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Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor

Model

Anca Maria Nagy,*,† Gilles Mourot,*,† Benoı̂t Marx,*,† José Ragot,*,† and Georges Schutz*,‡

Centre de Recherche en Automatique de Nancy, Nancy UniVersité, 2, AVenue de la Forêt de Haye,
54516 VandoeuVre-lès-Nancy Cedex France, and Centre de Recherche Public “Henri Tudor”, Laboratoire de

Technologies Industrielles et Matériaux, 29, AVenue John F. Kennedy, L-1855 Luxembourg-Kirchberg

In this article, an analytical method is used to obtain multiple model (MM) forms strictly equivalent to a
given nonlinear model. The proposed method induces no information loss, contrary to existing order reduction
methods. Several MMs formally equivalent to the initial model may be obtained, due to the intermediate
quasi-LPV forms. Thus some criteria are given, using the linear matrix inequality (LMI) formulation, in
order to chose the most suitable MM for analysis or control purpose. This method is applied to an activated
sludge reactor model.

Introduction

The complexity problem of nonlinear dynamic systems

appears in a great number of scientific and engineering fields.

Numerous decomposition and simplification techniques were

developed in the past years, in order to realize complexity

reduction, according to objectives like identification, control,

and stability analysis.

In most studies, the complexity reduction of nonlinear

systems, represented in the state equation form, consists in the

reduction of the system order that generally comes with an

information loss. This order reduction is realized in different

ways: parameter reduction of mathematical model from a

sensitivity analysis and a comparison with the initial system,1,2

neglecting certain phenomena (reactions and/or species in the

case of complex chemical mechanisms) whose explanatory

power is weak in the initial system;3 elimination of model parts

(parameters and/or variables) which have no significant impor-

tance on system dynamics;4,5 simplification by truncation and

singular perturbation approximation.6,7

Another way to deal with complex systems is to use analytic

transformations to obtain particular representations that are easier

to study than a generic nonlinear form, in the sense that perfor-

mance analysis, controller design, or supervision based on these

new system representations is facilitated. In this paper, nonlinear

systems are proved to be strictly equivalent to multiple models.

The multiple model8 actually constitutes a commonly used tool

for dynamic nonlinear system modeling. The multiple model

formalism is based on a nonlinear interpolation between certain

linear submodels. The global model is a convex combination of

the r submodels:9

where x ∈ R
n represents the state vector, u ∈ R

m the input vector,

and y ∈ R
l the output vector. Ai, Bi, Ci, Di, are constant matrices of

appropriate dimensions, and r denotes the number of submodels.

The function µi(x,u) quantifies the relative weight of the ith

submodel {Ai,Bi,Ci,Di} in the global model. The weighting func-

tions µi(x,u) are generated by the so-called premise Variables,

expressing different nonlinearities of the system, and they have

the following property:

In the literature several equivalent terminologies are used to define

this class of models: the multiple model (MM),8 the fuzzy

Takagi-Sugeno model,10 the polytopic linear model (PLM).11

Different techniques exists to obtain a MM. The first

technique is based on the linearization of the nonlinear model

around one (or several) operating point(s). Dynamic linearization

near an arbitrary trajectory is proposed as well.12 The second

method consists in a system identification using experimental

data.9,13 The loss of information constitutes the first drawback

of these techniques. Second, the choice of the premise variables

is not systematically realized. Third, the choice of different

operating points or trajectories still remains very delicate.

In the present paper, the multiple model structure is used to

reduce the complexity of an ASM1 model (activate sludge

model 1)17 describing a biological degradation process of an

activated sludge reactor. Most of the previous works devoted

to the activated sludge systems were based on linearization

techniques,7,18 despite the drawbacks mentioned above.

Afterward, we will present a systematic procedure to trans-

form a nonlinear system by rewriting it into a multiple model

form, avoiding the major inconveniences: the transformation is

realized without loss of information, the obtained system has

exactly the same state trajectory as the initial system. Moreover,

the choice of different operating points is no longer necessary.

Starting with a general form of nonlinear system, a quasi-linear

parameter varying (quasi-LPV) state representation is realized.

In general, several equivalent quasi-LPV forms can be con-

structed from a given nonlinear dynamic model. Each quasi-

LPV form is associated to a particular premise variable set:

choosing a quasi-LPV form is equivalent to choosing the

premise variable set. This quasi-LPV representation constitutes

a polytopic form because the matrices with variable parameters
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{ẋ(t) ) ∑
i)1

r

µi(x, u)[Aix(t) + Biu(t)]

y(t) ) ∑
i)1

r

µi(x, u)[Cix(t) + Diu(t)]

(1)

∑
i)1

r

µi(x, u) ) 1

µi(x, u) g 0, ∀(x, u) ∈ R
n × R

n

(2)



are convex combinations of constant matrices calculated from

the polytope vertices. These vertices are obtained by using the

convex polytopic transformation (CPT).19 Each vertex defines

a linear submodel and the nonlinear parts are rejected into the

weighting functions.

Most of the work done on the quasi-LPV systems in the

framework of stability analysis or controller/observer design is

only based on the matrices defining the vertices. As a conse-

quence, even if the different quasi-LPV forms of a nonlinear

system are formally equivalent, the obtained multiple model

strongly depends on the chosen realization. The choice of the

premise variable set is important, because it has an influence

on the submodel number and on the global model structure.

This degree of freedom will be used to ease the controllability,

observability, stability analysis studies. So, it is possible to

choose from different MM structures the one that ensures, for

example, the convergence of the certain multiobserver forms

which are based on the MM structure, with respect to given

conditions. The convergence conditions of the state estimation

error can be expressed in linear matrix inequality (LMI)

formulation using the Lyapunov method21 and they are at the

root of the MM choice rules making-out.

The proposed method generalizes the sector nonlinearity

approach frequently used when dealing with Takagi-Sugeno

models.16,20 The contribution of this paper is to give a systematic

procedure in order to choose the best quasi-LPV form of a given

nonlinear system with regard to the study objective (such as

stability or performance analysis, controller or observer design).

In the first section, the general methodology to transform a

nonlinear system into a multiple model form will be presented.

The notion of convex polytopic transformation will be intro-

duced and, using an example, some characteristics of this

method will be underscored. The general case of this method

will be presented in subsection Analytical Method of Structure

Simplification. In subsection “Choice Criteria for Quasi-LPV

Form”, we will detail the choice between different quasi-LPV

forms of a nonlinear system.

Before closing the paper with some conclusions, the proposed

method is applied to an activated sludge model.

Analytical Method of Structure Simplification of

Nonlinear Systems

This section is dedicated to the general methodology of

transforming a given nonlinear model into a multiple model,

eq 1. The proposed method is analytical, and the obtained

multiple model is equivalent to the initial nonlinear system.

Considering a nonlinear system with bounded nonlinearities,

a quasi-LPV form can be written from it. This form is a state

and control affine representation. In general, for a nonlinear

dynamic system, this representation is not unique, that is the

reason why different criteria of choice for a quasi-LPV form

have to be found according to the study objectives. To each

quasi-LPV form, a premise variable set corresponds. These

premise variables will be partitioned into two parts, using the

convex polytopic transformation. The two partitions will

contribute to the construction of multiple model submodels and

to the corresponding weighting functions. The multiple model

will be a convex combination of linear submodels, the nonlin-

earity being transferred into weighting functions related to each

submodel.

Let us first introduce the notion of convex polytopic

transformation that will serve afterward in the simplification

methodology.

Convex Polytopic Transformation. Lemma 1. Let h(x(t),u(t))

be a bounded and continuous function from [x0,x1] × [u0,u1] to

R, with x0,x1 ∈ R
n, u0,u1 ∈ R

m. Then there exist two functions16

with F1(x(t),u(t)) + F2(x(t),u(t)) ) 1 such that

for all h1 g maxx,u{h(x,u)} and h2 g minx,u{h(x,u)}. The two

functions F1 and F2 are defined by

Let us note that this decomposition is not unique.

We can notice that the bigger h1 is and the smaller h2 is, the

more the taken values of F1 and F2 are restricted in [0, 1]

interval.

In particular, we can choose

After the introduction of polytopic transformation, an example

will be used in the following section to illustrate the proposed

methodology to obtain a multiple model.

Introductory Example. Let us consider the following

nonlinear system:

First, the system (3) can be represented in a quasi-LPV form:

By realizing this transformation several quasi-LPV forms can

be obtained, because this form is a state- and control-affine

representation. For the first state eq 3a, this separation is clear

because of the product between the function cos(x1) and the

second state variable x2. For the second term, x1
3u, we can either

affect the nonlinearity x1
3 in the control matrix B eq 4, or

distribute this nonlinearity among the state vector (x1 component)

and the state matrix A eq 5:

For the second state eq 3b, at least two possible decompositions

are observed. The most obvious decomposition is obtained by

factorizing the two terms by x1 and x2, respectively, eq 4.

h(x(t), u(t)) ) F1(x(t), u(t)) · h1 + F2(x(t), u(t)) · h2

F1(x(t), u(t)) )
h(x(t), u(t)) - h2

h1 - h2

F2(x(t), u(t)) )
h1 - h(x(t), u(t))

h1 - h2

h1 ) max
x,u

{h(x, u)}

h2 ) min
x,u

{h(x, u)}

ẋ1 ) cos(x1)x2 + x1
3
u (3a)

ẋ2 )
1

√x2

x1 + x1
2
x2 (3b)

ẋ ) A(x, u)x + B(x, u)u

A(x) ) [0 cos(x1)

1

√x2

x1
2 ] B(x) ) [x1

3

0 ] (4)

A(x, u) ) [x1
2
u cos(x1)

1

√x2

x1
2 ] B(x) ) [0

0 ] (5)



Another possibility is to factorize the right-hand terms of eq

3b only by x1, reducing in this way the number of premise

variables to three, eq 6.

In the following we only focus on the derivation of the MM

form. The choice criteria between the possible forms of eq 4,

eq 5 and eq 6 will be discussed later.

Retaining for example the representation eq 6, the premise

variable set Vz ) {z1,z2,z3} is defined as follows:

The choice of these variables z1, z2, z3 is directly linked to the

chosen quasi-LPV form.

Second, the convex polytopic transformation is applied, for

each premise variable zj(x) (j ) 1, ..., 3) for x1 ∈ [-2π,2π] and

x2 ∈ [0.1, 12]. Then, using lemma 1, each premise variable will

be partitioned into two parts:

where

We choose here:

The functions Fj,1 and Fj,2 represent, respectively, the first and

the second partition of each premise variable. Let us note that

A(x) contains as premise variables z1 and z3, while B(x) contains

as premise variable z2; in this way, we will evaluate the matrices

A and B at the vertices of the polytope defined by the partitions

of the premise variables which occur in these matrices, as

follows:

First, using the convex polytopic transformation (lemma 1)

applied for z1, eq 8a:

Then, using the convex polytopic transformation (lemma 1)

applied for z3 8c:

In order to also include the partitions of the second premise

variable z2, which is not involved in the matrix A(z1,z3), but in

B(z2), a multiplication with F2,1(x) + F2,2(x) ) 1 is realized as

follows:

The same transformations are performed on the matrix B,

where the premise variable z2 is involved:

Finally, looking at eq 10 and eq 11 we have

where µi(x) are combination of Fj,k(x) (j ) 1,2,3 and k ) 1,2)

and where

A(x) ) [0 cos(x1)

1

√x2

+ x1x2 0 ] B(x) ) [x1
3

0 ] (6)

z1(x) ) cos(x1)

z2(x) ) x1
3

z3(x) )
1

√x2

+ x1x2

(7)

z1(x) ) F1,1(z1)z1,1 + F1,2(z1)z1,2 (8a)

z2(x) ) F2,1(z2)z2,1 + F2,2(z2)z2,2 (8b)

z3(x) ) F3,1(z3)z3,1 + F3,2(z3)z3,2 (8c)

F1,1(z1(x)) )
cos(x1) - z1,2

z1,1 - z1,2

F1,2(z1(x)) )
z1,1 - cos(x1)

z1,1 - z1,2

F2,1(z2(x)) )
x1

3
- z2,2

z2,1 - z2,2

F2,2(z2(x)) )
z2,1 - x1

3

z2,1 - z2,2

F3,1(z3(x)) )

1

√x2

+ x1x2 - z3,2

z3,1 - z3,2

F3,2(z3(x)) )

z3,1 -
1

√x2

- x1x2

z3,1 - z3,2

zj,1 ) max
x

{zj(x)}

zj,2 ) min
x

{zj(x)}
∀j ) 1, ..., 3 (9)

A(z1, z3) ) [0 z1(x)

z3(x) 0 ] ) F1,1(x)[0 z1,1

z3(x) 0 ] + F1,2(x)[0 z1,2

z3(x) 0 ]

A(z1, z3) ) F1,1(x)F3,1(x)[0 z1,1

z3,1 0 ] + F1,2(x)F3,1(x)[0 z1,2

z3,1 0 ] +

F1,1(x)F3,2(x)[0 z1,1

z3,2 0 ] + F1,2(x)F3,2(x)[0 z1,1

z3,2 0 ]

A(z1, z3) )F1,1(x)F2,1(x)F3,1(x)[0 z1,1

z3,1 0 ]+ F1,2(x)F2,1(x)F3,1(x)[0 z1,2

z3,1 0 ]
.

+ F1,1(x)F2,2(x)F3,1(x)[0 z1,1

z3,1 0 ]+ F1,2(x)F2,2(x)F3,1(x)[0 z1,2

z3,1 0 ]
.

+ F1,1(x)F2,1(x)F3,2(x)[0 z1,1

z3,2 0 ]+ F1,2(x)F2,1(x)F3,2(x)[0 z1,2

z3,2 0 ]
.

+ F1,1(x)F2,2(x)F3,2(x)[0 z1,1

z3,2 0 ]+ F1,2(x)F2,2(x)F3,2(x)[0 z1,2

z3,2 0 ]
(10)

B(z2) ) [z2(x)

0 ] ) [z2,1F2,1(x) + z2,2F2,2(x)

0 ] ) F2,1(x)[z2,1

0 ] + F2,2(x)[z2,2

0 ]
.

) [F1,1(x) + F1,2(x)][F3,1(x) + F3,2(x)]{F2,1(x)[z2,1

0 ] + F2,2(x)[z2,2

0 ]}
B(z2) ) F1,1(x)F2,1(x)F3,1(x)[z2,1

0 ] + F1,2(x)F2,1(x)F3,1(x)[z2,1

0 ]
.

+ F1,1(x)F2,2(x)F3,1(x)[z2,2

0 ] + F1,2(x)F2,2(x)F3,1(x)[z2,2

0 ]
.

+ F1,1(x)F2,1(x)F3,2(x)[z2,1

0 ] + F1,2(x)F2,1(x)F3,2(x)[z2,1

0 ]
.

+ F1,1(x)F2,2(x)F3,2(x)[z2,2

0 ] + F1,2(x)F2,2(x)F3,2(x)[z2,2

0 ]
(11)

A(z1, z3) ) ∑
i)1

8

µi(x)Ai, B(z2) ) ∑
i)1

8

µi(x)Bi (12)

A1 ) A3 ) [0 z1,1

z3,1 0 ] A2 ) A4 ) [0 z1,1

z3,2 0 ]
.

A5 ) A7 ) [0 z1,2

z3,1 0 ] A6 ) A8 ) [0 z1,2

z3,2 0 ]
B1 ) B2 ) B5 ) B6 ) [z2,1

0 ]B3 ) B4 ) B7 ) B8 ) [z2,2

0 ]
(13)



After this example it is interesting to present a systematic

way of constructing the matrices Ai and Bi. For example, to

determine A3 and B3, the triplet σ3 ) (1,2,1) is used. This triplet

codes the variable partitions occurring in the 3rd submodel and

σ3
k denotes the kth value in the triplet σ3. According to the

expression of A3 and B3, these matrices may be noted: A3 )

A(z1,σ3
1,z3,σ3

3) and B3 ) B(z2,σ3
2), where z1,σ3

1, z2,σ3
2 and z3,σ3

3 are

the scalars defined in eq 9. In a more general way, Ai and Bi

(i ) 1, ..., 8) are noted:

Those notations are in agreement with eq 13. Associated to A3

and B3, the definition of eq 10 is obtained by using the triplet

σ3. Indeed:

Table 1 details the construction of all submodels (Ai,Bi) and

the weighting functions µi(x) of a MM with three premise

variables.

Each function defining a premise variable being partitioned

into two functions, there are 23 submodels and 23 weighting

functions. To each submodel i corresponds a triplet σi which

codes the variable partitions occurring in it. After multiplying

the functions representing these partitions, the weighting func-

tion µi(x) corresponding to the ith submodel is obtained.

To express the constant matrices Ai and Bi, characterizing

each submodel i (i ) 1, ..., 8), we use the quasi-LPV form 6 of

the system (eq 3), where A(x,u) and B(x,u) were defined in 6.

In the next section, the proposed methodology applied to the

example of this section section will be generalized to any

nonlinear systems.

The General Case. A large category of dynamic nonlinear

systems can be represented by

where f(x( · ),u( · )) ∈ R
n and g(x( · ),u( · )) ∈ R

l.

Under the hypothesis that f(x(t),u(t)) and g(x(t),u(t)) are

continuous and bounded in U ⊆ R
n with f(0, · ) ) 0 and g(0, · )

) 0, the system eq 15 can be represented in a quasi-LPV form:

where A(F(x,u)) ∈ R
n×n, B(F(x,u)) ∈ R

n×m, C(F(x,u)) ∈ R
l×n,

D(F(x,u)) ∈ R
l×m and where F(x,u) ∈ C1(Rn+m,Rn1+m1) with n1

+ m1e n + m can simply represent a part of the state and input

variables. Let us remember that in the classical LPV form, the

parameter vector F explicitly depends on the time variable only.

Then, the quasi-LPV representation of a nonlinear system is

different from the classical LPV form in that the underlying

parameters F are now functions of the state and input variables.22

The trajectory of the parameters is actually determined by the

behavior of the system variables. For example, in the introduc-

tory example, 6 is a quasi-LPV form in which the matrix A

depends on x ) (x1,x2), so the vector F(x,u) ) x and the matrix

B depends only on x1, so the vector F(x,u) ) x1.

It has to be remarked that the quasi-LPV 16 form represents

a state and control affine representation of a general nonlinear

system.

The matrix function A(F(x,u)) is in this case given by

The matrices B(F(x,u)), C(F(x,u)), and D(F(x,u)) are given in

the same way as A(F(x,u)).

Presenting the nonlinear system 15 in a quasi-LPV form 16

amounts to expressing each state component xi(t) and each

output component yj(t) in the following way:

for all i ) 1, ..., n and j ) 1, ..., l. This explicit quasi-LPV form

16 realizes a repartition of the system nonlinearities (ai,q, bi,s,

cj,q, dj,s) and the different state or input components.

Considering the quasi-LPV form 16, we define the premise

Variable set Vz in the following way:

where 1,n ) {1, ..., n}.

Subsequently, this set is noted more simply:

where p represents the dimension of the premise variable set Vz

and is also the number of nonlinearities identified using the quasi-

LPV form of the system 15. The quantities z1(F(x,u)), ..., zp(F(x,u))

are the premise Variables.

Remark 1. (n + l) × (n + m) represents the largest number

of premise variables.

Remark 2. The number of submodels that constitute the

multiple model is equal to r ) 2p
e 2(n+l)(n+m).

The matrices with variable parameters intervening in the

quasi-LPV form of system 15 are linear combinations of

matrices with constant coefficients (Aj,Bj,Cj,Dj); for example,

the matrix A(x,u) may be expressed in the following way:

The set IA contains all the indices corresponding to the

premise variables which are contained in the entries of the matrix

A(x,u). The matrix A0 contains the constant entries (ai,j) of the

Table 1. Decomposition Table for Amultiplemodel with Three
Premise Variables and Two Partitions for Each Variable

submodel i σi Ai Bi µi(x)

1 (1,1,1) A(z1,1, z2,1, z3,1) B(z1,1, z2,1, z3,1) F1,1(x)F2,1(x)F3,1(x)

2 (1,1,2) A(z1,1, z2,1, z3,2) B(z1,1, z2,1, z3,2) F1,1(x)F2,1(x)F3,2(x)

3 (1,2,1) A(z1,1, z2,2, z3,1) B(z1,1, z2,2, z3,1) F1,1(x)F2,2(x)F3,1(x)

4 (1,2,2) A(z1,1, z2,2, z3,2) B(z1,1, z2,2, z3,2) F1,1(x)F2,2(x)F3,2(x)

5 (2,1,1) A(z1,2, z2,1, z3,1) B(z1,2, z2,1, z3,1) F1,2(x)F2,1(x)F3,1(x)

6 (2,1,2) A(z1,2, z2,1, z3,2) B(z1,2, z2,1, z3,2) F1,2(x)F2,1(x)F3,2(x)

7 (2,2,1) A(z1,2, z2,2, z3,1) B(z1,2, z2,2, z3,1) F1,2(x)F2,2(x)F3,1(x)

8 (2,2,2) A(z1,2, z2,2, z3,2) B(z1,2, z2,2, z3,2) F1,2(x)F2,2(x)F3,2(x)

Ai ) A(z1,σi
1, z3,σi

3)

Bi ) B(z2,σi
2)

µ3(x) ) F1,σ3
1(x)F2,σ3

2(x)F3,σ3
3(x) (14)

{ẋ(t) ) f(x(t), u(t))

y(t) ) g(x(t), u(t))
(15)

[ẋ(t)

y(t) ] ) [A(F(x, u)) B(F(x, u))

C(F(x, u)) D(F(x, u)) ][x(t)

u(t) ] (16)

A(F(x, u)) ) [a1,1(F(x, u)) · · · a1,n(F(x, u))

l

an,1(F(x, u)) · · · an,n(F(x, u)) ] (17)

ẋi(t) ) ∑
q)1

n

ai,q(F(x, u)) xq(t) + ∑
s)1

m

bi,s(F(x, u)) us(t)

yj(t) ) ∑
q)1

n

cj,q(F(x, u)) xq(t) + ∑
s)1

m

dj,s(F(x, u)) us(t)

(18)

Vz ) {ai,q(F(x, u))|ai,q * const, i ) 1, n, q ) 1, n }

∪{bi,s(F(x, u))|bi,s * const, i ) 1, n, s ) 1, m }

∪{cj,q(F(x, u))|cj,q * const, j ) 1, l, q ) 1, n }

∪{dj,s(F(x, u))|dj,s * const, j ) 1, l, s ) 1, m }

Vz ) {z1(F(x, u)), ..., zp(F(x, u))|p e (n + l) × (n + m)}

A(x, u) ) A0 + ∑
j∈IA

zj(x, u)Aj (19)



matrix A(x,u). Each matrix Aj gives the linear dependency of

A(x,u) to zj and contains at the position corresponding to the

nonlinearity ai,q (identified with the premise variable zj) the

constant term 1, and zero for all the other positions:

The matrices B(x,u), C(x,u), D(x,u) are expressed in the same

way as A(x,u) using the sets IB, IC, and ID. In this way, for the

previous example (eq 6) we have IA ) {1,3} and IB ) {2}.

By generalizing the presented method in the introductory

example, we generate the 2p submodels of a multiple model

characterized by the p premise variables which are partitioned

into two, using the convex polytopic transformation:

with

where the scalars zj,1 and zj,2 are defined in eq 22:

To each submodel i, represented in Table 2 by the ith line,

corresponds a p -uplet σi which codes the partitions of premise

variables intervening in the corresponding weighting function.

It is thus possible to construct, just like in the previous example,

a table gathering the partition sets of premise variables. By

multiplying the functions that represent these partitions we

obtain the corresponding weighting function µi(z):

where σi
k represents the index in the kth position in the p-uplet

σi. Then ∑i)1
r

µi(z) ) 1 and µi(z) g 0 (i ) 1, ..., r), because

We have to note that the matrices A(x,u), B(x,u), C(x,u), and

D(x,u) contain the premise variables zj for j ) 1, ..., p. In this

way, the matrices A, B, C, and D will be evaluated in the vertices

of the polytope defined by the premise variable partitions that

occur in these matrices in order to determine the matrices Ai,

Bi, Ci, and Di (i ) 1, ..., r). These matrices are the matrices

with constant coefficients relative to each submodel:

Bi, Ci, and Di can be written in the same way. This fact is

detailed in the demonstration of the following theorem:

Theorem 2. The multiple model eq 1, which represents a

convex combination of linear subsystems, {(Ai, Bi, Ci, Di)}

(i ) 1, ..., r), is equivalent to the system 16; r ) 2p is the number

of submodels and p is the number of premise variables.

Proof. We first want to prove that the matrices Ai (i ) 1, ..., r),

representing the r submodels of the multiple model, are

calculated by evaluating the matrix function A in the polytope

vertex defined by the premise variable partitions.

As already mentioned in eq 19

After replacing zp (like in 20 for j ) p) in the previous equality

eq 25 and multiplying the other terms of the sum by Fp,1 + Fp,2

) 1, we obtain

We then factor the terms that contain Fp,1 and Fp,2 and we obtain

After replacing zp-1 (like in 20 for j ) p - 1) and after

multiplying the other terms of the sum by Fp-1,1 + Fp-1,2 ) 1,

we obtain:

After factoring again the terms that contain Fp-1,1 and Fp-1,2,

inside the brackets we obtain

Table 2. Premise Variable Decomposition Table for a Multiple Model with p Premise Variables and Two Partitions for Each Variable

submodel i σi Ai Bi µi(z)

1 (1, 1, ..., 1) A(z1,1, z2,1, ..., zp,1) B(z1,1, z2,1, ..., zp,1) ∏j)1
p Fj,σ1

j

2 (1, 1, ..., 2) A(z1,1, z2,1, ..., zp,2) B(z1,1, z2,1, ..., zp,2) ∏j)1
p Fj,σ2

j

l l l l l

2p-1 (1, 2, ..., 2)

2p-1 + 1 (2, 1, ..., 1) A(z1,2, z2,1, ..., zp,1) B(z1,2, z2,1, ..., zp,1) ∏j)1
p Fj,σ(2p-1+1)

j

(2, 1, ..., 2)

l l l l l

(2, 2, ..., 1)

2p (2, 2, ..., 2) A(z1,2, z2,2, ..., zp,2) B(z1,2, z2,2, ..., zp,2) ∏j)1
p Fj,σ2p

j

Aj )

q

[0 · · · 0 · · · 0

l

0 · · · 1 · · · 0

l

0 0 0
] i

zj(x, u) ) Fj,1(zj)zj,1 + Fj,2(zj)zj,2 (20)

Fj,1(zj) )
zj(x, u) - zj,2

zj,1 - zj,2

Fj,2(zj) )
zj,1 - zj(x, u)

zj,1 - zj,2

(21)

zj,1 ) max
x,u

{Zj(x, u)}

zj,2 ) min
x,u

{Zj(x, u)}
∀j ) 1, ..., p (22)

µi(z) ) ∏
j)1

p

Fj,σi
j(zj(x, u)) (23)

Fj,1(zj(x, u)) + Fj,2(zj(x, u)) ) 1, ∀j ) 1, ..., p

Ai ) A0 + ∑
j∈IA

zj,σi
jAj (24)

A(z) ) A0 + ∑
j)1

p

zjAj (25)

A(z) ) (Fp,1 + Fp,2)(A0 + ∑
j)1

p-1

zjAj) + (zp,1Fp,1 + zp,2Fp,2) · Ap

A(z) ) Fp,1(A0 + ∑
j)1

p-1

zjAj + zp,1Ap) +

Fp,2(A0 + ∑
j)1

p-1

zjAj + zp,2Ap)

A(z) ) Fp,1 · [(Fp-1,1 + Fp-1,2)(A0 + ∑
j)1

p-2

zjAj)

+ (zp-1,1Fp-1,1 + zp-1,2Fp-1,2) · Ap-1

+ zp,1(Fp-1,1 + Fp-1,2)Ap]

+ Fp,2 · [(Fp-1,1 + Fp-1,2)(A0 + ∑
j)1

p-2

zjAj)

+ (zp-1,1Fp-1,1 + zp-1,2Fp-1,2) · Ap-1

+ zp,2(Fp-1,1 + Fp-1,2)Ap]



By reiterating this factorization mechanism and replacing at each

step zj with the expression 20, until we have replaced all the

premise variables, we obtain-

We succeeded in expressing the matrices Ai (i ) 1, ..., r) by

using the polytope vertices defined by the premise variable

partitions:

After applying the same reasoning for the input and output parts,

we proved in this way the equivalence between the multiple

model 1 and the system 15.

In the next subsection will be given some general tools

concerning the observer/controller design based on MM struc-

ture, in order to support the general analytical method and

motivate the choice of the final MM structure.

Choice Criteria for Quasi-LPV Form

The existing results concerning the performance analysis

and the synthesis of controller/observer for a multiple

model14,15,19,16,21,23-26 are based on the resolution of linear

matrix inequalities (LMI), by using the Lyapunov method.

Because of the convex sum property of the weighting

functions, the LMI are only evaluated at the polytope vertices

(Ai,Bi) and the weighting functions do not occur in the

resolution of the LMIs. Only the matrices Ai and Bi have a

contribution in the resolution of the LMIs. It is important to

mention that the LMI formulation of controller or observer

design for MM consists only in sufficient but not necessary

conditions. That is the reason why it is essential to propose

choice criteria for the MM structure.

In general, the quasi-LPV form 16 for a nonlinear system 15

is not unique; to each quasi-LPV form corresponds a particular

premise variables set; choosing a quasi-LPV form is equivalent

to choosing the premise variable set. The choice of premise

variable set Vz is important, because it has an influence on the

submodel number and on the global model structure. This is a

degree of freedom that can be used to ease the controllability,

observability, and stability analysis studies.

First of all, to ensure the controllability/observability of the

global system, represented in a multiple model form, that is, to

ensure a solution for the LMIs associated to the MM in order

to compute the controller/the observer, the controllability/

observability of each submodel is necessary.23 Thus, the quasi-

LPV forms producing submodels that are not controllable/

observable must be eliminated. Note that this is not a sufficient

condition to ensure the controllability/observability of the

multiple model.28 For instance, the different quasi-LPV forms

of the system eq 3 in the introductory example do not share the

same structure. The form 5 implies a null matrix B(z), thus the

multiple model cannot be controllable, whereas in eqs 4 and 6

the matrix B(z) is non-null and therefore the necessary control-

lability condition of these multiple models is verified.

As said before, in the stability analysis studies of multiple

models, the observer stability conditions are given in terms of

linear matrix inequalities (LMI). Different techniques are

proposed to reduce the number of LMI conditions, which leads

to less computational requirements24 and eases the solution

existence.26 As a consequence, the number of LMI to be satisfied

is linear or polynomial in the number of submodels.16 That is

the reason why a multiple model composed by a low number

of submodels is searched. This number is related to the number

of premise variables, so that a quasi-LPV form which has a

small set of premise variables will be preferred. For example,

the quasi-LPV forms 4 and 5 implies four premise variables

and will thus lead to 16 submodels, whereas the form 6 only

requires three premise variables and then eight submodels. In

addition to that, the observer/controller design for MM with

premise variables depending on the state variables is a lot more

complex than if the premise variables are known.27 As a

consequence, MM form with premise variables depending on a

minimal number of state variables is preferable.

To increase the probability that a solution exists, the dimen-

sion of the state vector should be made as small as possible.25

Taking into account the previous remarks, the following rules

can guide the choice of the quasi-LPV form leading to the most

appropriate model:

(i) Eliminate all quasi-LPV forms in which the matrix B has

null columns and the matrix C has null rows, since these

matrices do not respect the rank observability/controllability

conditions. Indeed, retain all quasi-LPV forms in which matrices

satisfy the conditions

(ii) Among all quasi-LPV forms for which the premise

variables zi(F(x,u)) (i ) 1, ..., p) depend on the same number of

state variables, choose the quasi-LPV form that contains the

lowest number of premise variables zi(F(x,u)) (taking into

account the next rule).

(iii) Identify the decompositions that relate on the same

premise variables for different state and/or output eqs 18,

reducing in this way the number of premise variables.

(iv) Among all quasi-LPV forms that have the same number

of premise variables zi(F(x,u)) (i ) 1, ..., p), choose the quasi-

LPV form for which the premise variables zi(F(x,u)) depend on

the lowest number of state variables.

Application to an Activated Sludge Reactor Model

In this section, the analytical decomposition method devel-

oped in the previous section will be applied to an activated

sludge reactor model, a reduced form of the ASM1 model,

considering only the carbon pollution.17

A(z) ) Fp,1Fp-1,1[A0 + ∑
j)1

p-2

zjAj + zp-1,1Ap-1 + zp,1Ap]

+ Fp,1Fp-1,2[A0 + ∑
j)1

p-2

zjAj + zp-1,2Ap-1 + zp,1Ap]

+ Fp,2Fp-1,1[A0 + ∑
j)1

p-2

zjAj + zp-1,1Ap-1 + zp,2Ap]

+ Fp,2Fp-1,2[A0 + ∑
j)1

p-2

zjAj + zp-1,2Ap-1 + zp,2Ap]

A(z) ) ∑
i)1

2p

{ ∏
j)1

p

Fj,σi
j · [A0 + ∑

j)1

p

zj,σi
j · Aj]}

Ai ) A0 + ∑
j)1

p

zj,σi
j · Aj (26)

rank(Oi) ) rank[Ci

CiAi

l

CiAi
n-1 ] ) n

rank(Ci) ) rank[Bi AiBi ... Ai
n-1

Bi ] ) n, ∀i ) 1, ..., r

(27)



The wastewater treatment using activated sludge consists in

mixing used waters with a rich mixture of bacteria in order to

degrade the organic matter. In studies on the activated sludge

reactor, several operating modes are considered: regulation from

a reference volume, reactor with constant volume, free flow at

the output reactor, and controllable input and output flows. Only

the first situation using a reference volume is reported here.

Biomass, Carbon and Oxygen Modeling in an Aerobic

Environment. Considering only the carbon pollution of an

activated sludge reactor, the elimination process of this pollutant

is realized in the reactor-clarifier group. The simplified diagram

of the studied process is given in Figure 1. The clarifier is

supposed to be perfect, that is, with no internal dynamic process

and no biomass in the effluent. In this case we can write at

each time instant:

where qin, qR, qW represent respectively the input, recycled, and

wasted flow and where XBH, XBH,R, SS and SS,R are different

concentrations whose meaning is pointed in Table 3.

The whole process can be represented by the following

nonlinear model:

where the variables involved are presented in Table 3 and rH,

rS, and rO represent the kinetics of heterotrophic biomass XBH,

carbon SS, and oxygen SO reactions, in a heterotroph and aerobic

environment and are modeled by

The different coefficients occurring in eq 29 and eq 30 are

presented in Table 4.

Under the reactor homogeneity hypothesis, the following

assumptions are often made:17

In general, qR and qW represent fractions of input flow qin:

We suppose that the dissolved oxygen concentration at the

reactor input (SO,in) is null.

The system 29 becomes in this case:

Regulation from a Reference Volume. Hereafter, it is

assumed that the volume is controlled in order to obtain V equal

Vref. To regulate the output qout the control law combining a

priori/a posteriori control is defined by

The control variables are the air flow (qa), the recycled flow

(qR), and the rejected flow (qW). In this case, the state and input

vectors are defined by

After replacing rH, rS, and rO given in eq 30, the system 31

becomes:

Figure 1. The diagram of activated sludge wastewater treatment process.

Table 3. Table of Variables

variable definition
reactor
input

reactor
output recycled

XBH heterotrophic biomass
concentration

XBH,in XBH,out XBH,R

SS fast biodegradable
substrate concentration

SS,in SS,out SS,R

SO dissolved oxygen
concentration

SO,in SO,out SO,R

q flow qin qout qR

V reactor volume

qa air flow

(qin + qR)XBH ) (qR + qW)XBH,R (28a)

SS,R ) SS (28b)

{
dV

dt
) qin + qR - qout

d(V · XBH)

dt
) qinXBH,in + qRXBH,R - qoutXBH,out + rHV

d(V · SS)

dt
) qinSS,in + qRSS,R - qoutSS,out + rSV

d(V · SO)

dt
) qinSO,in + qRSO,R - qoutSO,out + rOV +

KqaV(SO,sat - SO)

(29)

{rH ) µH

SS

KS + SS

SO

KOH + SO

XBH - bHXBH

rS ) -
1

YH

µH

SS

KS + SS

SO

KOH + SO

XBH + (1 - f)bHXBH

rO )
YH - 1

YH

µH

SS

KS + SS

SO

KOH + SO

XBH

(30)

Table 4. Table of Constants

SO,sat oxygen saturation concentration

KS, KOH half-saturation constants

YH yield coefficient for heterotrophic biomass

f fraction of biomass leading to particulate products

bH, µH heterotrophic kinetic coefficients

K regulator gain in oxygen

{XBH,out ) XBH

SS,out ) SS

SO,out ) SO

qR ) fRqin, 1 e fR e 2

qW ) fWqin, 0 < fW < 1

{
V̇ ) qin + qR - qout

ẊBH )
qin

V
XBH,in -

qW

V

qin + qR

qW + qR

XBH + rH

ṠS )
qin

V
(SS,in - SS) + rS

ṠO ) -
qin

V
SO + Kqa(SO,sat - SO) + rO

(31)

qout ) (fR + 1)qin - K1(Vref - V)

x ) [V XBH SS SO]
T

(32a)

u ) [XBH,in SS,in qa Vref]
T

(32b)

http://pubs.acs.org/action/showImage?doi=10.1021/ie8017687&iName=master.img-002.png&w=207&h=81


To put this nonlinear system into a multiple model form, each

state equation first has to be presented in a quasi-LPV form

like eq 18. Then, taking into account eq 32 and eq 33, the

matrices are defined as follows:

where

The system presents three nonlinearities. The premise variables

are

The idea of taking the premise variable z1 as the product of

the two Monod laws, without separating them, is to reduce in

this way the premise variable number. The chosen premise

variables are expressed respectively as the Monod law product

(z1), the dilution rate (z2), and the air flow (z3). Concerning the

physical meaning in the real process, the first premise variable

z1 represents the growth of the heterotrophic biomass XBH, the

second one (z2) illustrates the dwell-time, and the third premise

variable z3 expresses the oxygenation level.

Subsequently, by using the convex polytopic transformation,

the three premise variables z1, z2, and z3 are written like in eq

20, where the two partitions of each premise variable are

constructed in the same way as in eq 21 and with the scalars of

eq 22. To calculate the maximum and the minimum values that

occur in z1, z2, and z3 expressions, we use the fact that V, SS,

SO, qin, and qa are physically bounded (Table 5).

The number of submodels is 23 ) 8 and will be represented

by the pairs (Ai,Bi) (i ) 1, ..., 8):

To be clear with these notations, let us recall for example, that

A1 is obtained using definition 34, where a2,2, a3,2, a3,3, a4,2, a4,4

are computed by using the minimal value of z1, z2, z3 (eq 35).

The multiple model is obtained by an interpolation of the

eight previous submodels:

The weighting functions µi(x,u) (i ) 1, ..., 8) are calculated in

the same way as in eq 23, in conformity with definition 35.

For example, we have

In Figure 3 we can see the evolution of the system eq 33

which has been obtained by using formulation 36 obtained for:

KS ) 20 g/m3, KOH ) 0.2 g/m3, SO,sat ) 10 g/m3, K ) 2.3 m-3,

K1 ) 0.01, bH ) 0.4 (1/24) h-1, µH ) 3.733 (1/24) h-1, YH )

0.6, f ) 0.1, fR ) 1.1, fW ) 0.03, with the initial conditions:

{
V̇ ) K1(Vref - V)

ẊBH )
qin

V
XBH,in -

qW

V

qin + qR

qW + qR

XBH +

µH

SS

KS + SS

SO

KOH + SO

XBH - bHXBH

ṠS )
qin

V
(SS,in - SS) + (1 - f)bHXBH -

µH

YH

SS

KS + SS

SO

KOH + SO

XBH

ṠO ) -
qin

V
SO + Kqa(SO,sat - SO) +

YH - 1

YH

µH

SS

KS + SS

SO

KOH + SO

XBH

(33)

A(z1, z2, z3) ) (a1,1 0 0 0

0 a2,2 0 0

0 a3,2 a3,3 0

0 a4,2 0 a4,4

)
B(z2) ) (0 0 0 b1,4

b2,1 0 0 0

0 b3,2 0 0

0 0 b4,3 0
)

(34)

a1,1 ) -K1

a2,2 ) µHz1 -
fW(1 + fR)

fW + fR

z2 - bH

a3,2 ) -
µH

YH

z1 + (1 - f)bH

a3,3 ) -z2

a4,2 )
YH - 1

YH

µHz1

a4,4 ) -Kz3 - z2

b1,4 ) K1

b2,1 ) b3,2 ) z2

b4,3 ) K·SO,sat

{z1(SS, SO) )
SS

KS + SS

·
SO

KOH + SO

z2(qin, V) )
qin

V
z3(qa) ) qa

(35)

Table 5. Table of Maximum and Minimum Values

min max

V [m3] 1250 1337

SS [g/m3] 1.28 4.1

SO [g/m3] 0.92 6.88

qin [M1/24h] 6.22 11.74

qa [M3/min] 1.155 8.25

A1 ) A(z1,1, z2,1, z3,1) B1 ) B(z2,1)

A2 ) A(z1,1, z2,1, z3,2)

A3 ) A(z1,1, z2,2, z3,1)

A4 ) A(z1,1, z2,2, z3,2)

A5 ) A(z1,2, z2,1, z3,1)

A6 ) A(z1,2, z2,1, z3,2)

A7 ) A(z1,2, z2,2, z3,1)

A8 ) A(z1,2, z2,2, z3,2)

B2 ) B(z2,1)

B3 ) B(z2,2)

B4 ) B(z2,2)

B5 ) B(z2,1)

B6 ) B(z2,1)

B7 ) B(z2,2)

B8 ) B(z2,2)

ẋ ) ∑
i)1

8

µi(x, u)(Aix + Biu) (36)

µ1(x, u) ) F1,1(SS, SO)F2,1(V, qin)F3,1(qa) )

SS

KS + SS

SO

KOH + SO

- 0.06

0.16 - 0.06
·

qin

V
- 0.48

0.92 - 0.48
·

qa - 1.155

8.25 - 1.155

x(0) ) [V(0)
XBH(0)

SS(0)

SO(0)
] ) [1250 m

3

887 g/m
3

4.2 g/m
3

3 g/m
3

]



and under the inputs presented in Figure 2.

The qin input flow influences the three concentrations XBH,

SS, and SO. An increase of the input flow (qin) produces an

increase of the substrate concentration (SS) and the heterotrophic

biomass concentration (XBH), as well as a decrease of the

dissolved oxygen concentration (SO). At the same time, SO is

directly influenced by the air flow (qa), XBH, and SS inside the

reactor being influenced by the corresponding input reactor

concentrations (XBH,in and SS,in). The range of speed response

of the dissolved oxygen, soluble carbon, and heterotrophic

biomass is obvious.

For space and clarity reasons, not all of the eight weighting

functions of the multiple model 36 are presented in Figure 4

but only four of them. It has to be remarked that qin, qa, Vref,

XBH,in and SS,in also have an influence on the weighting functions

of the multiple model. For example, the seventh submodel is

active if a good oxygenation is ensured (high level of the air

flow qa), if there is no important growth of the soluble

components and if the dwell-time (corresponding to important

dilution rate z2) is weak (see the periods of time t ) 2.3-3.5 h

and t ) 5.5-6.5 h). For a high dwell-time, the fifth submodel

plays an important role (see the periods of time t ) 3.5-3.8 h

and t ) 6.5-6.7 h). A weak oxygenation (1.7-2.3 h and 6.7-9

h), a weak growth of the soluble components, and weak dwell-

time (2-2.3 h) activate the eighth submodel, and so on.

Conclusion

This article proposes a general analytical method to simplify

the complexity of a nonlinear system by rewriting it into a

multiple model. This substitution consists in finding a set of

submodels with a simple linear structure and a set of appropri-

ated weighting functions in order to combine these submodels

to constitute the global model.

To obtain a multiple model this article proposes a general

method to rewrite the nonlinear model into a multiple model

form avoiding the need to choose the operating points or

trajectories. Additionally, systematic rules are proposed to

choose the premise variables.

From the expression of a nonlinear system, we showed how

to realize a systematic decomposition of a system into simpler

linear systems by constructing a multiple model. It is important

to note that the obtained multiple model is identical to the initial

system. This decomposition method can be applied to any order

systems. Another important aspect concerning this decomposi-

tion method is the given possibility to choose between several

quasi-LPV forms of the nonlinear system that lead to specific

properties of the multiple model structure. Such properties may

be controller or observer design for multiple model structures

with regard to the study objectives. This method also gives the

possibility to reduce the number of submodels by an adequate

choice of premise variables between several sets of candidate

premise variables.

From a practical point of view, this method is applied to a

simplified activated sludge reactor model and leads to a multiple

model structure based on eight local models. Even if in this

article we have treated the case of a simplified ASM1 model,

considering only the carbon pollution, the proposed method can

be applied to the whole ASM1 model, as the difficulties are

similar (nonlinearities expressed by the Monod law, the dilution

rate, and air flow).
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