

Same as MDL, NERML processes an oracle-represented vector field (13) satisfying the bound-
edness condition (14), with the ultimate goal to ensure (23). The setup for the algorithm is
identical to that for MDL.

The algorithm builds search sequence y1 ∈ Y, y2 ∈ Y, ... along with the sets Sτ = {y1, ..., yτ},
according to the following rules:
A. Initialization. We set y1 = yω := argminy∈Y ω(y), compute g(y1) and set f1 = max

y∈Y
hy1(y).

We clearly have f1 ≥ 0.

• In the case of f1 = 0, we terminate and output h(·) = hy1(·) ∈ FS1
, thus ensuring (23)

with ǫ = 0.

• When f1 > 0, we proceed. Our subsequent actions are split into phases indexed with
s = 1, 2,

B. Phase s = 1, 2, ... At the beginning of phase s, we have at our disposal

12

• the set Ss = {y1, ..., yts} ⊂ Y of already built search points, and

• an affine function hs(·) ∈ FSs along with the real fs := max
y∈Y

hs(y) ∈ (0, f1].

We define the level ℓs of phase s as
ℓs = γfs,

where γ ∈ (0, 1) is a control parameter of the method. Note that ℓs > 0 due to fs > 0.
To save notation, we denote the search points generated at phase s as u1, u2, ..., so that

yts+τ = uτ , τ = 1, 2,
B.1. Initializing phase s. We somehow choose collection of m functions hs0,j(·) ∈ FSs ,
1 ≤ j ≤ m, such that the set

Y s
0 = cl {y ∈ Y : hs0,j(y) > ℓs, 1 ≤ j ≤ m}

is nonempty (here a positive integer m is a control parameter of the method).4 We set

u1 = yω.

B.2. Step τ = 1, 2, ... of phase s:
B.2.1. At the beginning of step τ , we have at our disposal

1. the set Ssτ−1 of all previous search points;

2. a collection of functions {hsτ−1,j(·) ∈ FSs
τ−1

}mj=1 such that the set

Y s
τ−1 = cl {x ∈ Y : hsτ−1,j(x) > ℓs, 1 ≤ j ≤ m}

is nonempty,

3. current search point uτ ∈ Y s
τ−1 such that

uτ = argmin
y∈Y s

τ−1

ω(y) (Πsτ)

Note that this relation is trivially true when τ = 1.

B.2.2. Our actions at step τ are as follows.
B.2.2.1. We compute g(uτ) and set

hτ−1,m+1(y) = 〈g(uτ), uτ − y〉.

B.2.2.2. We solve the auxiliary problem

Opt = max
y∈Y

min
1≤j≤m+1

hτ−1,j(y). (30)

Note that

Opt = max
y∈Y

min
λj≥0,

∑
j
λj=1

m+1∑
j=1

λjh
s
τ−1,j(y) = min

λj≥0,
∑

j
λj=1

max
y∈Y

m+1∑
j=1

λjh
s
τ−1,j(y)

= max
y∈Y

∑m+1
j=1 λτjh

s
τ−1,j(y),

4Note that to ensure the nonemptiness of Y s
0 , it suffices to set hs

0,j(·) = hs(·), so that h0,j(y) > ℓs for
y ∈ ArgmaxY h

s(·); recall that fs = maxy∈Y h
s(y) > 0.

13

λτj ≥ 0 and
∑m+1
j=1 λτj = 1. We assume that when solving the auxiliary problem, we compute the

above weights λτj , and thus have at our disposal the function

hs,τ (·) =
m+1∑

j=1

λτjh
s
τ−1,j(·) ∈ FSs

τ

such that
Opt = max

y∈Y
hs,τ (y).

B.2.2.3. Case A: If Opt ≤ ǫ we terminate and output hs,τ (·) ∈ FSs
τ
; this function satisfies

(23).
Case B: In case of Opt < ℓs + θ(fs − ℓs), where θ ∈ (0, 1) is method’s control parameter, we
terminate phase s and start phase s + 1 by setting hs+1 = hs,τ , fs+1 = Opt. Note that by
construction 0 < fs+1 ≤ [γ + θ(1 − γ)]fs < f1, so that we have at our disposal all we need to
start phase s+ 1.
Case C: When neither A nor B takes place, we proceed with phase s, specifically, as follows:
B.2.2.4. Note that there exists a point u ∈ Y such that hsτ−1,j(u) ≥ Opt > ℓs, so that the set
Yτ = {y ∈ Y : hsτ−1,j(y) ≥ ℓs, 1 ≤ j ≤ m + 1}, intersects with the relative interior of Y . We
specify uτ+1 as

uτ+1 = argmin
y∈Yτ

ω(y). (31)

Observe that
uτ+1 ∈ Y s

τ−1 (32)

due to Yτ ⊂ Y s
τ−1.

B.2.2.5. By optimality conditions for (31) (see Lemma A.1), for certain nonnegative µj, 1 ≤
j ≤ m+ 1, such that

µj[h
s
τ−1,j(uτ+1)− ℓs] = 0, 1 ≤ j ≤ m+ 1,

the vector

e := ω′(uτ+1)−
m+1∑

j=1

µj∇hsτ−1,j(·) (33)

is such that
〈e, y − uτ+1〉 ≥ 0 ∀y ∈ Y. (34)

• In the case of µ =
∑
j µj > 0, we set

hsτ,1 =
1

µ

m+1∑

j=1

µjh
s
τ−1,j,

so that

(a) hsτ,1 ∈ FSs
τ
, (b) hsτ,1(uτ+1) = ℓs, (c) 〈ω′(uτ+1)− µ∇hsτ,1, y − uτ+1〉 ≥ 0∀y ∈ Y

(35)
We then discard from the collection {hsτ−1,j(·)}m+1

j=1 two (arbitrarily chosen) elements and add
to hsτ,1 the remaining m − 1 elements of the collection, thus getting an m-element collection
{hsτ,j}mj=1 of elements of FSs

τ
.

14

Remark 3.2 We have ensured that the set Y s
τ = cl {y ∈ Y : hsτ,j(y) > ℓs, 1 ≤ j ≤ m} is

nonempty (indeed, we clearly have hsτ,j(û) > ℓs, 1 ≤ j ≤ m, where û is an optimal solution
to (30)). Besides this, we also have (Πs

τ+1). Indeed, by construction uτ+1 ∈ Yτ , meaning
that hsτ−1,j(uτ+1) ≥ ℓs, 1 ≤ j ≤ m+ 1. Since hsτ,j are convex combinations of the functions
hsτ−1,j, 1 ≤ j ≤ m + 1, it follows that uτ+1 ∈ Y s

τ . Further, (35.b) and (35.c) imply that

uτ+1 = argminy
{
ω(y) : y ∈ Y, hsτ,1(y) ≥ ℓs

}
, and the right hand side set clearly contains

Y s
τ . We conclude that uτ+1 indeed is the minimizer of ω(·) on Y s

τ .

• In the case of µ = 0, (33) – (34) say that uτ+1 is a minimizer of ω(·) on Y . In this
case, we discard from the collection {hsτ−1,j}m+1

j=1 one (arbitrarily chosen) element, thus getting
the m-element collection {hsτ,j}mj=1. Here, by exactly the same argument as above, the set
Y s
τ := cl {y ∈ Y : hsτ,j(y) > ℓs} is nonempty and contains uτ+1, and, of course, (Π

s
τ) holds true

(since uτ+1 minimizes ω(·) on the entire Y).
In both cases (those of µ > 0 and of µ = 0), we have built the data required to start step

τ + 1 of phase s, and we proceed to this step.
The description of the algorithm is completed.

Remark 3.3 Same as MDL, the outlined algorithm requires solving at every step two nontrivial
auxiliary optimization problems – (30) and (31). It is explained in [2] that these problems are
relatively easy, provided that m is moderate (note that this parameter is under our full control)
and Y and ω are “simple and fit each other,” meaning that we can easily solve problems of the
form

min
x∈Y

[ω(x) + 〈a, x〉] (∗)

(that is, our proximal setup for Y results in easy-to-compute prox-mapping).

Remark 3.4 By construction, the presented algorithm produces upon termination (if any)

• an execution protocol yt = {yτ , g(yτ)}tτ=1, where t is the step where the algorithm ter-
minates, and yτ , 1 ≤ τ ≤ t, are the search points generated in course of the run; by
construction, all these search points belong to Y ;

• an accuracy certificate λt – a collection of nonnegative weights λ1, ..., λt summing up
to 1 – such that the affine function h(y) =

∑t
τ=1 λτ 〈g(yτ), yτ − y〉 satisfies the relation

ǫ(yt, λt) := max
x∈Y

h(x) ≤ ǫ, where ǫ is the target tolerance, exactly as required in (23).

3.3.2 Efficiency estimate

Proposition 3.3 Given on input a target tolerance ǫ > 0, the NERML algorithm terminates

after finitely many steps, with execution protocol yt and accuracy certificate λt, described in

Remark 3.4. The number of steps of the algorithm does not exceed

N = C(γ, θ)
Ω2L2[g]

ǫ2
, where C(γ, θ) =

(1 + γ2)

γ2[1− [γ + (1− γ)θ]2]
. (36)

For proof, see Section A.2.

Remark 3.5 Inspecting the proof of Proposition 3.3, it is immediately seen that when ω(·) is
continuously differentiable on the entire Y , one can replace the rule (31) with

uτ+1 = argmin
y∈Yτ

[ω(y)− 〈ω′(ys), y − ys〉],

15

where ys is an arbitrary point of Y o = Y . The cost of this modification is that of replacing Ω in
the efficiency estimate with Ω+, see Remark 3.1. Computational experience shows that a good
choice of ys is the best, in terms of the objective, search point generated before the beginning
of phase s.

Solving (P) and (D) by NERML is completely similar to the case of MDL, with the bound

t(ǫ) ≤ Ceil

(
Ω2L2

f (1 + γ2)

γ2[1− [γ + (1− γ)θ]2ǫ2

)
[Ω = Ω[Y, ω(·)]] (37)

in the role of (29).

Remark 3.6 Observe that Propositions 3.1-3.3 do not impose restrictions of the vector field g(·)
processed by the respective algorithms aside from the boundedness assumption (14). Invoking
Remark 2.1, we arrive at the following conclusion:

in the situation of section 2.1 and given δ ≥ 0, let instead of exact maximizers x(y) ∈
Argmaxx∈X〈x,Ay+a〉, approximate maximizers xδ(y) ∈ X such that 〈xδ(y), Ay+a〉 ≥ 〈x(y), Ay+
a〉 − δ for all y ∈ Y be available. Let also

f ′δ(y) = A∗xδ(y) + ψ′(y)

be the associated approximate subgradients of the objective f of (D). Assuming

Lf,δ = sup
y∈Y

‖f ′δ(y)‖ <∞,

let MD/MDL/NERML be applied to the vector field g(·) = f ′δ(·). Then the number of steps of
each method before termination remains bounded by the respective bound (17), (28) or (36),
with Lf,δ in the role of Lf . Besides this, defining the approximate solutions to (P), (D) according
to (19), with xτ = xδ(yτ), we ensure the validity of δ-relaxed version of the accuracy guarantee
(22), specifically, the relation

[f(ŷt)−Opt(P)] + [Opt(D)− f∗(x̂
t)] ≤ ǫ+ δ.

4 An alternative: Smoothing

An alternative to the approach we have presented so far is based on the use of the proximal
setup for Y to smoothen f∗ and then to maximize the resulting smooth approximation of f∗ by
the Conditional Gradient (CG) algorithm. This approach is completely similar to the one used
by Nesterov in his breakthrough paper [20], with the only difference that since in our situation
domain X admits LO oracle rather than a good proximal setup, we are bounded to replace the
O(1/t2)-converging Nesterov’s method for smooth convex minimization with O(1/t)-converging
CG.

Let us describe the CG implementation in our setting. Suppose that we are given a norm
‖ · ‖x on Ex, a representation (1) of f∗, a proximal point setup (‖ · ‖y, ω(·)) for Y and a desired
tolerance ǫ > 0. We assume w.l.o.g. that min

y∈Y
ω(y) = 0 and set, following Nesterov [20],

fβ∗ (x) = min
y∈Y

[〈x,Ay + a〉+ ψ(y) + βω(y)]

β = β(ǫ) := ǫ
Ω2 , Ω = Ω[Y, ω(·)]

(38)

16

From (1), the definition of Ω and the relation minY ω = 0 it immediately follows that

∀x ∈ X : f∗(x) ≤ fβ∗ (x) ≤ f∗(x) +
ǫ

2
, (39)

and fβ∗ clearly is concave. It is well known (the proof goes back to J.-J. Moreau [13, 14]) that

strong convexity, modulus 1 w.r.t. ‖ · ‖y, of ω(y) implies smoothness of fβ∗ , specifically,

∀(x, x′ ∈ X) : ‖∇fβ∗ (x)−∇fβ∗ (x′)‖x,∗ ≤
1

β
‖A‖2y;x,∗‖x− x′‖x, (40)

where

‖A‖y;x,∗ = max{‖A∗u‖y,∗ : u ∈ Ex, ‖u‖x ≤ 1} = max{‖Ay‖x,∗ : y ∈ Ey, ‖y‖y ≤ 1}.

Observe also that under the assumption that an optimal solution y(x) of the right hand side
minimization problem in (38) is available at a moderate computational cost, 5 we have at our

disposal a FO oracle for fβ∗ :

fβ∗ (x) = 〈x,Ay(x) + a〉+ ψ(y(x)) + βω(y(x)), ∇fβ∗ (x) = Ay(x) + a.

We can now use this oracle, along with the LO oracle for X, to solve (P) by CG6. In the sequel,
we refer to the outlined algorithm as to SCG (Smoothed Conditional Gradient).

Efficiency estimate for SCG is readily given by Proposition 1.1. Indeed, assume from now
on that X is contained in ‖ · ‖x-ball of radius R of Ex. It is immediately seen that under this
assumption, (40) implies the validity of the condition (cf. (2) with q = 2)

∀x, x′ ∈ X : fβ∗ (x′) ≥ fβ∗ (x) + 〈∇fβ∗ (x), x′ − x〉 − 1
2L‖x′ − x‖2X , L =

R2‖A‖2y;x,∗
β =

R2‖A‖2y;x,∗Ω2

ǫ .

(41)

In order to find an ǫ-maximizer of f∗, it suffices, by (39), to find an ǫ/2-maximizer of fβ∗ ; by (4)
(where one should set q = 2), what takes

tSCG(ǫ) = O(1)ǫ−1L = O(1)
Ω2‖A‖2y;x,∗R2

ǫ2
(42)

steps.

Discussion. Let us assume, as above, that X is contained in the centered at the origin ‖ · ‖x-
ball of radius R, and let us compare the essentially identical to each other7 complexity bounds
(21), (29), (37), with the bound (42). Under the natural assumption that the subgradients of ψ
we use satisfy the bounds ‖ψ′(y)‖y,∗ ≤ Lψ, where Lψ is the Lipschitz constant of ψ w.r.t. the
norm ‖ · ‖y, (18) implies that

Lf ≤ ‖A‖y;x,∗R+ Lψ. (43)

5In typical applications, ψ is just linear, so that computing y(x) is as easy as computing the value of the
prox-mapping associated with Y , ω(·).

6 If our only goal were to approximate f∗ by a smooth concave function, we could use other options, most
notably the famous Moreau-Yosida regularization [14, 25] . The advantage of the smoothing based on Fenchel-
type representation (1) of f∗ and proximal setup for Y is that in many cases it indeed allows for computationally
cheap approximations, which is usually not the case for Moreau-Yosida regularization.

7provided the parameters γ ∈ (0, 1), θ ∈ (0, 1) in (29), (37) are treated as absolute constants.

17

Thus, the first three complexity bounds reduce to

CMD(ǫ) = Ceil

(
O(1)

[R‖A‖y;x,∗ + Lψ]
2Ω2[Y, ω(·)]

ǫ2

)
, (44)

while the conditional gradients based complexity bound is

CSCG(ǫ) = Ceil

(
O(1)

[R‖A‖y;x,∗]2Ω2[Y, ω(·)]
ǫ2

)
. (45)

We see that assuming Lψ ≤ O(1)R‖A‖y;x,∗ (which indeed is the case in many applications, in
particular, in the examples we are about to consider), the complexity bounds in question are
essentially identical. This being said, we believe that the two approaches in question seem to
have their own advantages and disadvantages. Let us name just a few:

• Formally, the SCG has a more restricted area of applications than MD/MDL/NERML,
since relative simplicity of the optimization problem in (38) is a more restrictive require-
ment than relative simplicity of computing prox-mapping associated with Y, ω(·). At the
same time, in most important applications known to us ψ is just linear, and in this case
the just outlined phenomenon disappears.

• An argument in favor of SCG is its insensitivity to the Lipschitz constant of ψ. Note,
however, that in the case of linear ψ (which, as we have mentioned, is the case of primary
interest) the nonsmooth techniques admit simple modifications (not to be considered here)
which make them equally insensitive to Lψ.

• Our experience shows that the convergence pattern of nonsmooth methods utilizing mem-
ory (MDL and NERML) is, at least at the beginning of the solution process, much better
than is predicted by their worst-case efficiency estimates. It should be added that in theory
there exist situations where the nonsmooth approach “most probably,” or even provably,
significantly outperforms the smooth one. This is the case when Ey is of moderate dimen-
sion. A well-established experimental fact is that when solving (D) by MDL, every dimEy
iterations of the method reduce the inaccuracy by an absolute constant factor, something
like 3. It follows that if n is in the range of few hundreds, a couple of thousands of MDL
steps can yield a solution of accuracy which is incomparably better than the one predicted
by the theoretical worst-case oriented O(1/ǫ2) complexity bound of the algorithm. More-
over, in principle one can solve (D) by the Ellipsoid method with certificates [16], building
accuracy certificate of resolution ǫ in polynomial time O(1)n2 ln(LfΩ[Y, ω(·)]/ǫ). It follows
that when dimEy is in the range of few tens, the nonsmooth approach allows to solve, in
moderate time, problems (P) and (D) to high accuracy. Note that low dimensionality of
Ey by itself does not prevent X to be high-dimensional and “difficult;” how frequent are
these situations in actual applications, this is another story.

We believe that the choice of one, if any, of the outlined approaches to use, is the issue which
should be resolved, on the case-by-case basis, by computational practice. We believe, however,
that it makes sense to keep them both in mind.

5 Application examples

In this section we work out some application examples, with the goal to demonstrate that the
approach we are proposing possesses certain application potential.

18

5.1 Uniform norm matrix completion

Our first example (for its statistical motivation, see [9]) is as follows: given a symmetric p × p
matrix b and a positive real R, we want to find the best entrywise approximation of b by a
positive semidefinite matrix x of given trace R, that is, to solve the problem

minx∈X [−f∗(x) = ‖x− b‖∞]
X = {x ∈ Sp : x � 0, Tr(x) = R}, ‖x‖∞ = max

1≤i,j≤p
|xij | (46)

where Sp is the space of p × p symmetric matrices. Note that with our X, computing prox-
mappings associated with all known proximal setups needs eigenvalue decomposition of a p× p
symmetric matrix and thus becomes computationally demanding in the large scale case. On
the other hand, to maximize a linear form 〈ξ, x〉 = Tr(ξx) over x ∈ X requires computing the
maximal eigenvalue of ξ along with corresponding eigenvector. In the large scale case this task
is by orders of magnitude less demanding than computing full eigenvalue decomposition. Note
that our f∗ admits a simple Fenchel-type representation:

f∗(x) = −‖x− b‖∞ = min
y∈Y

[f(y) = 〈−x, y〉+ 〈b, y〉] , Y = {y ∈ Sp : ‖y‖1 :=
∑

i,j

|yij| ≤ 1}.

Equipping Ey = Sp with the norm ‖ · ‖y = ‖ · ‖1, and Y with the d.-g.f.

ω(y) = α ln(p)
p∑

i,j=1

|yij|1+r(p), r(p) =
1

ln(p)
,

where α is an appropriately chosen constant of order of 1 (induced by the necessity to make ω(·)
strongly convex, modulus 1, w.r.t. ‖ · ‖1), we get a proximal setup for Y such that

Ω[Y, ω(·)] ≤ O(1)
√
ln p.

We see that our problem of interest fits well the setup of methods developed in this paper.
Invoking the bounds (44), (45), we conclude that (46) can be solved within accuracy ǫ in at
most

t(ǫ) = O(1)
[R + ‖b‖∞]2 ln(p)

ǫ2
(47)

steps by any of methods MD, MDL or NERML, and in at most O(1)R
2 ln(p)
ǫ2

steps by SCG.
It is worth to mention that in the case in question, the algorithms yielded by the nonsmooth

approach admit a “sparsification” as follows. We are in the case of 〈x,Ay + a〉 ≡ Tr(xy), and
X = {x : x � 0,Tr(x) = R}, so that x(y) = Reye

T
y , where ey is the leading eigenvector of a

matrix y normalized to have ‖ey‖2 = 1. Given a desired accuracy ǫ > 0 and a unit vector ey,ǫ
such that Tr(y[ey,ǫe

T
y,ǫ]) ≥ Tr(y[eye

T
y]) − R−1ǫ, and setting xǫ(y) = Rey,ǫe

T
y,ǫ, we ensure that

xǫ(y) ∈ X and that xǫ(y) is an ǫ-maximizer of 〈x,Ay + a〉 over x ∈ X. Invoking Remark 3.6,
we conclude that when utilizing xǫ(·) in the role of x(·), we get 2ǫ-accurate solutions to (P),
(D) in no more than t(ǫ) steps. Now, we can take as ey,ǫ the normalized leading eigenvector of
an arbitrary matrix ŷ(y) such that ‖σ(ŷ − y)‖∞ ≤ ǫ. Assuming R/ǫ > 1 and given y ∈ Y , let
us sort the magnitudes of entries in y and build yǫ by “thresholding” – by zeroing out as many
smallest in magnitude entries as possible under the restriction that the remaining part of the
matrix y is symmetric, and the sum of squares of the entries we have replaced with zeros does
not exceed R−2ǫ2. Since ‖y‖1 ≤ 1, the number Nǫ of nonzero entries in yǫ is at most O(1)R2/ǫ2.
On the other hand, by construction, the Frobenius norm ‖σ(y − yǫ)‖2 of y − yǫ is ≤ R−1ǫ, thus

19

‖σ(y − yǫ)‖∞ ≤ R−1ǫ, and we can take as ey,ǫ the normalized leading eigenvector of yǫ. When
the size p of y is ≫ R2/ǫ2 (otherwise the outlined sparsification does not make sense), this
approach reduces the problem of computing the leading eigenvector to the case when the matrix
is question is relatively sparse, thus reducing its computational cost.

5.2 Nuclear norm SVM

Our next example is as follows: we are given an N -element sample of p×q matrices zj (“images”)
equipped with labels ǫj ∈ {−1, 1}. We assume the images to be normalized by the restriction

‖σ(zj)‖∞ ≤ 1. (48)

We want to find a linear classifier of the form

ǫ̂j = sign(〈x, zj〉+ b). [〈z, x〉 = Tr(zxT)]

which predicts well labels of images. We assume that there exist such right and left orthogonal
transformations of the image, that the label can be predicted using only a small number of
diagonal elements of the transformed image. This implies that the classifier we are looking for
is sparse in the corresponding basis, or that the matrix x is of low rank. We arrive at the
“low-rank-oriented” SVM-based reformulation of this problem:

min
x:‖σ(x)‖1≤R

[
h(x) := min

b∈R

[
N−1

∑N

j=1
[1− ǫj [〈x, zj〉+ b]]+

]]
, (49)

where ‖σ(·)‖1 is the nuclear norm, [a]+ = max[a, 0], and R ≥ 1 is a parameter.8

In this case the domain X of problem (P) is the ball of the nuclear norm in the space Rp×q of
p×q matrices and p, q are large. As we have explained in the introduction, same as in the example
of the previous section, in this case the computational complexity of LO oracle is typically much
smaller than the complexity of computing prox-mapping. Thus, from practical viewpoint, in a
meaningful range of values of p, q the LO oracle is “affordable,” while the prox-mapping is not.

Observing that [a]+ = max0≤y≤1 ya, and denoting 1 = [1; ...; 1] ∈ Rq, we get

N−1
N∑

j=1

[1− ǫj [〈x, zj〉+ b]]+ = max
y:0≤y≤1

N

−1
N∑

j=1

yj [1− ǫj [〈x, zj〉+ b]]

 ,

whence

h(x) = max
y∈Y

N−1
N∑

j=1

yj [1− ǫj〈x, zj〉] , (50)

where
Y = {y ∈ RN : 0 ≤ y ≤ 1,

∑

j

ǫjyj = 0}; (51)

from now on we assume that Y 6= ∅. When setting

Ay = N−1
N∑

j=1

yjǫjzj : R
N → Rp×q, X = {x ∈ Rp×q : ‖σ(x)‖1 ≤ R}, ψ(y) = −N−11T y (52)

8The restriction R ≥ 1 is quite natural. Indeed, with the optimal choice of x, we want most of the terms
[1− ǫj [〈x, zj〉+ b]]

+
to be ≪ 1; assuming that the number of examples with ǫj = −1 and ǫj = 1 are of order of

N , this condition can be met only when |〈x, zj〉| are at least of order of 1 for most of j’s. The latter, in view of
(48), implies that ‖σ(x)‖1 should be at least O(1).

20

and passing from minimizing h(x) to maximizing f∗(x) ≡ −h(x), problem (49) becomes

max
x∈X

[
f∗(x) := min

y∈Y
[〈x,Ay〉+ ψ(y)]

]
. (53)

Let us equip Ey = RN with the standard Euclidean norm ‖ · ‖2, and Y - with the Euclidean
d.-g.f. ω(y) = 1

2y
T y. Observe that

[
f ′(y)

]
j = N−1 [〈x(y), ǫjzj〉 − 1] , x(y) ∈ Argmax

x∈X
Tr(xyT),

meaning that

‖f ′(y)‖∞ ≤ max
j

[
N−1 [1 + ‖σ(x(y))‖1‖σ(zj)‖∞]

]
≤ N−1[R+ 1] ≤ 2N−1R.

Using our notation of section 3 we have

Lf := sup
y∈Y

‖f ′(y)‖∗ ≤ 2N−1/2R

(we are in the case of ‖ · ‖∗ = ‖ · ‖2), and, besides,

ΩY ≤
√
N/2.

We conclude that for every ǫ > 0, the number t of MD steps needed to ensure (22) does not
exceed

tMD(ǫ) = Ceil

(
2R2

ǫ2

)

(see (21)), and similarly for MDL, NERML, and SCG.

5.3 Multi-class classification under ∞|2 norm constraint

Our last example illustrates the potential of the proposed approach in the case when the domain
X of (P) does not admit a proximal setup with “moderate” ΩX . Namely, let (P) be the problem

min
x∈X

[−f∗(x) := ‖Bx− b‖y,∗] [x 7→ Bx : Ex → Ey] (54)

where ‖ · ‖y,∗ is the norm conjugate to a norm ‖ · ‖y on Ey. We are interested in the case of
box-type X, specifically,

X = {[x1; ...;xM] ∈ Rn1 × ...×RnM : ‖xi‖2 ≤ R, 1 ≤ i ≤M} (55)

As it was mentioned in Introduction, for every proximal setup (‖ · ‖, ωx(·)) for X which is nor-
malized by the requirement that simple “well behaved” on X convex functions should have
moderate Lipschitz constants w.r.t. ‖ · ‖ (specifically, the coordinates of x ∈ X should have Lip-
schitz constants ≤ 1), one has Ω[X,ωx(·)] ≥ O(1)

√
MR. As a result, the theoretical complexity

of the FO methods as applied to (54) grows with M at the rate at least O(
√
M), thus becoming

prohibitively high for large M . We are about to show that the approaches developed in this
paper are free of this shortcoming. Specifically, we can easily build a Fenchel-type representation
of f∗:

f∗(x) = −‖Bx− b‖y,∗ = min
y∈Y

[〈B∗y, x〉 − 〈b, y〉] , Y = {y ∈ Ey : ‖y‖y ≤ 1}.

21

Assume that Y admits a good proximal setup. We can augment ‖ · ‖y with a d.-g.f. ωy(·) for Y
such that ‖·‖y, ω(y) form a proximal setup, and applying any of the methods we have developed
in sections 3 and 4, the complexity of finding ǫ-solution to (54) by any of these methods becomes

O(1)

(
R‖B‖x;y,∗ + ‖b‖y,∗

ǫ

)2

, ‖B‖x;y,∗ = max
x=[x1;...;xM]

{
‖Bx‖y,∗ : ‖x‖∞|2 := max

i
‖xi‖2 ≤ 1

}
.

Note that in this bound M does not appear, at least explicitly.

Multi-class classification problem we consider is as follows: we observeN “feature vectors”
zj ∈ Rq, each belonging to one of M non-overlapping classes, along with labels χj ∈ RM which
are basic orths in RM ; the index of the (only) nonzero entry in χj is the number of class to
which zj belongs. We want to build a multi-class analogy of the standard linear classifier as
follows: a multi-class classifier is specified by a matrix x ∈ RM×q and a vector b ∈ RM . Given a
feature vector z, we compute the M -dimensional vector xz+ b, identify its maximal component,
and treat the index of this component as our guess for the serial number of the class to which
z belongs.

The multi-class analogy of the usual approach to building binary classifiers by minimizing
the empirical hinge loss is as follows [6, 1]. Let χ̄j = 1− χj be the “complement” of χj .Given a
feature vector z and the corresponding label χ, let us set

h = h(x, b; z, χ) = [xz + b]− [χT [xz + b]]1+ χ̄ ∈ RM [1 = [1; ...; 1] ∈ RM].

Note that if i∗ is the index of the only nonzero entry in χ, then the i∗-th entry in h is zero (since
χi∗ = 1). Further, h is nonpositive if and only if the classifier, given by x, b and evaluated at
z, “recovers the class i∗ of z with margin 1”, i.e., we have [xz + b]j ≤ [xz + b]i∗ − 1 for j 6= i∗.
On the other hand, if the classifier fails to classify z correctly (that is, [xz + b]j ≥ [xz + b]i∗ for
some j 6= i∗), then the maximal entry in h is ≥ 1. Altogether, when setting

η(x, b; z, χ) = max
1≤j≤M

[h(x, b; z, χ)]j ,

we get a nonnegative function which vanishes for the pairs (z, χ) which are “quite reliably”
– with margin ≥ 1 – classified by (x, b), and is ≥ 1 for the pairs (z, χ) with z not classified
correctly. Thus the function

H(x, b) = E{η(x, b; z, χ)},
the expectation being taken over the distribution of examples (z, χ), is an upper bound on the
probability for classifier (x, b) to misclassify a feature vector. What we would like to do now is to
minimize H(x, b) over x, b. To do this, since H(·) is not observable, we replace the expectation
by its empirical counterpart

HN (x, b) = N−1
N∑

j=1

η(x, b; zj , χj).

For the sake of simplicity (and, upon a close inspection, without much harm), we assume from
now on that b = 0.9 Imposing, as it is always the case in hinge loss optimization, an upper
bound on some norm ‖x‖x of x, we arrive at the optimization problem

min
x∈X

−f∗(x) = N−1

N∑

j=1

max
i≤M

[xzj − [χTj xzj]1+ χ̄j]i

 , X = {x : ‖x‖x ≤ R}. (56)

9To arrive at this situation, one can augment zj by additional entry, equal to 1, and to redefine x: the new x

is the old [x, b].

22

From now on we assume that zj ’s are normalized:

‖zj‖2 ≤ 1, 1 ≤ j ≤ N. (57)

Under this constraint, a natural (although not the only meaningful) choice of the norm ‖ · ‖x
is the maximum of the ‖ · ‖2-norms of the rows [xi]T of x. If we identify x with the vector
[x1; ...;xM], X becomes the set (55) with n1 = n2 = ... = nM = q, and the norm ‖ · ‖x becomes
‖ · ‖∞|2. The same argument as in the previous section allows us to assume that R ≥ 1.

Noting thatmin
i
hi = minu{uTh : u ≥ 0,

∑
i ui = 1}, (56) can be rewritten as

max
x∈X

[
f∗(x) = min

y∈Y
[〈y,Bx〉+ ψ(y)]

]
(58)

where

Y = {y = [y1; ...; yN] : yj ∈ RM
+ ,

∑
i[y

j]i = N−1, 1 ≤ j ≤ N} ⊂ Ey = RMN

Bx = [B1x; ...;BNx], Bjx =
[
zTj [x

i(j) − x1]; ...; zTj [x
i(j) − xM]

]
, j = 1, ..., N

ψ(y) = ψ(y1, ..., yN) = −∑N
j=1[y

j]T χ̄j;

(here i(j) is the class of zj , i.e., the index of the only nonzero entry in χj). Note that Y is a part
of the standard simplex ∆MN = {y ∈ RMN

+ :
∑N
j=1

∑M
i=1[y

j]i = 1} ⊂ Ey = RMN . Equipping
Ey with the norm ‖ · ‖y = ‖ · ‖1 (so that ‖ · ‖y,∗ = ‖ · ‖∞), and Y – with the entropy d.-g.f.

ωy(y) =
N∑

j=1

M∑

i=1

[yj]i ln([y
j]i)

(known to complete ‖ · ‖1 to a proximal setup for ∆MN), we get a proximal setup for Y with
Ω = Ω[Y, ω(·)] ≤

√
2 ln(M). Next, assuming ‖x‖x ≡ ‖x‖∞|2 ≤ 1, we have

‖Bx‖y,∗ = ‖Bx‖∞ = max
1≤i≤m
1≤j≤N

|zTj [xi(j) − xi]| ≤ ‖zj‖2‖xi(j) − xi‖2 ≤ 2,

so that ‖B‖x;y,∗ ≤ 2. Furthermore, ψ clearly is Lipschitz continuous with constant 1 w.r.t.
‖ · ‖y = ‖ · ‖1. It follows that the complexity of finding an ǫ-solution to (58) by MD, MDL,

NERML or SCG is bounded by O(1)R
2 ln(M)
ǫ2

(see (43), (44), (45) and take into account that
R ≥ 1, and that what is now called B, was called A∗ in the notation used in those bounds, so
that ‖B‖x;y,∗ = ‖A‖y;x,∗). Note that the resulting complexity bound is independent of N and is
“nearly independent” of M . Finally, prox-mapping for Y is given by a closed form expression
and can be computed in linear time:

argmin
{yj∈RM}N

j=1

{∑N
j=1

∑M
i=1[y

j]i ln([y
j]i) +

∑N
j=1〈ξj , yj〉 : yj ≥ 0,

∑M
i=1[y

j]i = N−1, 1 ≤ j ≤ N
}

=

{
ŷj : [ŷj]i =

exp{−[ξj]i}
N
∑M

s=1
exp{−[ξj]s}

, 1 ≤ i ≤M

}N

j=1

.

6 NERML: Numerical illustration

The goal of the numerical experiments to be reported is to illustrate how the performance of
NERML scales up with the dimensions of x and y and the memory of the method. Below we
consider a kind of matrix completion problem, specifically,

Opt = min
x∈Rp×p

{‖P(x− a)‖∞ : ‖σ(x)‖1 ≤ 1} . (59)

23

Here a is a given matrix, P is a linear mapping from Rp×p into RN , and ‖y‖∞ = maxi |yi| is the
uniform norm on RN . In our experiments, P is defined as follows. We select a set I = {(i, j)}
of rp cells in a p× p matrix in such a way that every row and every column contains exactly r
of the selected cells. We then label at random the selected cells by indexes from {1, 2, ..., N},
with the only restriction that every one of the N indexes labels the same number pr/N (which
with our choice of r, p,N always is integer) of the cells. The i-th, 1 ≤ i ≤ N , entry in Py is the
sum, over all cells from I labeled by i, of the entries of y ∈ Rp×p in the cells. With N = pr,
Py is just the restriction of y onto the cells from I, and (59) is the standard matrix completion
problem with uniform fit. Whatever simplistic and “academic,” our setup, in accordance with
the goals of our numerical study, allows for full control of image dimension of P (i.e., the design
dimension of the problem actually solved by NERML) whatever large be the matrices x and the
set I.

Our test instances were generated as follows: given p, r,N , we generate at random the set I
along with its labeling (thus specifying P) and a vector w ∈ RN with d = 32 nonzero entries.
Finally, we set

v = ‖σ(P∗w)‖−1
1 P∗w, and a = v + 2‖v‖∞ξ, ‖v‖∞ = max

1≤i,j≤p
|vij |,

where the entries in p × p “noise matrix” ξ are the projections onto [−1, 1] of random reals
sampled, independently of each other, from the standard Gaussian distribution.

Written in the form of (P), problem (59) reads

[−Opt] = max
x∈X

{f∗(x) = −‖P(x− a)‖∞} , X = {x ∈ Rp×p : ‖σ(x)‖1 ≤ 1}; (60)

the Fenchel-type representation (1) of f∗ is

f∗(x) = min
y∈RN,

‖y‖1≤1

yTP(x− a),

so that the dual problem to be solved by NERML is

min
y∈Y

{
f(y) = max

x:‖σ(x)‖1≤1
〈x,P∗y〉 − [Pa]T y

}
, Y = {y ∈ RN : ‖y‖1 ≤ 1}. (61)

Before passing to numerical results, we make the following important remark. Our descrip-
tion of NERML in section 3.3 is adjusted to the case when the accuracy ǫ to which (60) should
be solved is given in advance. Note, however, that ǫ is used only in the termination rule B.2.2.3:
we terminate when the optimal value in the current auxiliary problem (30) becomes ≤ ǫ. The
optimal value in question is a certain “online observable” function ǫτ of the “time” τ defined as
the total number of steps performed so far. Moreover, at every time τ we have at our disposal a
feasible solution xτ to the problem of interest (P) (in our current situation, to (60)) such that

Opt− f∗(xτ) ≤ ǫτ

– this is the solution which NERML, as defined in section 3.3, would return in the case of ǫ = ǫτ ,
where τ would be the termination step. It immediately follows that at time τ we have at our
disposal the best found so far feasible solution xτ to (P) satisfying

Opt− f∗(x
τ) ≤ Gapτ := min

1≤ν≤τ
ǫν (62)

24

(indeed, set x1 = x1 and set xτ = xτ−1 when Gapτ = Gapτ−1 and xτ = xτ otherwise). The
bottom line is that instead of terminating NERML when a given in advance accuracy ǫ is
attained, we can run the algorithm for as long as we want, generating in an online fashion
the optimality gaps Gapτ and feasible solutions xτ to (P) satisfying (62), τ = 1, 2, ... For
experimental purposes this execution mode is much more convenient than the original one (in a
single run, we get the complete “time-accuracy” curve instead of just one point on this curve),
and this is the mode used in the experiments we are about to report.

Recall that NERML is specified by a proximal setup, two control parameters γ, θ ∈ (0, 1)
and “memory depth” m which should be a positive integer. In our experiments, we used the
Euclidean setup (i.e., equipped the embedding space RN of Y with the standard Euclidean norm
and the distance-generating function ω(y) = 1

2y
T y) and θ = γ = 1

2 .
We are about to report the results of three series of experiments (all implemented in MAT-

LAB).

A. In the first series of experiments we consider “small” problems (p = 512, r = 2, N ∈
{64, 128, 256, 512}), which allows us to consider a “wide” range m ∈ {1, 3, 5, 9, 17, 33, 65, 129} of
memory depth m 10. The results are presented in table 1, where T is “physical” running time
in sec and Progm(T) is the progress in accuracy in time T for NERML with memory m, defined
as the ratio Gap1/Gapt(T), t(T) being the number of steps performed in T sec.

The structure of the data in the table is as follows. Given p = 512, r = 2 and a value of
N , we generated the corresponding problem instance and then ran on this instance 1024 steps
of NERML, the memory depth being set to 129, 65,...,1. As a result of these 8 runs, we got
running times T129, T65, ..., T1, which are the values of T presented in the table, and overall
progresses in accuracies displayed in the column “Progm(T).” Then we ran NERML with the
minimal memory 1 until the running time reached the value T129, and recorded the progress in
accuracy observed at times T1, ..., T129, displayed in the column “Prog1(T).” For example, the
data displayed in the table for the smallest instance (m = 64) say that 1024 steps of NERML
with memory 129 took ≈ 390 sec, while the same number of steps with memory 1 took just
≈ 55 sec, a 7 times smaller time. However, the former “time-consuming” algorithm reduced the
optimality gap by factor of about 8.2.e5, while the latter – by factor of just 153, thus exhibiting
about 5000 times worse progress in accuracy. We see also that even when running NERML
with memory 1 for the same 390 sec as taken by the 1024-step NERML with memory 129, the
progress in accuracy was “only” 1187 – still by factor about 690 worse than the progress in
accuracy achieved in the same time by NERML with memory 129. Thus, “long memory” can
indeed be highly beneficial. This being said, we see from the table that the benefits of “long
memory” reduce as the design dimension N of the problem to which we apply NERML grows,
and in order to get a “reasonable benefit”, the memory indeed should be “long;” e.g., in all
experiments reported in the table, NERML with memory like 9 is only marginally better than
NERML with memory 1. The data in the table, same as the results to be reported below, taken
along with the numerical experience with MDL (see the concluding comment in section 4) allow
for a “qualified guess” stating that in order to be highly beneficial, the memory in NERML
should be of order of the design dimension of the problem at hand.
Remark: While the numerical results reported so far seem to justify, at a qualitative level,

10In our straightforward software implementation of the algorithm, handling memory of depthm requires storing
in RAM up to m + 1 p × p matrices, which makes the implementation too space-consuming when p and m are
large; this is why in our experiments the larger p, the smaller is the allowed values of m. Note that with a more
sophisticated software implementation, handling memory m would require storing just m + 1 of rank 1 p × p

matrices, reducing dramatically the required space.

25

Table 1: NERML on problem (61) with p = 512 and r = 2.

N m Progm(T) Prog1(T) T , sec N m Progm(T) Prog1(T) T , sec

129 8.281e5 1187.2 390.1 129 2.912e4 620.0 358.7
65 4.439e5 778.1 276.8 65 2472.5 620.0 367.0

64 33 2483.1 553.2 195.1 128 33 217.2 564.1 207.7
17 627.3 255.9 120.0 17 173.2 318.4 130.5
9 261.1 204.0 89.1 9 159.8 116.8 95.6
5 184.3 154.0 71.5 5 132.8 98.2 77.9
3 186.2 154.0 64.7 3 95.5 98.2 68.4
1 152.9 154.0 55.2 1 88.6 98.2 58.5

129 5.524e4 2800.4 642.7 129 3253.2 2850.6 944.9
65 1657.5 972.0 395.3 65 350.0 1275.2 496.5

256 33 205.3 389.8 246.1 512 33 164.9 370.8 277.6
17 159.0 267.8 147.1 17 148.0 260.2 177.0
9 145.9 168.7 107.5 9 125.7 198.3 138.6
5 132.6 125.0 87.4 5 109.7 141.4 114.8
3 118.2 122.0 78.0 3 106.7 121.7 98.1
1 87.0 97.9 66.5 1 114.8 102.2 87.7

Platform: laptop PC with 2×2.67GHz Intel Core i7 CPU and 8 GB RAM, Windows 7-64 OS.

potential benefits of re-utilizing past information, quantification of these benefits heavily depends
on “fine structure” and sizes of problems in question. For example, the structure of our instances
make the first order oracle for (61) pretty cheap – on a close inspection, a call to the oracle
requires finding the leading singular vectors of a highly sparse p × p matrix. As a result, the
computational effort per step is by far dominated by the effort of solving auxiliary problems
arising in NERML, and thus influence of m on the duration of a step is much stronger than it
could be with a more expensive first order oracle.

B. Next we apply NERML to “medium-size” problems, restricting the range ofm to {1, 17, 33}
and keeping the design dimension of problems (61) at the level N = 2048. The reported in table
2 CPU time corresponds to t = 1024 steps of NERML. The data in the table exhibit the same
phenomena as those observed on small problems.

C. Finally, table 3 displays the results obtained with 1024-step NERML withm = 1 on “large”
problems (p up to 8196, N up to 16392).

We believe that the numerical results we have presented are rather encouraging. Indeed,
even in the worst, in terms of progress in accuracy, of our experiments (last problem in table 2)
the optimality gap was reduced in 1024 iterations (2666 sec) by two orders of magnitude (from
0.166 to 0.002). To put this in proper perspective, note that on the same platform as the one
underlying tables 2, 3, a single full SVD of a 8192×8192 matrix takes > 450 sec, meaning that
a proximal point algorithm applied directly to the problem of interest (59) associated with the
last line in table 2 would be able to carry out in the same 2666 sec just 6 iterations. Similarly,
≈ 3600 sec used by NERML to solve the largest instance we have considered (last problem in
table 3, with p = 8192 and N = 16192, progress in accuracy by factor ≈ 1200) allow for just 8
full SVD’s of 8192× 8192 matrices. And of course 6 or 8 iterations of a proximal type algorithm
as applied to (59) typically are by far not enough to get comparable progress in accuracy.

26

Table 2: NERML on medium-size problems (61), N = 2048 and t = 1024.

m Gap1 Gap1/Gap32 Gap1/Gap128 Gap1/Gap1024 T, sec

33 59.7 82.3 245.4 390.9
p = 512, r = 4 9 2.26e-1 23.7 76.3 227.9 171.0

1 14.2 60.6 168.7 112.9

33 29.3 153.6 355.2 757.3
p = 1024, r = 2 9 2.79e-1 18.6 145.3 302.9 292.6

1 10.7 152.3 250.2 145.9

33 16.7 27.8 206.8 2318.8
p = 2048, r = 2 9 1.97e-1 16.7 30.1 132.1 774.8

1 16.8 33.8 147.1 313.1

33 9.2 29.1 338.4 7529.1
p = 4096, r = 2 9 2.55e-1 7.6 20.9 165.3 2440.9

1 7.8 20.6 158.8 769.3

p = 8192, r = 2 1 1.66e-1 4.6 14.9 83.8 2666.6

Platform: desktop PC with 4× 3.40 GHz Intel Core2 CPU and 16 GB RAM, Windows 7-64 OS.

Table 3: NERML on “large-scale” problems (61), m = 1

Gap1 Gap1/Gap32 Gap1/Gap128 Gap1/Gap1024 CPU, sec

p = 2048, r = 4, N = 8192 1.81e-1 171.2 213.8 451.4 521.3

p = 4096, r = 4, N = 16384 3.74e-1 335.4 1060.8 1287.3 1524.8

p = 8192, r = 2, N = 16384 2.54e-1 37.8 875.8 1183.6 3644.0

Platform: desktop PC with 4× 3.40 GHz Intel Core2 CPU and 16 GB RAM, Windows 7-64 OS.

27

References

[1] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass
classification. In Proceedings of the 24th international conference on Machine learning,
pages 17–24. ACM, 2007.

[2] A. Ben-Tal and A. Nemirovski. Non-euclidean restricted memory level method for large-
scale convex optimization. Mathematical Programming, 102(3):407–456, 2005.

[3] L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR computational

mathematics and mathematical physics, 7(3):200–217, 1967.

[4] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm
using bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

[5] P. L. Combettes, D. Dũng, and B. C. Vũ. Dualization of signal recovery problems. Set-

Valued and Variational Analysis, 18(3-4):373–404, 2010.

[6] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. The Journal of Machine Learning Research, 2:265–292, 2002.

[7] V. Demyanov and A. Rubinov. Approximate methods in optimization problems, volume 32.
Elsevier Publishing Company, 1970.

[8] J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step size
rules. Journal of Mathematical Analysis and Applications, 62(2):432–444, 1978.

[9] J. Fan, Y. Liao, and M. Mincheva. High dimensional covariance matrix estimation in
approximate factor models. Annals of statistics, 39(6):3320–3356, 2011.

[10] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics

quarterly, 3(1-2):95–110, 1956.

[11] A. Juditsky and A. Nemirovski. First order methods for nonsmooth large-scale convex
minimization, i: General purpose methods; ii: Utilizing problem’s structure. In S. Sra,
S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning, pages 121–254.
Mit Press, 2011.

[12] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods. Math-

ematical programming, 69(1-3):111–147, 1995.

[13] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien.
CR Acad. Sci. Paris Sér. A Math, 255:2897–2899, 1962.

[14] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société

mathématique de France, 93:273–299, 1965.

[15] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[16] A. Nemirovski, S. Onn, and U. G. Rothblum. Accuracy certificates for computational
problems with convex structure. Mathematics of Operations Research, 35(1):52–78, 2010.

28

[17] A. Nemirovskii and D. Yudin. Problem complexity and method efficiency in optimization.
Wiley (Chichester and New York), 1983.

[18] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). Soviet Math. Dokl., 27(2):372–376, 1983.

[19] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer, 2004.

[20] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[21] Y. Nesterov. Dual extrapolation and its applications to solving variational inequalities and
related problems. Mathematical Programming, 109(2-3):319–344, 2007.

[22] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical pro-

gramming, 120(1):221–259, 2009.

[23] Y. Nesterov and A. Nemirovski. Some first order algorithms for ℓ1/nuclear norm minimiza-
tion. Acta Numerica, pages 1–67, 2013.

[24] B. N. Pshenichnyi and Y. M. Danilin. Numerical methods in extremal problems. Mir
Publishers (Moscow), 1978.

[25] K. Yosida. Functional analysis. Springer Verlag, Berlin, 1964.

A Appendix: Proofs

We need the following technical result originating from [4] (for proof, see [4], or section 2.1 and
Lemma A.2 of [23]).

Lemma A.1 . Let Y be a nonempty closed and bounded subset of a Euclidean space Ey, and
let ‖ · ‖, ω(·) be the corresponding proximal setup. Let, further, U be a closed convex subset of

Y intersecting the relative interior of Y , and let p ∈ Ey.
(i) The optimization problem

min
y∈U

hp(y) := [〈p, y〉+ ω(y)]

has a unique solution y∗. This solution is fully characterized by the inclusion y∗ ∈ U ∩ Y o,

Y o = {y ∈ Y : ∂ω(y) 6= ∅}, coupled with the relation

〈p + ω′(y∗), u− y∗〉 ≥ 0 ∀u ∈ U. (63)

(ii) When U is cut off Y by a system of linear inequalities ei(y) ≤ 0, i = 1, ...,m, there exist

Lagrange multipliers λi ≥ 0 such that λiei(y∗) = 0, 1 ≤ i ≤ m, and

∀u ∈ Y : 〈p+ ω′(y∗) +
m∑

i=1

λie
′
i, u− y∗〉 ≥ 0. (64)

(iii) In the situation of (ii), assuming p = ξ − ω′(y) for some y ∈ Y o, we have

∀u ∈ Y : 〈ξ, y∗ − u〉 −
∑

i

λiei(u) ≤ Vy(u)− Vy∗(u)− Vy(y∗). (65)

29

A.1 Proof of Proposition 3.2

10. Observe that when t is a non-terminal step of the algorithm, the level set Ut is a closed
convex subset of Y which intersects the relative interior of Y ; indeed, by (25) and due to ǫt > 0
for a non-terminal t, there exists y ∈ Y such that hτ (y) ≥ ǫt > ℓt = γǫt, τ ∈ St, that is, Ut is cut
off Y by a system of constraints satisfying the Slater condition. Denoting St = {yτ1 , yτ2 , ..., yτk}
and invoking item (iii) of Lemma A.1 with y = ŷt, ξ = 0 and ei(·) = γǫt − hτi(·) (so that
Ut = {u ∈ Y : ei(u) ≤ 0, 1 ≤ i ≤ k}, we get y∗ = yt+1 and

−
∑

i

λiei(u) ≤ Vŷt(u)− Vyt+1
(u)− Vŷt(yt+1).

with some λi ≥ 0. When u ∈ Ut, we have ei(u) ≤ 0, that is,

∀u ∈ Ut : Vyt+1
(u) ≤ Vŷt(u)− Vŷt(yt+1). (66)

20. When t starts a phase, we have ŷt = yω = y1, and clearly 1 ∈ It, whence hτ (ŷt) ≤ 0 for
some τ ∈ It (specifically, for τ = 1). When t does not start a phase, we have ŷt = yt and t ∈ It,
so that here again hτ (ŷt) ≤ 0 for some τ ∈ It. On the other hand, hτ (yt+1) ≥ γǫt for all τ ∈ It
due to yt+1 ∈ Ut. Thus, when passing from ŷt to yt+1, at least one of hτ (·) grows by at least
γǫt. Taking into account that hτ (z) = 〈g(yτ), yτ − z〉 is Lipschitz continuous with constant L[g]
w.r.t. ‖ · ‖ (by (14)), we conclude that ‖ŷt− yt+1‖ ≥ γǫt/L[g]. With this in mind, (66) combines
with (8) to imply that

∀u ∈ Ut : Vyt+1
(u) ≤ Vŷt(u)−

1

2
Vŷt(yt+1) ≤ Vŷt(u)−

γ2ǫ2t
2L2[g]

. (67)

30. Let the algorithm perform phase s, let ts be the first step of this phase, and r be another
step of the phase. We claim that all level sets Ut, ts ≤ t ≤ r, have a point in common, specifically,
(any) u ∈ Argmaxy∈Y minτ∈Ir hτ (y). Indeed, since r belongs to phase s, we have

γ∆s < ǫr = max
y∈Y

min
τ∈Ir

hτ (y) = min
τ∈Ir

hτ (u)

and ∆s = ǫts = maxy∈Y minτ∈Its hτ (y) (see (25) and the definition of ∆s). Besides this, r
belongs to phase s, and within a phase, sets It extend as t grows, so that Its ⊂ It ⊂ Ir when
ts ≤ t ≤ r, implying that ǫts ≥ ǫts+1 ≥ ... ≥ ǫr. Thus, for t ∈ {ts, ts + 1, ..., r} we have

min
τ∈It

hτ (u) ≥ min
τ∈Ir

hτ (u) ≥ γ∆s = γǫts ≥ γǫt,

implying that u ∈ Ut.
With the just defined u, let us look at the quantities vt := Vŷt(u), ts ≤ t ≤ r. We have

vts ≤ 1
2Ω

2 due to ŷts = yω and (11), and

0 ≤ vt+1 ≤ vt −
γ2ǫ2t
2L2[g]

≤ vt −
γ4∆2

s

2L2[g]

when ts ≤ t < r (due to (67) combined with ŷt = yt when ts < t ≤ r). We conclude that
(r − ts)γ

4∆2
s ≤ Ω2L2[g]. Thus, the number Ts of steps of phase s admits the bound

Ts ≤
Ω2L2[g]

γ4∆2
s

+ 1 ≤ 2Ω2L2[g]

γ4∆2
s

, (68)

where the concluding inequality follows from ∆s ≤ ∆1 = maxy∈Y 〈g(yω), yω − y〉 ≤ L[g]Ω, see
(11), combined with γ ∈ (0, 1).

30

40. Assume that MDL does not terminate in course of first T ≥ 1 steps, and let s∗ be the
index of the phase to which the step T belongs. Then ∆s∗ > ǫ (otherwise we would terminate
not later than at the first step of phase s∗); and besides this, by construction, ∆s+1 ≤ γ∆s

whenever phase s+ 1 takes place. Therefore

T ≤
s∗∑

s=1

Ts ≤
2Ω2L2[g]

γ4

s∗−1∑

r=0

∆−2
s∗−r ≤

2Ω2L2[g]

γ4∆2
s∗

s∗−1∑

r=0

γ2r ≤ 2Ω2L2[g]

γ4(1− γ2)∆2
s∗

≤ 2Ω2L2[g]

γ4(1− γ2)ǫ2
.

A.2 Proof of Proposition 3.3

Observe that the algorithm can terminate only in the case A of B.2.2.3, and in this case the
output is indeed as claimed in Proposition. Thus, all we need to prove is the upper bound (36)
on the number of steps before termination.

10. Let us bound from above the number of steps at an arbitrary phase s. Assume that
phase s did not terminate in course of the first T steps, so that u1, ..., uT are well defined. We
claim that then

‖uτ − uτ+1‖ ≥ ℓs/L[g], 1 ≤ τ < T. (69)

Indeed, by construction hsτ−1,m+1(y) := 〈g(uτ), uτ − y〉 is ≥ ℓs = γfs when y = uτ+1 (due to
uτ+1 ∈ Yτ). Since ‖g(u)‖∗ ≤ L[g] for all u ∈ Y , (69) follows.

Now let us look at what happens with the quantities ω(uτ) as τ grows. By strong convexity
of ω we have

ω(uτ+1)− ω(uτ) ≥ 〈ω′(uτ), uτ+1 − uτ 〉+
1

2
‖uτ − uτ+1‖2

The first term in the right hand side is ≥ 0, since uτ is the minimizer of ω(·) over Y s
τ−1,

while uτ+1 ∈ Yτ ⊂ Y s
τ−1. The second term in the right hand side is ≥ ℓ2s

2L2[g] by (69). Thus,

ω(uτ+1)− ω(uτ) ≥ ℓ2s
2L2[g]

, whence ω(uT)− ω(u1) ≥ (T − 1) ℓ2s
2L2[g]

= (T − 1) γ
2f2s

2L2[g]
. Recalling the

definition of Ω and that u1 = yω, the left hand side in this inequality is ≤ 1
2Ω

2. It follows that

whenever phase s does not terminate in course of the first T steps, one has T ≤ Ω2L2[g]
γ2f2s

+1, that

is, the total number of steps at phase s, provided this phase exists, is at most Ts =
Ω2L2[g]
γ2f2s

+ 2.

Now, we have
fs ≤ f1 = max

y∈Y
〈g(yω), y − yω〉 ≤ L[g]max

x∈Y
‖y − yω‖ ≤ ΩL[g]

(recall that ‖g(y)‖∗ ≤ L[g] and see (11)). Thus

Ts =
Ω2L2[g]

γ2f2s
+ 2 ≤ (1 + 2γ2)

γ2
Ω2L2[g]

f2s

for all s such that s-th phase exists. By construction, we have fs ≥ ǫ and fs ≤ (γ+(1−γ)θ)fs−1,
whence the method eventually terminates (since γ+(1−γ)θ < 1). Assuming that the termination
happens at phase s∗, we have fs ≥ (γ + (1 − γ)θ)s−s∗fs∗ when 1 ≤ s ≤ s∗, so that the total
number of steps is bounded by

s∗∑

s=1

(1 + 2γ2)

γ2
Ω2L2[g]

f2s
≤

s∗∑

s=1

(1 + 2γ2)

γ2
Ω2L2[g](γ + (1− γ)θ)2(s∗−s)

f2s∗

≤
s∗∑

s=1

(1 + 2γ2)

γ2
Ω2L2[g](γ + (1− γ)θ)2(s∗−s)

ǫ2
≤ (1 + 2γ2)

γ2[1− (γ + (1− γ)θ)2]

Ω2L2[g]

ǫ2
,

as claimed.

31

	1 Introduction
	2 Duality and accuracy certificates
	2.1 Situation
	2.2 Main observation

	3 Accuracy certificates in oracle-oriented methods for large-scale nonsmooth convex optimization
	3.1 Convex minimization with certificates, I: Mirror Descent
	3.1.1 Proximal setup.
	3.1.2 Mirror Descent algorithm

	3.2 Convex minimization with certificates, II: Mirror Descent with full memory
	3.2.1 Preliminaries
	3.2.2 Construction
	3.2.3 Efficiency estimate

	3.3 Convex minimization with certificates, III: restricted memory Mirror Descent
	3.3.1 Construction
	3.3.2 Efficiency estimate

	4 An alternative: Smoothing
	5 Application examples
	5.1 Uniform norm matrix completion
	5.2 Nuclear norm SVM
	5.3 Multi-class classification under |2 norm constraint

	6 NERML: Numerical illustration
	A Appendix: Proofs
	A.1 Proof of Proposition 3.2
	A.2 Proof of Proposition 3.3

