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ABSTRACT

Clustering is an unsupervised learning method that enables to fit structures in unlabeled data sets.
Detecting overlapping structures is a specific challenge involving its own theoretical issues but offering
relevant solutions for many application domains. This paper presents generalizations of the c-means
algorithm allowing the parametrization of the overlap sizes. Two regulation principles are introduced,
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that aim to control the overlap shapes and sizes as regard to the number and the dispersal of the cluster
concerned. The experiments performed on real world datasets show the efficiency of the proposed prin-
ciples and especially the ability of the second one to build reliable overlaps with an easy tuning and what-
ever the requirement on the number of clusters.

1. Introduction

Clustering is an important task in data mining that aims to orga-
nize a dataset into groups (or clusters) containing similar data.
Clustering is used successfully in many fields of application such
as: marketing, to find groups of customers with similar purchasing
behaviors; biology, to group plants or animals into clusters of sim-
ilar species or Information Retrieval to organize documents with
similar topics into groups. In many real world applications, data
naturally organize themselves into non-disjoint groups thus
requiring to find a coverage of the data with overlapping clusters
rather than a partition. The corresponding research domain has
been referred to as overlapping clustering and studied through var-
ious approaches during the last decades [28,11,2,10,12].

Overlapping clustering methods contribute to solve many real
life problems which require the assignment of each observation
to multiple clusters: in social network analysis, community extrac-
tion algorithms should be able to detect overlapping clusters be-
cause an actor can belong to multiple communities [31,33,12]; in
video classification, each entry can potentially have multiple gen-
res [29]; in emotion detection, clustering algorithms should be able
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to raise several emotions for a specific piece of music [34] and
Information Retrieval systems should also be able to group docu-
ments with several topics into several corresponding clusters
[14,26], etc.

Unlike fuzzy clustering, overlapping clustering assumes that an
observation can really belong to several clusters (without any
membership degree). Whatever the approach used (hierarchical
or criterion-based), existing algorithms produce clusterings with-
out possibility of control on the size (or quality) of the overlaps,
other than the constraints on the overlaps set by the model itself.
Although the method ideally should reveal the clustering that best
fit to the data, such a best clustering is usually not unique and the
overlapping dimension must be used as a parameter of the pattern
recognition process.

The present paper is based on the well known c-means algo-
rithm and introduces two new methods R;-okm and R;-okm, both
generalizing the initial model oxm (Overlapping k-means) and
allowing a regulation of the overlaps. The two regulation principles
aim to measure the benefits of an overlap with respect to the num-
ber and the dispersal of the concerned clusters respectively.

The next section is devoted to a description of the works related
to overlapping clustering and the background required about the
okm model. Then, the overlap regulation principle and the two mod-
els R;-okm and R,-okm are detailed in Section 3. In Section 4 we dis-
cuss and propose an evaluation process for overlapping clustering
algorithms and we assess the positioning of the new models with
respect to the other competitive methods. Finally, Section 5 reports
on the conclusions and the perspectives this study opens up.



2. Preliminaries
2.1. Related works

The overlapping clustering problem has been studied since the
last four decades. Two kinds of approaches have been led: the heu-
ristical and theoretical solutions.

We denoted as heuristical the solutions that consist either in
modifying the clusters resulting from a standard clustering algo-
rithm into overlapping clusters (typically results from c-means or
fuzzy-c-means algorithms [19,35]) or in proposing new clustering
solutions based on intuitive processes which lead to build overlaps
but they are not based on any overlap model; the csc algorithm
(Clustering by Committee) introduced by Pantel and Lin [24] for tex-
tual data clustering and the rosoc algorithm (Pole-Based Overlapping
Clustering) proposed by Cleuziou et al. [7] are two distinctive
examples of such intuitive processes that generate overlapping
clusters. These contributions lead to suitable results in some con-
texts but they are not predicated on theoretical models and their
extension or improvement are limited as a rule.

Conversely, the second kind of approaches (theoretical solu-
tions) are extensions from traditional clustering models such as
hierarchical, generative, graph-based or reallocation methods.
The overlapping variants of hierarchies are the pyramids [11] and
more generally the weak-hierarchies [4]. Concisely, these variants
aim to reduce the discrepancy between the original dissimilarities
over the considered dataset and the ones induced by the (pseudo)-
hierarchical structure. However, these structures are either restric-
tive on the overlaps (as for pyramids) or hard to build and visualize
(as for weak-hierarchies).

Overlapping methods based on graph theory are mostly used in
the context of community detection in complex networks
[3,16,35,17,8,15,32,12,21]. This category of methods models the
initial collection of observations as a thresholded similarity graph
which can be directed or undirected graph depending on the prob-
lem. These methods build non-disjoint partitioning of vertices
(observations) through the cover of the main graph by its decom-
position to subgraphs using special techniques like the star shaped
sub-graph (s-graph). The difference between them consists on the
criterion used for ordering and selecting the sub-graphs. The ob-
tained overlaps are usually natural intersections of vertices belong-
ing to multiple subgraphs. This fact explains the shortcoming of
high overlaps between clusters that graph based methods suffer
from. Another shortcoming of these methods is the computational
complexity which is usually exponential in the number N of verti-
ces and could be reduced to O(N?) as the case for OClustR (Overlap-
ping Clustering based on Relevance) [25].

Overlapping clustering approaches using generative mixture
models [2,18,13] have been proposed as extensions of the EM
(Expectation Maximization) algorithm [9]. These models are mainly
supported by biological processes; they hypothesize that each data
is the result of a mixture of distributions: the mixture can be addi-
tive [2] or multiplicative [18,13] and the probabilistic framework
make possible to use not only gaussian components but any expo-
nential family distributions. On the other hand, generative models
are not parameterizable and do not allow the user to control the
requirements of the overlaps.

We focus our study on another type of overlapping clustering
methods, formalized through objective criteria to optimize and
solved with usual reallocation processes. Two types of models have
been proposed that refer to different hypothesis on overlapping
modelling:

e The additive modelling, introduced initially by Shepard and Ara-
bie [28] and took over by Mirkin [23] and then by Banerjee et al.

[2] (in a model-based formalization) and Depril et al. [10],
hypothesizes that overlaps result in the addition of the profiles
of the related clusters. Additive models are successfully applied
in various application domains like marketing, gene expression
and psychology for which a data sharing several behaviors can
actually be modeled by an additive combination of their profiles.
e We denote, conversely, as geometrical, the models that formalize
an overlap as a mean (or barycentre) on the related cluster pro-
files. They are based on a geometrical reasoning in the data space
and they match with many real world multi-labelled data sets,
as shown in the following. The first geometrical models have
been proposed by Cleuziou [6] and Masson and Denoeux [22].

We detail, in the following of this section, the algorithms ALS
[10] and oxm [6] and their underlying additive and geometrical
model respectively.

2.2. ALS vs. okm: models and algorithms

Given a data matrix X = (X1, ... ,xN)T with N observations in RY,
the Alternating Least Square algorithm (ALS) consists in minimiz-
ing the following sum of local errors:

N M K 2
Jas(A,P) = ZZ (Xi.j - Zai.kpk.j) ) (1)
k=1

i=1 j=1

where Kis a given number of expected clusters, A is a binary (N x K)
assignment matrix (a;, = 1 if x; belongs to the K cluster) and P is
the R®*M matrix of cluster profiles. As an additive model, ALS de-
fines a local error for each data x; by its (square) euclidean distance
with the sum of its cluster profiles.

Similarly, the objective function used in okwm is based on local er-
rors but differs on the combination of cluster profiles. As a geomet-
rical model, okm aims to match each data with the mean
(barycentre) of its cluster profiles:

N M PN
JOKM<A,P>:ZZ(XI«J—M) . @)

P > kik

Both models can be formulated as matrix decomposition prob-
lems trying to approximate X either by AP for ALS or SP (with

Tik

Sik = S ) for okm. The corresponding objective functions can be
13

rewritten using the Frobenius norm ||.||; as:
Jus = |X = AP||z and Jogy = [IX — SPII7, 3)

and minimized by a common iterative reallocation process as de-
scribed in Algorithm 1 which alternates (1) update of the assign-
ments (A or S) and (2) update of the cluster profiles (P):

Algorithm 1. Two-step reallocation process for overlapping
clustering

Require: X: a data set described over RV,
J(.): an objective function.
K: number of clusters.
Ensure A: binary membership matrix and P:; matrix of cluster
profiles
Initialize cluster profiles P, randomly picking K data in X
do
1: Compute new cluster memberships A with P fixed
2: Compute new cluster profiles P with A fixed
while (A, P) decreases
Return the final cluster membership matrix A.




Algorithm 2. OKM assignment strategy

Require: x;: a data vector to assign.
A;: the previous assignment for x;.
J(.): The objective function of okm.
P: a matrix of K cluster profiles.
Ensure A;: a binary membership vector
Look for the index q of the nearest cluster profile of x;:
q = arg minyc . [X; — APy ||
Set Aj, =0,Vk # q and set A;; = 1
do
Look for the index q of the nearest cluster profile of x;:
q = arg Minye 1 aa,—ollXi — AiPe ||
Ai=Ajand Aj, =1
if(J(A,,P) <J(A;,P)) then A; = A
else g=0
while (¢ > 0 and ||A;]| < K)
If (J(A;, P) <J(A;, P)) then return A
Else return A;

1. The assignment step is a non-trivial discrete optimization prob-
lem that can be solved as in ALS by considering for each data x;
any of the 2X combinations or with approximation heuristics
avoiding the combinatorial problem, as proposed in okm or
MOC [2].

2. To update the cluster profiles, an exact solution P* can be
obtained by considering the pseudo-inverse of A (or S):
P* = (ATA) A"X as proposed in ALS and MOC. oxm performs
updates for each cluster successively thus leading to non-opti-
mal profiles (cf. Algorithm 2) but avoiding the (costly) matrix
inversion.

The two algorithms ALS and okm proceed similarly but their
underlying model are not compatible. As mentioned above, the
choice between an additive or a geometrical model depends on
the data structure. One can show that when emerging clusters
are properly distributed around the gravity centre of the data
space, a preprocessing on the data (at least centering) makes the
additive models to proceed almost as geometrical models. It ap-
pears from previous studies, that the success of additive models
most often requires such a preprocessing thus suggesting that a
geometrical model would be more appropriate.

In the following, the problem of overlap regulation for cluster-
ing approaches is considered for the okm geometrical model, with-
out loss of generality since similar regulation principles could be
performed on additive models.

3. Overlap regulations

Into a knowledge discovery process, the user or expert is central
and must have the means to interact with the system; as well as he
examines several possibilities on the number of clusters, the metric
to use or the fuzziness of the solution in a clustering process, he
must be able to regulate the size of the overlaps when such an
overlapping structuring is expected.

To make the overlapping regulation feasible for geometrical
model we formalize two regulation principles that are based
respectively on the number and the dispersal of the cluster profiles
concerned by the data assignment. Instead of considering strong
global thresholds that could for example limit or favor for any data
the number or dispersal of its memberships to a given value
regardless of the data context, the regulation process we propose
is data sensitive; it aims to parameterize the expected benefit of
an overlap on the local errors.

To give the reader a visual reading of the regulation principles,
we illustrate the overlaps with Voronoi cells on a two-dimensional
space with three clusters. Fig. 1a shows the Voronoi cells provided
by the okm model: three clusters profiles are considered with coor-
dinates (4,8), (2,6) and (8,3) and colors blue, red and yellow
respectively; each color area is a voronoi cell that circumscribes
one cluster or one possible intersection (overlap) of clusters. As
an example, any data located into the yellow area will be assigned
only to cluster 3 with the oxm model, while data located into the
green area will be assigned to the overlap between clusters 1 and
3 (blue A yellow — green) and the black area illustrates the overlap
between the three clusters.

3.1. Overlap regulation based on the number of assignments (R;-oxm)

Additive and geometrical models favor the assignment of a data
x; to the nearest! combination of cluster profiles, as described by
their objective criteria (1) and (2), regardless of the number of clus-
ter profiles. Let A; and A; two cluster assignment combinations rela-
tive to x; represented by binary vectors into {0,1}*, the decision of
assigning a data x; to the combination A; rather than to A; in okm re-
quires a positive difference in the induced local errors. We propose a
first overlap regulation principle Ri-okm by weighting the local errors
with the size of the combinations adjusted by a parameter c. The
decision of the assignment is now regulated by the following
expression:

A% I1xi — P17 — lAil*llx; — p7]> > 0, (4)

where p*% denotes the combination pf' = > bixDy;/|IAill. As an
example, for o =1, ||A;|| =2 and ||A{|| = 1, the new model favors
the assignment of x; to the combination A; only if the local error in-
duced is twice as lower as the local error induced with

Al ((%)a = 2). Such an overlap regulation model results in the fol-

lowing objective criterion:

o Z a 2
Jro(@.P) =Y [Za,«k} 57 (s - P ) 5)
i K § kYik

Let us notice the behavior of the model, depending on the
values of o : o = 0 annihilates the weighting on the combination
sizes thus leading to the original okm model; o > 0 penalizes the
assignments to wide combinations as well as o increases until a
non-overlapping model identical to the usual (c-means) least-
square model (o — +o00); o < 0 favors the overlaps as well as «
decreases until a trivial clustering scheme with any data assigned
to any clusters (o0 — —oo).

Fig. 1b and c illustrate the assignment behavior of the R;-okm
model with o« =1 and o= —1 respectively. One can see the
non-linear cluster boundaries provided by the new model and
the expected behavior of the model, with smaller overlaps when
o > 0 and greater overlaps when o < 0.

The optimization algorithm for R;-okxm follows the general
reallocation process previously described in Algorithm 1. The
assignment strategy remains (cf. Algorithm 2) but using the new
objective criterion Ji oxy. The updating of cluster profiles is
performed successively for each cluster and requires to derivate
the optimal cluster profile P, given the assignment matrix A and
the rest of the matrix P: we obtain that such an optimal cluster
profile is defined by:

o—2_
. i) Py

kj — o— ’ 6
P ik (3oiain) 2 ©

! In the sense of euclidean distance.



(c) (d) (e)

Fig. 1. Two-dimensional example of Voronoi cells induced by the original okm model (a), the new regulated R;-oxm model with parameter o = 1 (b) and o = —1 (c) and the

new regulated Ry-okm model with parameter 4 =2 (d) and 2 = —0.5 (e).

with notation P}; denoting the perfect cluster profile P, according to
x;, such that the local error on x; is zero: pj; = Xi; >y — 348Dy
Thus, the new cluster profile P;, is a weighted average on the cluster
profiles expected by each data assigned to cluster k.

3.2. Overlap regulation based on the dispersal of the clusters (Rz-okm)

We introduce a second model that uses the dispersal of the
cluster profiles from the data to assign, in order to regulate the
overlap significance. The new R,-oxm model hypotheses that the
overlap regulation must works differently depending on the region
in the cluster space; more precisely we assume that (for example)
when the expert aims to reduce cluster overlaps, his first expecta-
tion is to separate more the distant clusters. To formalize such a
regulation principle, we propose to favor or penalize the local error
relative to each data x; by using the following dispersal criterion
quantifying the average (square) distance from x; to its cluster
profiles:

S > (Xij — pyj)”
Dap(xi) = d e 7
A.P( 1) Zkai.k ( )
Based on the later principle of overlap regulation, the new objective
criterion of Ry-okm is defined by:

S ikPes )’
]RZOKM(A7P) — Z:zj: |:(Xi_j - W) + )V.DA_P(Xi):| (8)

where / denotes the parameter allowing to control the dispersal cri-
terion and plays a role similar to o in the first model; 4 = 0 annihi-
lates the regulation leading to okm, A > O restrains overlaps while
4 < 0 favors more overlaps. Fig. 1 illustrates the (linear) shapes of
the overlap boundaries induced by the new regulation principle:
in Fig. 1d (4 = 2), the overlap limitation is strongest in proportion
with cluster 3 (yellow) since it is more distant from the two other
clusters; conversely, in Fig. 1e, the same overlaps with cluster 3
are subject to the strongest expansion when more overlaps are re-
quired (4 = —0.5).

Objective criterion (8) is used to guide the reallocation process
in the usual Algorithm 1. Algorithm Ry-okm thus follows the assign-
ment heuristic detailed in Algorithm 2 but using the Jp oy as
objective criterion; finally, the sequential profile cluster updating
is performed as follow:

o= > ibik [(Zlai.l)izp;; it )v(ZIGi.I)un]
Y > ibik [(Zlai.I)J + A(Z,au)’]] .

Let us notice that Ry-okm and Ry-okm are two generalizations of
the c-means algorithm (and okm); as for okm, the strategies used for
assignments and profiles updating ensure their convergence and
have low cost in complexity with both algorithms in O(TNK log K)
with T the number of iterations in the reallocation process. We also
notice that the optimization process of the objective function

9)

Table 1

Summary of the benchmarks used.
Dataset Domain Observ. Dim. Labels Overlap
Iris Botany 150 4 3 1
EachMovie Video 75 3 3 1.14
Music emotion Music 593 72 6 1.86
Scene Image 2407 294 6 1.07
Yeast Biology 2417 103 14 4.23

Table 2

Errors induced by additive and geometrical models on multi-label datasets. Symbol *
marks preprocessed datasets (scaling and centering). Bold values highlight the best
scores for each dataset.

Dataset X - AP I} IIX — sP°|I?
EachMovie 2543 128.4
EachMovie* 149.1 1504
Music emotion 2462127 653903
Music emotion* 36455.3 363304
Scene 23976.3 19587.0
Scene* 582831.0 582399.2
Yeast 2284.1 22935
Yeast® 235476.3 236393.9

through the different steps can lead to local optimum. This prob-
lem can be solved in practice by evaluating several clusterings with
different initializations of profiles and maintaining only the one
which gives the minimal value of the optimized criterion.

4. Experiments

Clustering evaluation is known to be a difficult task in pattern
recognition, mainly because of the vagueness of the definition of
a “good clustering”. Furthermore, validity measures traditionally
used for clustering assessment are unsuitable for overlapping clus-
tering. In addition to the visual assessment proposed in Fig. 1, we
conduct in the following an external evaluation process using a
new measure recently proposed and a suitable set of multi-label
benchmarks.

4.1. Description of the datasets

We conduct experiments on different domains that motivate
overlapping clustering researches’: video classification based on
the users ratings (Eachmovie dataset), detection of emotion in music
songs (Music emotion), clustering natural scene image (Scene) and
genes (Yeast). The datasets are labelled with one or several labels
for each data; they have been selected because of their diversity in

2 cf. http://mlkd.csd.auth.gr/multilabel.html.



the application domain, the size (from 75 to 2417 data), the dimen-
sionality (from 3 to 294 dimensions), the number of classes (from 3
to 14 labels) and the overlap rate (from 1 to 4.23 labels per data in
average).

Table 1 summarizes the statistics of each dataset. Columns
Labels and Overlap denote respectively the number of different pro-
posed labels and the average number of labels assigned per data:
the last one is given by %Zizka”‘.

Considering the four datasets with given multi-label references
(EachMovie, MusicEmotion, Scene and Yeast), we study for each
dataset wether a geometrical or an additive model is more likely
to capture the expected overlaps. Let A be the true multi-label
classification and X denoting the observations, we compute the
optimal cluster profiles P* considering either an additive or a
geometrical model (cf. Section 2.2):

(ATA)flATX for the additive model

P =
-1 .
(S'S)" S'™X  for the geometrical model
Thus, for evaluating wether the cluster profile combination is
more suitable with additive or geometrical combinations, we re-
port in Table 2 a quantification of the sum of local errors

IX —AP*||2 and || X — SP*||? induced by each model respectively. As
discussed in Section 2.2, this study reveals that EachMovie, Music
Emotion and Scene are three datasets for which multi-labeling
matches more with geometrical overlaps; a preprocessing (at least
centering) on the data making additive models artificially suitable.
Conversely, multi-labels in the Yeast dataset appear to fit with an
additive modelling of the overlaps, thus testifying the success of
such models for gene analysis [27,2].

4.2. Evaluation methodology

External evaluation of clusterings consists in quantifying the
matching of a clustering with an expected classification given as
a reference but not used during the clustering process. Most of
the overlapping clustering methods have been assessed using
standard F-measures considering precision and recall which are
computed based on either labeling the clusters or counting the
pairs of data linked by the clustering [2,6,5,20]. However, in the
overlapping context, both methodologies present some limitations.
The label based F-measure requires to label the obtained clusters
by matching between classes and clusters which is not a trivial
task for unsupervised learning, especially for datasets with large
overlaps. On the other side, the pair-based F-measure solves the
issue of labeling clusters but ignores the multiplicity of shared
clusters and/ or shared labels between each linked pair of data.
Amig6 et al. [1] were the first to propose an extension from their
BCubed metric that captures multiplicity precision and recall in
order to deal with overlapping clusterings. As Suarez et al. [30]
we use the extended F-BCubed measure for a fine-grained evalua-
tion of the overlapping clusterings.

In our experiments we confront the new regulated methods
(Ri-okm and Rjy-oxm) with five state-of-the-art methods: MOC
and ALS® having the same underlying additive model but using
different optimization strategies; okm having geometrical model;
traditional c-means which provides non-overlapping clusterings
and a thresholded fuzzy-c-means. MOC, ALS, okm and c-means are
overlaps’ parameter free, whereas R;-okm, Ry-okm and the threshol-
ded fuzzy-c-means require o, 2 and a threshold ¢ respectively. For
each parameter, several values are considered using the following
strategies:

3 Except for the Yeast dataset for which the number of clusters (14) proscribes to
explore the combinatorial set of cluster combinations (ALS).
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Fig. 2. Comparative positioning of the new overlap regulated models on datasets
Iris, EachMovie and Music emotion. Symbol * marks preprocessed datasets (scaling
and centering).

e o we first detect by dichotomy on [[0; 10]] the smallest value
omin leading to a non-overlapping clustering; then we test a
hundred values uniformly distributed over [0, o,;,] and keep



three salient values corresponding to strong jumps in the over-
lap rates obtained from two consecutive values of o.

e /: we consider the seven following values (0,0.125,0.25,
0.5,1,2,5).

e 0: once the fuzzy membership matrix is learned, we search
manually the minimum and maximum thresholds (6., and
Omax) leading to maximal and minimal overlap rates respec-
tively. Then we test eleven values uniformly distributed over
[O-mina O-mux]-

As described, parameters oo and A are only considered for posi-
tive values because, on the datasets used, the regulations require
mainly to restrain the overlaps with respect to the ones provided
by okm. Finally, let us mention the difficulty to tune manually the
threshold ¢ as the number of clusters increases: some datasets re-
quire a 107% precision in order to capture an evolution between
maximal and minimal overlap rates.

4.3. Results and discussion

Overlap rates have a strong influence on the matching measure-
ment of the clusterings with respect to the expected classes. Thus,
rather than providing tables of experimental results, we claim that
a better way to actually understand the relative positioning of
overlapping clustering methods consists in plotting their quality
measures with respect to their overlap rates. Figs. 2 and 3 provide
such a plotting for each of the five datasets with preprocessing of
the data; each points on the figures are obtained by averages on
ten runs of each algorithm with the same initial conditions (initial
profile clusters) and a number of expected clusters equal to the
number of labels. MOC, ALS and okm being free of parameters con-
trolling the overlap rate, only one solution is provided for each run
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leading to a single averaging point in the plots. Conversely, since
R;-okm, Ry-oxm and the thresholded fuzzy-c-means allow the over-
lap regulation with a parameter to tune, we linked the consecutive
points in order to represent the trends; the vertical dotted lines de-
note the expected overlap rates as given by the multi-labels
datasets.

The analysis of the experimental results firstly shows the
reliability of the extended F-Bcubed measure that is higher for
clusterings whose overlap rate comes closer to the expected
one on the whole. The main lesson we learned from the exper-
imental results is the ability of the regulation principles to
produce more fitting overlapping clusterings where the original
model build clusterings with too large overlaps: on Iris,
EachMovie, Music emotion and Scene, the original unregulated
models provide highly overlapping clusterings, leading to de-
graded scores; the proposed regulations offer ways to reduce
the overlaps while preserving the original overlapping clustering
principle thus raising significantly the matching scores. Let us
notice on Iris, EachMovie and Scene, the even better scores that
R,-okm obtains with little more overlaps than expected: it can
be explained by considering that overlaps also model a sort of
indecisiveness on the assignment that is preferable to a wrong
decision in the matching evaluation. Indeed we observed using
R,-okm on Iris that all the imprecision comes from the two last
classes (Versicolor and Virginica) both for crisp-clusterings
(A — +o00) and for clusterings with moderated overlaps (e.g.
4 =0.5); such overlaps are reliable and benefit the matching
with the initial labeling.

When comparing the three parameterized methods we notice
from the experimental results that, on the whole, the dispersal-
based regulation (R,) leads to better results than a regulation based
on the number of assignments only (R;). Regarding the thresholded
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Fig. 3. Comparative positioning of the new overlap regulated models on datasets Scene and Yeast. Symbol * marks preprocessed datasets.

Table 3
Comparison of clustering models using the F-measure on preprocessed datasets (Iris, EachMovie, Music emotion, Scene and Yeast). Bold values highlight the best scores for each
dataset.
Datasets Iris* Each Movie* MusicEmotion™ Scene* Yeast*
F measure Overlap F measure Overlap F measure Overlap F measure Overlap F measure Overlap
c-Means 0.72 £0.04 1.00 £ 0.00 0.60 + 0.06 1.00 £ 0.00 0.37 +0.01 1.00 £ 0.00 0.44 +0.02 1.00 £ 0.00 0.14 £ 0.00 1.00 £ 0.00
MOC 0.60 +0.02 1.63 £ 0.04 0.61+0.03 1.54+0.08 0.57 +0.02 2.13+0.14 0.34 £0.03 2.49+0.38 0.77 £0.08 594 +0.13
OKM 0.66 +0.05 1.51+0.09 0.60 + 0.02 1.70£0.12 0.63 +0.01 2.38+0.18 0.35 +0.01 2.48 £0.24 0.81 £ 0.02 445 +0.21
Ry -okm 0.73 £0.04 1.24+£0.07 0.61+0.03 1.33+0.17 0.62 +0.02 2.19+0.16 0.41 £0.02 1.52+0.19 0.65 +0.12 3.13 £0.85
Ry-okm 0.76 £ 0.03 1.18 £0.03 0.62 + 0.04 1.10+0.03 0.57 +0.01 1.79 £ 0.06 0.45 +0.02 1.23+0.02 0.58 +0.01 2.82 £0.05




fuzzy-c-means, its achievement is actually limited since it outper-
forms R;- and R,-okm only on datasets with few clusters (Iris and
EachMovies with 3 clusters) and fail to build better overlaps when
more clusters are expected (Music emotion, Scene and Yeast with
6, 6 and 14 clusters respectively); in addition, the thresholded fuz-
zy-c-means is much more sensitive to the threshold’s tuning than
R1- and Ry-okm are with their respective parameter « and 4, as illus-
trated by some threshold values mentioned in the figures.

Finally, to make easier a quantitative empirical comparison
with previous studies, the different clustering models are com-
pared using the usual F-measure and results are reported in Table 3.
We notice that oxm-based models perform better than the non-
overlapping c-means algorithm and also better than the mMoc algo-
rithm, despite the data preprocessing. In Addition, overlap regula-
tions allow to improve the results obtained with okm on three of
the five datasets using both R; and R, regulation models* and with
a strong advantage for the R,-okm method.

5. Conclusion

In this paper we focused on the overlapping clustering task, for
which dedicated approaches provided unique clusterings, without
regulation on the cluster overlaps until now. We introduced and
formalized two regulated overlapping clustering models that gen-
eralizes the usual c-means approach to overlapping clustering. The
two regulation principles aim to control the overlap shapes and
sizes as regard to the number and the dispersal of the cluster con-
cerned. We observed on real world datasets, the efficiency of the
proposed principles and especially the ability of the second one
(Rz-okMm) to build reliable overlaps with an easy tuning and what-
ever the requirement on the number of clusters.

We claim that the new principles introduced here are not lim-
ited to be applied with the geometrical ok model and are easily
transposable to additive models like ALS. One could also think of
other ways of regulation as for example a single combination of
the two present principles. But definitely, the major issue to ad-
dress now concerns the use of the regulation principle in a new
framework allowing to detect automatically a suitable regulation
or to adjust such a regulation differently depending on the region
space.
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