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Abstract

We develop an arbitrary-order primal method for diffusion problems on general
polyhedral meshes. The degrees of freedom are scalar-valued polynomials of the
same order at mesh elements and faces. The cornerstone of the method is a local
(element-wise) discrete gradient reconstruction operator. The design of the method
additionally hinges on a least-squares penalty term on faces weakly enforcing the
matching between local element- and face-based degrees of freedom. The scheme is
proved to optimally converge in the energy norm and in the L2-norm of the potential
for smooth solutions. In the lowest-order case, equivalence with the Hybrid Finite
Volume method is shown. The theoretical results are confirmed by numerical exper-
iments up to order 4 on several polygonal meshes.
Keywords. Diffusion, general meshes, arbitrary-order, gradient reconstruction
Mathematics Subjects Classification. 65N30, 65N08, 76R50

1 Introduction

Let Ω Ă R
d, d P t2, 3u, denote an open bounded connected polygonal/polyhedral domain.

In this work we propose an arbitrary-order primal hybrid method for the model diffusion
problem

´△u “ f in Ω,

u “ 0 on BΩ,
(1)
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where u denotes the potential and f a forcing term. More general boundary conditions
and diffusion tensors could be considered, but we stick to the simpler case (1) for ease of
presentation. For X Ă Ω, we respectively denote by p¨, ¨qX and }¨}X the standard inner
product and norm in L2pXq, with the convention that the subscript is omitted whenever
X “ Ω and that the same notation is used in L2pXqd. Classically, the weak formulation
of (1) consists, for f P L2pΩq, in seeking u P U0 :“ H1

0 pΩq such that

p∇u,∇vq “ pf, vq @v P U0. (2)

Approximation methods on general polyhedral meshes have received an increasing at-
tention over the last few years, motivated by applications (e.g., in geosciences) where the
mesh cannot be easily adapted to the needs of the numerical scheme. To handle general
discretizations, a wide range of new numerical methods has been developed. We can cite,
e.g., the Mimetic Finite Difference (MFD) [5], the Hybrid Finite Volume (HFV) [14], and
the Mixed Finite Volume (MFV) [11] methods, that have been proved to be closely related
in [12]. Another example is the recent framework of Compatible Discrete Operator (CDO)
schemes [4], for which a correspondence is established with nodal MFD discretizations for
vertex-based CDO schemes and with MFV for cell-based CDO schemes. All these methods
share the particularity of being lowest-order, which may be sufficient for most practical
cases. However, the emphasis has been recently set on the design of higher-order discretiza-
tions capable of handling comparably general meshes. Results in this direction include the
polygonal and extended Finite Element (FE) methods [16, 17] where nonpolynomial shape
functions are considered. Furthermore, high-order MFD schemes have been recently an-
alyzed in [3]. Even more recently, the Virtual Element Method (VEM) was introduced
in [2], broadening the ideas underpinning the MFD approach and, at the same time, allow-
ing one to design arbitrary-order conforming finite element methods on polyhedral meshes,
without the need to specify the additional nonpolynomial shape functions. The VEM also
allows for higher-order continuity conditions between neighboring elements.

In the present work, we show how the schemes based on local reconstruction operators
originally developed in the context of linear elasticity in [9] apply to the design of an
arbitrary-order primal (as opposed to the mixed case considered in [8]) method for the
model diffusion problem (1). The resulting scheme can be viewed as a high-order extension
of the HFV method, or of the generalized Crouzeix–Raviart method introduced in [10] in
the context of linear elasticity. For a given polynomial degree k ě 0, we select as degrees of
freedom (DOFs) scalar-valued polynomials at mesh elements and faces up to degree k. The
associated interpolation operator maps potentials in H1pΩq to their moments up to degree
k at elements and faces. Then, the method is defined in two steps: (i) we devise a local
discrete gradient reconstruction operator of order k in terms of the local DOFs by solving
an inexpensive problem inside each element; (ii) we design a least-squares penalty term
that is local to one element (i.e., it does not affect the stencil of the method), that weakly
enforces the matching between local element- and face-based DOFs, and that preserves the
order of the gradient reconstruction. A key ingredient in the design of the penalty term is a
potential reconstruction of order pk`1q obtained by correcting element DOFs by a higher-
order term inferred from the discrete gradient reconstruction. A major difference with
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respect to VEM is that nodal unknowns are not present, which results in a more compact
stencil (especially in three space dimensions). Additionally, as usual with the present
choice of DOFs, static condensation allows one to solve a global system in terms of face
unknowns only. The Hybrid Discontinuous Galerkin (HDG) method [6], which is devised on
different ideas, also hinges on element- and face-based DOFs. The main difference is that
the present choice of DOFs only involves scalar-valued polynomials attached to elements,
which yields significant computational savings in the static condensation, especially in three
space dimensions. The present hybrid high-order method is also expected to outperform
Interior Penalty Discontinuous Galerkin (IPDG) methods. First, we notice that achieving
the same accuracy with IPDG methods requires to use cell-based polynomials of order
pk`1q. Thus, for d “ 3, the number of DOFs is 1

6
pk`2qpk`3qpk`4q times the number of

cells for IPDG methods (growing as 1
6
k3), and 1

2
pk`1qpk`2q times the number of faces for

the present method after static condensation (growing as 1
2
k2). Blocking DOFs at cells and

faces, respectively, the stencil resulting from IPDG methods (consisting of cell neighbors in
the sense of faces) is approximately twice more compact than that of the present method
(consisting of face neighbors in the sense of cells), but, as mentioned above, the size of the
blocks is (much) smaller for the present method, especially with high polynomial orders.

The paper is organized as follows. In Section 2 we introduce the method: we recall
the notion of admissible mesh sequence, introduce the spaces of DOFs, derive the gradient
reconstruction, present the discrete problem, study its well-posedness, and link our scheme
to the HFV method in the lowest-order case. In Section 3 we perform the error analysis.
We prove a convergence rate for smooth solutions of order pk ` 1q in the energy norm and
of order pk ` 2q in the L2-norm of the error, respectively. Incidentally, this latter result
provides an optimal L2-norm potential error estimate for HFV schemes with arbitrary
penalty parameter (as opposed to [10], where a specific choice yielding continuity of the
potential reconstruction at face barycenters is considered). Finally, in Section 4, we present
numerical examples up to order 4 on various polygonal meshes confirming the theoretical
predictions.

2 Description of the method

2.1 Admissible mesh sequences

We recall the notion of admissible mesh sequence of [7, Chapter 1]. Let H Ă R
`
˚ denote

a countable set of meshsizes having 0 as its unique accumulation point. We consider h-
refined mesh sequences pThqhPH where, for all h P H, Th is a finite collection of nonempty
disjoint open polygons/polyhedra (the elements) Th “ tT u such that Ω “

Ť
TPTh

T and h “
maxTPTh hT (hT stands for the diameter of the element T ). We call a face any hyperplanar
closed connected subset F of Ω with positive pd´1q-dimensional measure and such that
(i) either there exist T1, T2 P Th such that F Ă BT1XBT2 (and F is an interface) or (ii) there
exists T P Th such that F Ă BT X BΩ (and F is a boundary face). Interfaces are collected
in the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

h Y Fb
h . The diameter of a face
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F P Fh is denoted by hF . For all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces
lying on the boundary of T and, for all F P FT , nTF is the unit normal to F pointing out
of T . Finally, the l-dimensional Lebesgue measure, 0 ď l ď d, is denoted by |¨|l.

Definition 1 (Admissible mesh sequence). The mesh sequence pThqhPH is admissible if,
for all h P H, Th admits a matching simplicial submesh Th and there exists a real number
̺ ą 0 independent of h such that, for all h P H, (i) for all simplex S P Th of diameter hS

and inradius rS, ̺hS ď rS holds and (ii) for all T P Th, and all S P Th such that S Ă T ,
̺hT ď hS holds.

In what follows, we often abbreviate as a À b the inequality a ď Cb with C ą 0 independent
of h but possibly depending on the mesh regularity parameter ̺.

We next recall some basic results valid for admissible mesh sequences. First, according
to [7, Lemma 1.42], for all h P H, all T P Th, and all F P FT , hF is comparable to hT in
the sense that

̺2hT ď hF ď hT . (3)

Moreover, [7, Lemma 1.41] shows that there exists an integer NB depending on ̺ and d

such that
@h P H, max

TPTh
cardpFT q ď NB. (4)

There also exist real numbers Ctr and Ctr,c depending on ̺ but independent of h such that
the following discrete and continuous trace inequalities hold for all T P Th and F P FT ,
cf. [7, Lemmata 1.46 and 1.49]:

}v}F ď Ctrh
´1{2
F }v}T @v P P

l
dpT q, (5)

}v}BT ď Ctr,c

`
h´1
T }v}2T ` hT }∇v}2T

˘1{2
@v P H1pT q, (6)

where, for X being an n-dimensional subset of Ω (n ď d), Pl
npXq is spanned by the restric-

tions to X of n-variate polynomials of total degree ď l. Using [7, Lemma 1.40] together
with the results of [13], one can prove that there exists a real number Capp depending on
̺ and l but independent of h such that, for all T P Th, denoting by πl

T the L2-orthogonal
projector on P

l
dpT q, the following holds: For all s P t1, . . . , l ` 1u, and all v P HspT q,

|v ´ πl
Tv|HmpT q ` h

1{2
T |v ´ πl

Tv|HmpBT q ď Capph
s´m
T |v|HspT q @m P t0, . . . , ps ´ 1qu. (7)

Finally, the following Poincaré inequality is valid for all T P Th and all v P H1pT q such
that

ş
T
v “ 0:

}v}T ď CPhT }∇v}T , (8)

where CP “ π´1 for convex elements (cf. [1]). For more general element shapes, CP can be
estimated in terms of ̺.
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2.2 Degrees of freedom

Let a polynomial degree k ě 0 be fixed. For all T P Th, we define the local space of DOFs
as follows:

U
k
T :“ P

k
dpT q ˆ

#
ą

FPFT

P
k
d´1pF q

+
. (9)

The global space of DOFs is obtained by patching interface values in (9):

U
k
h :“

#
ą

TPTh

P
k
dpT q

+
ˆ

#
ą

FPFh

P
k
d´1pF q

+
. (10)

Boundary conditions can be embedded in the discrete space (10) by letting

U
k
h,0 :“

 
vh “ ppvT qTPTh , pvF qFPFh

q P U
k
h | vF ” 0 @F P Fb

h

(
. (11)

For all T P Th, we denote by LT : Uk
h Ñ U

k
T the restriction operator that maps the global

DOFs in U
k
h to the corresponding local DOFs in U

k
T . The local interpolation operator

I
k
T : H1pT q Ñ U

k
T is such that, for all v P H1pT q,

I
k
Tv :“ pπk

Tv, pπk
FvqFPFT

q, (12)

where πk
F is the L2-orthogonal projector on P

k
d´1pF q. The corresponding global interpola-

tion operator Ikh : H1pΩq Ñ U
k
h is such that, for all v P H1pΩq,

I
k
hv :“ ppπk

TvqTPTh , pπk
FvqFPFh

q.

When applied to functions in U0, I
k
h maps onto U

k
h,0.

2.3 Local gradient reconstruction

For all T P Th, we define the local gradient reconstruction operator Gk
T : Uk

T Ñ ∇P
k`1,0

d pT q

(where, for l ě 1, Pl,0

d pT q stands for the space of d-variate polynomial functions of total
degree ď l that have zero average on T ) such that, for all v :“ pvT , pvF qFPFT

q P U
k
T and all

w P P
k`1,0

d pT q,

pGk
T v,∇wqT “ p∇vT ,∇wqT `

ÿ

FPFT

pvF ´ vT ,∇w¨nTF qF . (13)

Since G
k
T v P ∇P

k`1,0

d pT q means that there is v P P
k`1,0

d pT q such that G
k
T v “ ∇v, (13)

corresponds to the local (well-posed) Neumann problem

p∇v,∇wqT “ p∇vT ,∇wqT `
ÿ

FPFT

pvF ´ vT ,∇w¨nTF qF . (14)

Solving (14) requires to invert the local stiffness matrix inside each element, which can be
performed effectively via a Cholesky factorization.
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Remark 2 (Compatibility condition). Observing that the right-hand side of the (discrete)
Neumann problem (14) satisfies the usual compatibility condition for test functions in
P
0
dpT q, we infer that (13) and (14) hold in fact for all w P P

k`1
d pT q.

We next introduce the potential reconstruction operator pkT : Uk
T Ñ P

k`1
d pT q such that,

for all v P U
k
T ,

∇pkT v :“ G
k
T v,

ż

T

pkT v :“

ż

T

vT . (15)

In practice, the potential reconstruction pkT is computed once (14) has been solved, since,
recalling that v has zero average on T , we infer that pkT v “ v ` 1{|T |d

ş
T
vT .

Lemma 3 (Approximation properties for pkT I
k
T ). There exists a real number C ą 0, de-

pending on ̺ but independent of hT such that, for all v P Hk`2pT q,

}v ´ pkT I
k
Tv}T ` h

1{2
T }v ´ pkT I

k
Tv}BT

` hT }∇pv ´ pkT I
k
Tvq}T ` h

3{2
T }∇pv ´ pkT I

k
Tvq}BT ď Chk`2

T }v}Hk`2pT q. (16)

Proof. Let v P Hk`2pT q. Integrating by parts the right-hand side of (13) and using the
definition (15) of the operator pkT together with the definition (12) of the interpolation
operator IkT yields, for all w P P

k`1
d pT q (cf. Remark 2),

p∇pkT I
k
Tv,∇wqT “ pGk

T I
k
Tv,∇wqT “ ´pπk

Tv,∇¨p∇wqqT `
ÿ

FPFT

pπk
Fv,∇w¨nTF qF

“ ´pv,∇¨p∇wqqT `
ÿ

FPFT

pv,∇w¨nTF qF ,

since ∇¨p∇wq P P
k´1
d pT q Ă P

k
dpT q and ∇w|F ¨nTF P P

k
d´1pF q. Performing a second inte-

gration by parts leads to

p∇v ´ ∇pkT I
k
Tv,∇wqT “ 0 @w P P

k`1
d pT q. (17)

The orthogonality condition (17) implies that

}∇pv ´ pkT I
k
Tvq}T “ inf

zPPk`1

d
pT q

}∇v ´ ∇z}T À hk`1
T }v}Hk`2pT q, (18)

where we have used the approximation property (7) of πk`1
T (with s “ k ` 2 and m “ 1).

Then, from (18), the fact that
ş
T
pkT I

k
Tv “

ş
T
πk
Tv “

ş
T
v owing to the second relation in (15)

and the definition (12) of the local interpolation operator, and the Poincaré inequality (8),
we infer that

}v ´ pkT I
k
Tv}T À hk`2

T }v}Hk`2pT q. (19)

The consecutive use of the continuous trace inequality (6) and (18)-(19) yields

hT }v ´ pkT I
k
Tv}2BT À }v ´ pkT I

k
Tv}2T ` h2

T }∇pv ´ pkT I
k
Tvq}2T À h

2pk`2q
T }v}2Hk`2pT q.
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Finally, the bound on h
3{2
T }∇pv ´ pkT I

k
Tvq}BT is obtained by introducing ˘πk

T∇v inside the
norm, using the triangle inequality, and concluding with the approximation property (7)
of πk

T (applied componentwise to ∇v with s “ k ` 1 and m “ 0), the discrete trace
inequality (5), the bound (4) on cardpFT q, the mesh regularity property (3), the fact that
∇pkT I

k
Tv P rPk

dpT qsd so that }πk
T∇v ´ ∇pkT I

k
Tv}T ď }∇pv ´ pkT I

k
Tvq}T , and (18).

2.4 Discrete problem and well-posedness

To discretize the left-hand side of (2), we introduce the following bilinear forms on U
k
hˆU

k
h:

ahpuh, vhq :“
ÿ

TPTh

aT pLTuh, LT vhq, shpuh, vhq :“
ÿ

TPTh

sT pLTuh, LT vhq, (20)

where, for all T P Th, the local bilinear forms aT and sT on U
k
T ˆ U

k
T are such that

aT pu, vq :“ pGk
Tu,G

k
T vqT ` sT pu, vq, sT pu, vq :“

ÿ

FPFT

1

hF

pπk
F puF ´ P k

T uq, πk
F pvF ´ P k

T vqqF ,

(21)
where the local potential reconstruction P k

T : Uk
T Ñ P

k`1
d pT q is defined such that, for all

v P U
k
T ,

P k
T v :“ vT ` ppkT v ´ πk

Tp
k
T vq. (22)

The term in parentheses can be interpreted as a higher-order correction of the element
unknown vT derived from the discrete gradient reconstruction operator (13) (note that
this correction is independent of the second relation in (15)). The stabilization bilinear
form sT defined by (21) introduces a least-squares penalty of the L2-orthogonal projection
on P

k
d´1pF q of the difference between vF and pP k

T vq|F , cf. Remark 6 below. Introducing the

global discrete gradient operator Gk
h : Uk

h Ñ
Ś

TPTh
∇P

k`1,0

d pT q such that, for all vh P U
k
h,

pGk
hvhq|T :“ G

k
TLT vh @T P Th, (23)

we can reformulate the bilinear form ah defined in (20) as

ahpuh, vhq “ pGk
huh,G

k
hvhq ` shpuh, vhq.

We define the local and global energy semi-norms as follows:

}v}2a,T :“ aT pv, vq @v P U
k
T , }vh}2a,h :“

ÿ

TPTh

}LT vh}2a,T @vh P U
k
h, (24)

and observe that, owing to (20),

ahpvh, vhq “ }vh}2a,h. (25)

The forcing term in (2) is discretized by means of the linear form on U
k
h such that

lhpvhq :“
ÿ

TPTh

pf, vT qT . (26)
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The discrete problem reads: Find uh P U
k
h,0 such that, for all vh P U

k
h,0,

ahpuh, vhq “ lhpvhq. (27)

The stability of the method is expressed in terms of the following H1
0 pΩq-like discrete

norm:

}vh}21,h :“
ÿ

TPTh

}LT vh}21,T @vh P U
k
h,0, }v}21,T :“ }∇vT }2T ` |v|21,BT @v P U

k
T , (28)

where |v|21,BT :“
ř

FPFT
h´1
F }vF ´vT }2F . Since the homogeneous Dirichlet boundary condition

is embedded in the discrete space U
k
h,0 defined in (11), the map }¨}1,h defines a norm on

U
k
h,0. Using a discrete Poincaré inequality in broken polynomial spaces, see [7, Corollary

5.4] and references therein, it is possible to show that for all vh P U
k
h,0, }vh} À }vh}1,h, where

vh is the piecewise polynomial function such that vh|T :“ vT , for all T P Th.

Lemma 4 (Norm equivalence). There exists η ą 0 such that, for all T P Th and all v P U
k
T ,

η´1}v}21,T ď }v}2a,T ď η}v}21,T . (29)

Consequently, for all vh P U
k
h,

η´1}vh}21,h ď }vh}2a,h ď η}vh}21,h. (30)

Proof. Let T P Th and v P U
k
T . Taking w “ vT P P

k
dpT q Ă P

k`1
d pT q in (13) (cf. Remark 2)

yields

}∇vT }2T “ pGk
T v,∇vT qT ´

ÿ

FPFT

pvF ´ vT ,∇vT ¨nTF qF ď }Gk
T v}2T `

1

2
}∇vT }2T `NBC

2
tr|v|21,BT ,

(31)
where we have used the Cauchy–Schwarz and Young’s inequalities, and applied the discrete
trace inequality (5) and the bound (4) on cardpFT q for the face term. Owing to (31), we
infer that

}∇vT }2T À }Gk
T v}2T ` |v|21,BT . (32)

Let now F P FT . Adding and subtracting πk
FP

k
T v, and using the triangle inequality yields

h
´1{2
F }vF ´ vT }F ď h

´1{2
F }πk

F pvF ´ P k
T vq}F ` h

´1{2
F }πk

F ppkT v ´ πk
Tp

k
T vq}F , (33)

where we have used the fact that both vF and vT |F belong to P
k
d´1pF q together with the

definition (22) of P k
T . The second term on the right-hand side of (33) can be estimated as

h
´1{2
F }πk

F ppkT v ´ πk
Tp

k
T vq}F ď Ctrh

´1
F }pkT v ´ πk

Tp
k
T v}T ď CtrCapp̺

´2}Gk
T v}T ,

where we have used the discrete trace inequality (5), the approximation property (7) of πk
T

(with s “ 1 and m “ 0), the definition (15) of ∇pkT v, and the mesh regularity property (3).
Hence,

h
´1{2
F }vF ´ vT }F À h

´1{2
F }πk

F pvF ´ P k
T vq}F ` }Gk

T v}T . (34)
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Squaring (34), summing over F P FT , and using the bound (4) on cardpFT q yields

|v|21,BT À sT pv, vq ` }Gk
T v}2T . (35)

The first inequality in (29) follows from (32) and (35). Turning to the second inequality,
we deduce from (13), the Cauchy–Schwarz inequality, the discrete trace inequality (5), and
the bound (4) on cardpFT q that

}Gk
T v}T “ sup

wPPk`1,0

d
pT q

pGk
T v,∇wqT
}∇w}T

ď }∇vT }T `
ÿ

FPFT

Ctrh
´1{2
F }vF ´ vT }F À }v}1,T .

Moreover, for all F P FT , the triangle inequality and the fact that πk
F is a projector yield

h
´1{2
F }πk

F pvF ´ P k
T vq}F ď h

´1{2
F }vF ´ vT }F ` h

´1{2
F }vT ´ P k

T v}F ,

and, owing to the definition (22) of P k
T , the second term on the right-hand side is equal

to h
´1{2
F }pkT v ´ πk

Tp
k
T v}F . Using the mesh regularity property (3), the discrete trace in-

equality (5), and the approximation property (7) of πk
T (with s “ 1 and m “ 0), we infer

that
h

´1{2
F }pkT v ´ πk

Tp
k
T v}F À h´1

T }pkT v ´ πk
Tp

k
T v}T À }∇pkT v}T “ }Gk

T v}T .

Combining the above bounds yields the second inequality in (29). Finally, summing (29)
over T P Th proves (30).

Corollary 5 (Well-posedness). Problem (27) is well-posed.

Proof. Combining (25) with Lemma 4 yields ahpvh, vhq “ }vh}2a,h ě η´1}vh}21,h. Since }¨}1,h
is a norm on U

k
h,0, the well-posedness results from the Lax–Milgram Lemma.

Remark 6 (Stabilization). The design of the local stabilization bilinear form sT is tailored
to ensure control of the }¨}1,T -norm as reflected by the first inequality in (29), and, at
the same time, yield the same convergence order as the gradient reconstruction, cf. the
proof of Theorem 8 below, in particular (45). This is the reason why sT is not set to be,
e.g., sT pu, vq :“

ř
FPFT

h´1
F puF ´ uT , vF ´ vT qF (this choice trivially ensures control of the

|¨|1,BT -seminorm), but the (projections of the) high-order potential reconstructions πk
FP

k
T u

and πk
FP

k
T v are used in place of uT and vT , respectively.

2.5 Link with the HFV method for k “ 0

In the lowest-order case (k “ 0), the proposed method shares strong links with the HFV
method of [14]. We assume in this section that, for all h P H and all T P Th, T is
star-shaped with respect to its barycenter xT and, for all F P FT , one has

˜̺hT ď dT,F ď hT , (36)
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where dT,F denotes the orthogonal distance between xT and F and ˜̺ ą 0 is a mesh
regularity parameter independent of h. The HFV discretization of problem (1) reads:
Find uh P U

0
h,0 such that, for all vh P U

0
h,0,

ÿ

TPTh

|T |dpGTLTuhq¨pGTLT vhq`
ÿ

TPTh

ÿ

FPFT

|TF |dpRT,FLTuhqpRT,FLT vhq “
ÿ

TPTh

|T |dfT vT , (37)

where TF denotes the pyramid of base F and apex xT such that |TF |d “ |F |d´1dT,F {d,
fT :“ |T |´1

d

ş
T
f for all T P Th and, for all v P U

0
T , denoting by xF the barycenter of

F P FT ,

GT v :“
1

|T |d

ÿ

FPFT

|F |d´1pvF ´ vT qnTF , RT,F v :“
d

1{2

dT,F
pvF ´ vT ´GT v¨pxF ´xT qq. (38)

Proposition 7 (Equivalence with the HFV discretization for k “ 0). The discrete prob-
lem (37) coincides with (27) for k “ 0 and xT the barycenter of T , up to the (uniformly
comparable) change of scaling dT,F Ð hF in the penalty term RT,F defined by (38).

Proof. To derive an explicit expression for G0
T v, we notice that

∇P
1,0

d “ rP0
dsd “ spante1, . . . , edu,

where peiqiPt1,...,du denotes the canonical basis of Rd. Then, for any T P Th, testing (13)

with wi P P
1,0

d pT q such that ∇wi “ ei for all i P t1, . . . , du, it is straightforward that, for
any v P U

0
T , G

0
T v ” GT v. Additionally, for all x P T , p0T vpxq ” GT v¨px´xT q` |T |´1

d

ş
T
vT P

P
1
dpT q, and hence P 0

T vpxq ” vT `GT v¨px´xT q, whose restriction to F belongs to P
1
d´1pF q.

As a consequence, for all F P FT , we infer that π
0
F pvF ´P 0

T vq “ vF ´ vT ´GT v¨pxF ´xT q “
dT,Fd

´1{2RT,F v. Plugging these expressions into (20), (21), and (26), and comparing (27)
with (37), we observe that the only difference between the two discretizations lies in the
scaling choice for the least-squares penalty term (the scaling is d´1

T,F in (37) and h´1
F in (27)).

The two choices are uniformly comparable owing to (36) and (3).

3 Error analysis

3.1 Energy-norm error estimate

Theorem 8 (Discrete error estimate). Let u P U0 and uh P U
k
h,0 denote the unique solutions

to (2) and (27) respectively, and assume the additional regularity u P Hk`2pΩq. Then,
letting puh :“ I

k
hu, there exists a real number C ą 0 depending on ̺ but independent of h

such that
η´1{2}puh ´ uh}1,h ď }puh ´ uh}a,h ď Chk`1}u}Hk`2pΩq. (39)
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Proof. The first inequality in (39) results from the first inequality in (30). Moreover,
using (25), (30), and the fact that puh ´ uh P U

k
h,0 yields

}puh ´ uh}a,h ď η
1{2ahppuh ´ uh,puh ´ uhq

}puh ´ uh}1,h
ď η

1{2 sup
vhPUk

h,0
, }vh}1,h“1

ahppuh ´ uh, vhq.

Owing to (27), we infer that

}puh ´ uh}a,h ď η
1{2 sup

vhPUk
h,0

, }vh}1,h“1

Ehpvhq, (40)

where Ehpvhq :“ ahppuh, vhq ´ lhpvhq is the consistency error. We derive a bound for this
quantity for a generic vh P U

k
h,0. Recalling that f “ ´△u a.e. in Ω, an element-wise

integration by parts in (26) yields

lhpvhq “
ÿ

TPTh

p∇u,∇vT qT `
ÿ

TPTh

ÿ

FPFT

pvF ´ vT ,∇u¨nTF qF , (41)

where we have used the fact that the flux is continuous at interfaces and that the homo-
geneous Dirichlet boundary condition is embedded in U

k
h,0 (cf. (11)) to introduce vF in the

second term on the right-hand side of (41). Choosing w “ quT :“ pkTLTpuh “ pkT I
k
T pu|T q in

the definition (13) of Gk
TLT vh for all T P Th (recall from Remark 2 that the zero-mean

condition is not needed on w), and owing to (15) and (23), we infer that

pGk
hpuh,Gk

hvhq “
ÿ

TPTh

p∇quT ,∇vT qT `
ÿ

TPTh

ÿ

FPFT

pvF ´ vT ,∇quT ¨nTF qF . (42)

Combining (42) with (41), we arrive at

Ehpvhq “
ÿ

TPTh

p∇pquT ´ uq,∇vT qT `
ÿ

TPTh

ÿ

FPFT

pvF ´ vT , p∇quT ´ ∇uq¨nTF qF

`
ÿ

TPTh

sT pLTpuh, LT vhq :“ T1 ` T2 ` T3.
(43)

To estimate T1 and T2, we use the Cauchy–Schwarz inequality followed by the approxima-
tion property (16) of pkT I

k
T (and also the bound (4) on cardpFT q for T2). Recalling (28), we

infer that
|T1| ` |T2| À hk`1}u}Hk`2pΩq}vh}1,h. (44)

To estimate T3, let T P Th and F P FT . We observe that

h
´1{2
F }πk

F ppuF ´ P k
TLTpuhq}F “ h

´1{2
F }πk

F pu ´ quT q ´ πk
T pu ´ quT q}F

ď h
´1{2
F }u ´ quT }F ` h´1

F Ctr}u ´ quT }T

À hk`1
T }u}Hk`2pT q,

(45)
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where we have used the definitions (22) and (12) of P k
T and I

k
T , respectively, the fact that

πk
F ˝ πk

T “ πk
T on F , the discrete trace inequality (5), the approximation property (16)

of pkT I
k
T , and the mesh regularity property (3). Finally, using Cauchy–Schwarz inequality

with (45), the bound (4) on cardpFT q, (24), and (30), we infer that

|T3| ď shppuh,puhq
1{2shpvh, vhq

1{2 À hk`1}u}Hk`2pΩq}vh}a,h

À hk`1}u}Hk`2pΩq}vh}1,h.
(46)

The conclusion of the proof then follows from (40), (43), (44), and (46).

Corollary 9 (Error estimate on the exact gradient). Under the assumptions of Theorem 8,
the following holds:

}∇u ´ G
k
huh} ď Chk`1}u}Hk`2pΩq.

Proof. The triangle inequality and definition (24) yield

}∇u ´ G
k
huh} ď }∇u ´ G

k
hpuh} ` }Gk

hppuh ´ uhq} ď }∇u ´ G
k
hpuh} ` }puh ´ uh}a,h.

Use (16) and (39) to estimate the terms on the right-hand side and conclude.

3.2 L2-norm error estimate

Adapting the techniques of [9, Section 4.2], we can also prove an optimal L2-error estimate
for the potential. To this end, we assume elliptic regularity in the following form: For all
g P L2pΩq, the unique solution z P U0 to

p∇z,∇vq “ pg, vq @v P U0, (47)

satisfies the a priori estimate
}z}H2pΩq ď Cell}g}, (48)

with a constant Cell ą 0 only depending on Ω.

Theorem 10 (L2-error estimate for the potential). Under the assumptions of Theorem 8,
assuming elliptic regularity (48) for problem (1) and that f P H1pΩq for k “ 0, there exists
a real number C ą 0 depending on the mesh regularity parameter ̺ but independent of h
such that, for k ě 1,

}puh ´ uh} ď Chk`2}u}Hk`2pΩq,

and for k “ 0,
}puh ´ uh} ď Ch2}f}H1pΩq,

where puh, uh are piecewise polynomial functions such that puh|T :“ puT “ πk
Tu and uh|T :“ uT

for all T P Th.
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Proof. We only sketch the proof, referring to [9, Section 4.2] for further insight. Let z

solve (47) with g :“ puh ´ uh. Set pzh :“ I
k
hz and eh :“ puh ´ uh. A straightforward

computation shows that }puh ´ uh}2 “ T1 ` T2 with

T1 :“
ÿ

TPTh

#
p∇eT ,∇zqT `

ÿ

FPFT

peF ´ eT ,∇z¨nTF qF ´ aT pLT eh, LTpzhq

+
,

T2 :“
ÿ

TPTh

 
´pf, πk

T zqT ` aT pLTpuh, LTpzhq
(
.

To bound T1, we observe that, with δT :“ z|T ´ pkT I
k
T z|T ,

T1 “
ÿ

TPTh

#
p∇eT ,∇δT qT `

ÿ

FPFT

peF ´ eT ,∇δT ¨nTF qF ´ sT pLT eh, LTpzhq

+
,

whence we infer that

|T1| ď
 

}eh}21,h ` shpeh, ehq
(1{2

#
ÿ

TPTh

“
}∇δT }2T ` hT }∇δT }2BT

‰
` shppzh,pzhq

+1{2

À hk`1}u}Hk`2pΩqh}z}H2pΩq À hk`2}u}Hk`2pΩq}puh ´ uh},

owing to the energy-norm error estimate and elliptic regularity, while the bound on δT and
shppzh,pzhq is shown as in the proofs of Lemma 3 and Theorem 8, respectively. Turning to
T2, we observe that pf, πk

T zqT “ pπk
Tf, zqT and since pf, zq “ p∇u,∇zq, we infer that

T2 “ pf ´ πk
hf, zq ´

ÿ

TPTh

 
p∇u,∇zqT ´ p∇pkT I

k
Tu,∇pkT I

k
T zqT

(
` shppuh,pzhq,

where πk
h denotes the global version of the local L2-projector πk

T . Denote by T2,1,T2,2,T2,3

the three terms on the right-hand side. If k ě 1, we can write pf´πk
hf, zq “ pf´πk

hf, z´π1
hzq

so that
|T2,1| À hk}f}HkpΩqh

2}z}H2pΩq À hk`2}u}Hk`2pΩq}puh ´ uh},

while for k “ 0, we write pf ´ π0
hf, zq “ pf ´ π0

hf, z ´ π0
hzq so that

|T2,1| À h}f}H1pΩqh}z}H1pΩq À h2}f}H1pΩq}puh ´ uh}.

Concerning T2,2, we exploit the orthogonality property (17) to infer that

T2,2 “ ´
ÿ

TPTh

p∇u ´ ∇pkT I
k
Tu,∇z ´ ∇pkT I

k
T zqT ,

whence |T2,2| À hk`2}u}Hk`2pΩq}puh ´ uh}. Finally, proceeding as above, T2,3 is bounded
similarly, and this concludes the proof.
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Figure 1: Triangular, Cartesian, Kershaw, and hexagonal-dominant meshes for the numer-
ical tests of Section 4

4 Numerical tests

We solve the Dirichlet problem in the unit square with

u “ sinpπx1q sinpπx2q,

and corresponding right-hand side f “ 2π2 sinpπx1q sinpπx2q on the four mesh families
depicted in Figure 1. The triangular, Cartesian, and Kershaw mesh families correspond,
respectively, to the mesh families 1, 2, and 4.1 of the FVCA5 benchmark [15], whereas the
(predominantly) hexagonal mesh family was first introduced in [10]. The implementation
framework corresponds to the one described in [9, Section 5], to which we refer for further
details. Figure 2 displays convergence results for the various mesh families and polynomial
degrees up to 4. The measure for the gradient error is }puh ´ uh}a,h (in case of a nontrivial
diffusion coefficient or tensor, this quantity is actually to be interpreted as a flux error),
whereas the potential error is estimated as }puh ´ uh}. In all cases, the numerical results
show asymptotic convergence rates that match those predicted by the theory. The apparent
super-convergence on the Kershaw mesh family (cf. Figures 2e–2f) is linked to the fact
that the mesh quality improves when refining. Genuine super-convergence is on the other
hand observed for the gradient on the Cartesian mesh family up to polynomial degree 2, cf.
Figure 2c. For k “ 4, round-off errors start to surface in the last refinement iteration for
the Cartesian mesh family, as confirmed by a convergence rate slightly lower than expected,
cf. Figure 2d.
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