
HAL Id: hal-00978051
https://hal.science/hal-00978051

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Divisibility of zeta functions of curves in a covering
Yves Aubry, Marc Perret

To cite this version:
Yves Aubry, Marc Perret. Divisibility of zeta functions of curves in a covering. Archiv der Mathematik,
2004, 82, pp.205–213. �hal-00978051�

https://hal.science/hal-00978051
https://hal.archives-ouvertes.fr


Divisibility of zeta functions of curves in

a covering

by

Yves Aubry and Marc Perret

Abstract

We prove, as an analogy of a conjecture of Artin, that if Y −→ X is a
finite flat morphism between two singular reduced absolutely irreducible
projective algebraic curves defined over a finite field, then the numerator
of the zeta function of X divides those of Y in Z[T ]. Then, we give some
interpretations of this result in terms of semi-abelian varieties.

1 Introduction

Let ζK be the Dedekind zeta function of a number field K:

ζK(s) =
∑

I

1

N(I)s
(Re(s) > 1)

where the sum ranges over the non zero ideals I of the ring of integers OK of
K and where N(I) is the norm of the ideal I i.e. the number of elements of
the residue class ring OK/I. It is well-known that it extends to a meromorphic
function on C. Emil Artin conjectured that, for any extension of number fields
L/K, the ratio

ζL(s)

ζK(s)

is entire.
We are interested here in a similar question in the following geometric con-

text. Let X be a projective algebraic variety defined over the finite field Fq and
let X = X ×Fq

Fq be the corresponding variety over the algebraic closure Fq of
Fq. The zeta function of X is defined as

ZX(T ) = exp

(

∞
∑

n=1

♯X(Fqn)
Tn

n

)
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Divisibility of zeta functions 2

where ♯X(Fqn) is the number of Fqn -rational points of X.
We consider the ℓ-adic étale cohomology spaces with compact support

Hi
c(X,Qℓ) of X where ℓ is a prime number distinct to the characteristic of

Fq.
A crude analogy of Artin’s conjecture would states that if Y −→ X is a

surjective morphism between two projective algebraic varieties then the ratio
ZY (T )/ZX(T ) of their zeta functions is a polynomial in T . It turns to be false,
for instance for the blowing up of the projective plane at some rational point,
where the ratio equals 1

1−qT .
However, by Grothendieck-Lefschetz formula, the zeta function of X can be

written as

ZX(T ) =

2 dimX
∏

i=0

(

det(1− FT | Hi
c(X,Qℓ))

)(−1)i+1

where F is the map on cohomology induced by the Frobenius morphism on
X. So, one could ask whether it is true that if there is a surjective mor-
phism Y −→ X between two projective algebraic varieties Y and X defined
over Fq, then the polynomial det(1− FT | Hi(X,Qℓ)) divides the polynomial
det(1− FT | Hi(Y ,Qℓ)) in Z[T ]. This is the case for instance for the previous
example of the blowing up of the plane at a point.

More generally, the answer is yes provided X and Y are smooth. Indeed,
thanks to the projection formula and Poincaré duality, Kleiman proved that in
this case, there is a Galois invariant injection between the cohomology spaces
(see [8] prop. 1.2.4).

Unfortunately, we cannot expect this divisibility in full generality (even for
curves) since it does not hold for the desingularization of the nodal cubic curve.

The main result of this paper is:

Theorem 1 Let Y −→ X be a flat finite morphism between two reduced abso-

lutely irreducible projective algebraic curves Y and X defined over a finite field.

Then, the numerator of the zeta function of X divides Y one in Z[T ].

We prove this theorem in the following section and we make some remarks
in the last one.

2 Proof of the theorem

Let C be an absolutely irreducible and reduced projective algebraic curve defined
over the finite field k = Fq with q elements. It is known that

ZC,k(T ) =
det(1− TF | Hi

c(C,Qℓ))

(1− T )(1− qT )
,

where F is the Frobenius morphism on the first group of ℓ-adic cohomology with
compact support Hi

c(C,Qℓ) of C, and that the eigenvalues of the Frobenius have
modulus

√
q or 1 (see [6]). In fact, the authors have shown in [1] the following
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result. Denote by C̃ the normalization of C and νC : C̃ −→ C the normalization
map. If P is a closed point of C, we denote by dk(P ) = [k(P ) : k] the residual
degree of P . Then, the numerator polynomial of the zeta function of C can be
writen precisely as (see [1]):

PC,k(T ) := (1− T )(1− qT )ZC,k(T ) = PC̃,k(T )
∏

P∈C

LC,P,k(T ),

where PC̃,k is the numerator of the zeta function ZC̃,k of C̃, and for a closed
point P ∈ C

LC,P,k(T ) :=

∏

P̃∈ν−1
C

(P )(1− T dk(P̃ ))

1− T dk(P )
∈ Z[T ].

Let us remark that if P is a non singular point on C then LC,P,k(T ) = 1.
Now, consider a finite flat morphism f from Y to X as in the theorem. By
Kleiman’s theorem quoted in the introduction, the polynomial PX̃,k divides
PỸ ,k (alternatively see 3.4 below for a proof in the case of curves). Thus, the
theorem follows immediately from the following proposition:

Proposition 2 If P and Q are closed points respectively on X and Y with

f(Q) = P , then LX,P,k divides LY,Q,k in Z[T ].

Let us begin by two lemmas.

Lemma 3 Proposition 2 holds if dk(Q) = dk(P ).

Proof. By flatness of f , the fibred product Z = Y ×X X̃ is an irreducible
curve (see [2]) and thus Ỹ −→ Z is surjective since it is not constant.

Y X

X̃Y ×X X̃

Ỹ

❄

✲

❄

✲

❅
❅
❅
❅

❅
❅❘

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❯ f

νX

νY

f̃

Q P

P̃

Q̃

✲

❄

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❯

This implies that, for any closed points P̃ over P in X̃, there exists a Q̃ over
Q in Ỹ such that f̃(Q̃) = P̃ . Let

αP = ♯ν−1
X (P )
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be the number of closed points of X̃ above P in the normalization map. By
reordering the sets ν−1

X (P ) and ν−1
Y (Q), we can suppose that for all 1 ≤ i ≤ αP ,

we have f̃(Q̃i) = P̃i. Thus the residue field k(Q̃i) of Q̃i is an extension field of
those of P̃i, so that dk(P̃i) divides dk(Q̃i). Thus,

(1− T dk(P ))LX,P,k =

αP
∏

i=1

(1− T dk(P̃i)) divides

αP
∏

i=1

(1− T dk(Q̃i))

which divides himself
∏αQ

i=1(1 − T dk(Q̃i)) = (1 − T dk(Q))LY,Q,k. Since we have
supposed that dk(Q) = dk(P ), we obtain the desired divisibility.

Denoting the greatest common divisor of two integers (or two polynomials)
d and d′ by gcd(d, d′), we can state:

Lemma 4 If Q is closed point in f−1(P ), then we have:

∑

P̃∈ν−1
X

(P )

gcd(dk(P̃ ), dk(Q)) ≤ αQ := ♯ν−1
Y (Q).

Proof. The point Q of degree d = dk(Q) over Fq is sum of d Gal(Fqd/Fq)-
conjugate points of degree 1 over Fqd :

Q = Q1 + · · ·+Qd.

Working with Xd = X ×Fq
Fqd over Fqd and with Q1, we have by the preceding

lemma that LYd,Q1,Fqd
is divisible by LXd,P,F

qd
in Z[T ]. But, we have on the

one hand

LYd,Q1,Fqd
=

∏

Q̃1→Q1
(1− T

dF
qd

(Q̃1)
)

1− T
.

On the other hand, it is easy to see that a point of degree d̃ over Fq gives

gcd(d̃, d) points of degree d̃
gcd(d̃,d)

over Fqd . Thus, we have

LXd,P,F
qd

=

∏

P̃∈ν−1
Xd

(P )(1− T
dF

qd
(P̃ )

)

1− T

=

∏

P̃→P (1− T dFq (P̃ )/ gcd(dFq (P̃ ),d))gcd(dFq (P̃ ),d)

1− T
.

The relation follows from the comparison between their (1− T )-adic valua-
tions.

We can now prove proposition 2.
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Since Ỹ → X̃ is surjective, we can reorder, as in lemma 3, the points P̃i and
Q̃i so that dk(P̃i) divides dk(Q̃i) for 1 ≤ i ≤ αP . Thus, we have:

αP
∏

i=1

(1− T dk(P̃i)) divides

αP
∏

i=1

(1− T dk(Q̃i)).

If αQ ≥ αP +1, the divisibility of LY,Q,Fq
by LX,P,Fq

is obvious. Since lemma
4 implies αP ≤ αQ, we are left to the case αQ = αP .

By lemma 4 again, we get gcd(dk(P̃ ), dk(Q)) = 1 for all P̃i ∈ ν−1
X (P ), in par-

ticular for P̃1. Thus, assuming without lost of generality that dP = 1 (otherwise
we can set U = T dP ), we obtain:

(ı) (1− T dk(P̃1)) divides (1− T dk(Q̃1)),

(ıı) 1−Tdk(Q)

1−T divides (1− T dk(Q̃1)),

(ııı) gcd(1− T dk(P̃1), 1−Tdk(Q)

1−T ) = 1.

Hence

1− T dk(Q)

1− T
(1− T dk(P̃1)) divides (1− T dk(Q̃1))

which implies that LX,P,k divides LY,Q,k in Z[T ] and this concludes the proof.

3 Remarks

3.1 About the flatness hypothesis

The theorem is false without the flatness hypothesis. In the case of the desin-
gularization of the nodal cubic curve y2z = x2(x+ z), one has PX,k(T ) = T − 1

and PY,k(T ) = 1. The proof fails in lemma 3. In this case, Z = X̃ ×X X̃ is not

irreducible: it is the disjoint union of X̃ and of two other points. Hence, the
map from Ỹ = X̃ to Z is not surjective.

3.2 The étale case

We can show easily (for simplicity in the case where all points have degree 1)
the divisibility for an étale morphism (that is an unramified and flat morphism).
Indeed, we have, for a sufficiently large base field (i.e. when all particular points
are rational),

ZX(T ) = ZX̃(T )
∏

P∈Sing(X)

(1− T )αP−1,
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where αP = ♯ν−1
X (P ). So, it suffices to prove that:

αP − 1 ≤
∑

Q∈f−1(P )

(αQ − 1) (♯)

for any P ∈ X. Note that the inequality αP ≤
∑

Q∈f−1(P ) αQ is trivial since

there is a finite morphism f̃ between Ỹ and X̃ which send the points of ν−1
Y (Q)

on ν−1
X (P ) for all Q ∈ f−1(P ). But this is not sufficient to prove (♯).
The étale hypothesis gives an isomorphism

ÔX,P ⊗k(P ) k(Q) ≃ ÔY,Q

between the completions of the local rings at Q ∈ Y and P = f(Q) ∈ X. This
implies that αQ = αP for all Q ∈ f−1(P ). So, the result follows.

3.3 Inequality for the numbers of rational points

Let us remark that theorem 1 implies the following inequality which holds when-
ever we have a finite flat morphism Y −→ X between two reduced absolutely
irreducible projective algebraic curves Y and X defined over Fq (this result was
proved by the authors in [2]):

| Y (Fq)−X(Fq) |≤ 2(gY − gX)
√
q +∆Y −∆X ≤ 2(πY − πX)

√
q

where πY and πX are respectively the arithmetic genus of Y and X. This
inequality contains the Weil bound for smooth curves, its generalization for
singular plane curves proved in [9] and for general singular curves proved in [1]
(see also [3]).

3.4 Covering of smooth curves

During the proof of our theorem, we used the following proposition which is a
particular case of a proposition of Kleiman quoted in the introduction. We give
here a proof in the special case of smooth curves which may be well known to
the experts.

Proposition 5 Let f : Y −→ X be a finite morphism between two reduced

absolutely irreducible smooth projective algebraic curves Y and X defined over

a finite field. Then, the numerator of the zeta function of X divides those of Y
in Z[T ].

Proof. For any prime number ℓ distinct from the characteristic of Fq, consider
the Qℓ-vector space Tℓ(JX)⊗Zℓ

Qℓ of dimension 2gX , where Tℓ(JX) is the Tate
module of the Jacobian JX of X and gX is the (geometric) genus of X. The
numerator PX(T ) of the zeta function of X is the reciprocal polynomial of the
characteristic polynomial of the Frobenius endomorphism on Tℓ(JX) ⊗Zℓ

Qℓ.
The map

f∗ : JX −→ JY
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induced by f on the Jacobians has finite kernel and sends the ℓn-torsion points
of JX on those of JY . Then, tensorising by Qℓ, we get an injective morphism of
Qℓ-vector spaces

Tℓ(JX)⊗Zℓ
Qℓ

f∗

⊗1−→ Tℓ(JY )⊗Zℓ
Qℓ.

The Frobenius morphism on Tℓ(JY )⊗Zℓ
Qℓ leaves fixed the subspace Tℓ(JX)⊗Zℓ

Qℓ. Hence the characteristic polynomial of the former divides the characteristic
polynomial of the latter in Qℓ[T ], hence in Z[T ] since both PX , PY ∈ Z[T ] have
constant term equals to 1. Thus, we have that PX(T ) divides PY (T ).

3.5 The weight-zero part

For a reduced absolutely irreducible projective algebraic curve X over k = Fq,
we have seen in section 2 that the numerator of its zeta function can be written
as:

PX = PX̃ × PX/X̃

where PX̃ = PX̃,k is the numerator of the zeta function of the normalization X̃
of X and PX/X̃ =

∏

P∈X LX,P,k is a polynomial with roots of modulus one, i.e.

of weight zero as in the terminology of Deligne (see [6]).
But, if X is a reduced connected scheme of dimension 1 of finite type over

Spec(k), we can define the Picard scheme PicX of X which is a smooth group
scheme over k. We have a group isomorphism

PicX(k) ≃ Pic(X)

with the group PicX of isomorphism classes of inversible sheaves on X.
Denote by JX the identity component of PicX . This a group scheme called

the Jacobian of X.
We have the following exact sequence of smooth connected commutative

group schemes over k (see [4]):

0 −→ LX −→ JX −→ JX̃ −→ 0 (∗)
where LX is a smooth connected linear algebraic group which can be writen
LX = UX × TX with UX a unipotent group and TX a torus. Since X̃ is smooth
and proper over k, JX̃ is an abelian variety and thus the jacobian JX is a
semi-abelian variety i.e. an extension of an abelian variety by a linear group.

Proposition 6 For any reduced absolutely irreducible projective algebraic curve

X defined over Fq, we have, for any ℓ distinct from the characteristic of Fq:

PX(T ) = det(1− TF | Tℓ(JX)⊗Zℓ
Qℓ)

where F is the Frobenius endomorphism.
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Proof. We have

PX(T ) = det(1− TF | H1
c (X,Qℓ)).

But Deligne has proved in [5] p. 71 that

H1
c (X,Zℓ) ≃ HomZℓ

(Tℓ(JX),Zℓ)

which enable us to conclude.

Then, we have:

Corollary 7

PX/X̃(T ) = det(1− TF | Tℓ(TX)⊗Zℓ
Qℓ)

where TX is the toric part of the Jacobian of X.

Proof. By the exact sequence (∗), we get

Tℓ(JX)⊗Zℓ
Qℓ ≃ (Tℓ(JX̃)⊗Zℓ

Qℓ)× (Tℓ(LX)⊗Zℓ
Qℓ).

The contribution in the Tate module of the linear part is exclusively given by
the toric part. Then, the result follows from the identity

PX(T ) = PX̃(T )PX/X̃(T )

and the previous proposition.

3.6 About the jacobians.

The main theorem admits the following corollary on semi-abelian variety. Note
that this corollary is false without the flatness assumption as shown by the desin-
gularization of the nodal cubic curve X: the jacobian of X is the multiplicatif
group Gm and the jacobian of X̃ is a point.

Proposition 8 If

f : Y −→ X

is a flat finite morphism between two reduced absolutely irreducible projective

algebraic curves over a finite field k, then the jacobian JX of X is k-isogenous
to a semi-abelian subvariety of the jacobian JY of Y defined over k.

Proof. An extension of an abelian variety by the multiplicatif group Gm is
parametrized by a point of the dual of the abelian variety (see [10]). Over a
finite field, such a point is a torsion point, thus the extension is isogenous to
the trivial extension. Hence, for an extension JX of JX̃ by a torus TX , there
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is an isogeny between JX and JX̃ × TX which induces a Galois-equivariant
isomorphism between Tℓ(JX)⊗Zℓ

Qℓ and

Tℓ(JX̃ × TX)⊗Zℓ
Qℓ ≃ (Tℓ(JX̃)⊗Zℓ

Qℓ)× (Tℓ(TX)⊗Zℓ
Qℓ).

Since the Frobenius endomorphism acts semi-simply on abelian varieties so as
on torus, we deduce that it acts semi-simply on semi-abelian variety too, thus
on Tℓ(JX) ⊗Zℓ

Qℓ and Tℓ(JY ) ⊗Zℓ
Qℓ. Furthermore, by proposition 6, theirs

characteristic polynomials are PX and PY . By theorem 1, PX divides PY , thus
we deduce that Tℓ(JX) ⊗Zℓ

Qℓ is Gal(k̄/k)-isomorphic to a Gal(k̄/k)-subspace
of Tℓ(JY )⊗Zℓ

Qℓ.
Furthermore, the theorem of Tate on abelian varieties (see [11]) remains true

for semi-abelian varieties: Jannsen in [7] has proved that for any semi-abelian
variety A defined over a finite field k, we have:

Endk(A)⊗Zℓ
Qℓ ≃ EndGal(k̄/k)(Tℓ(A)⊗Zℓ

Qℓ).

Imiting the proof of Tate in [11], we get the desired result.
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