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Abstract. Many superconductors show a low temperature electrical resistivity of Fermi liquid 

type ρ=AT
2. We show empirically that there exists a relationship between A and Tc when both 

vary under an external parameter, such as pressure. The more resistive the compound the 

higher the Tc. Through the analysis of Landau theory of FL, we find that it is a general feature 

of FL, due to the fact that the scattering that is the main cause of τ  is the same one that bounds 

the pairs that condensed at Tc. We devise a method that allows the determination of the 

coupling constant λ, which is validated through application to 3He-'s superfluid transitions and 

τ's extracted from different properties. This method works for conventional superconductors, 

but fails with heavy fermions. 

1.  Introduction 

The standard electrical resistance of a metal is controlled by electron-phonon scattering yielding a 

! = "T  dependence at high temperatures and a ! = "T n
!,!n ~ 5  dependence at low temperatures. 

However, in some special materials, the low temperature electrical resistivity is of the type! = AT
2

. 

It has long been attributed to electron-electron scattering (e-e-s) and is considered as the signature of a 

Fermi liquid (FL) behavior for the electronic spectra of the studied compound. The term A has been 

related to the electronic linear term of the specific heat ! of each material through the Rice-

Kadowaki-Woods[1,2] relation A ! " 2
 through their common dependence on the effective mass m

*
. 

The precise origin of the AT
2

 term has been elucidated for certain materials: direct Coulomb 

scattering for ultra-pure alkali metals[3] or spin fluctuations for heavy fermion materials [4]. 
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A number of superconductors of different type present the ! = AT
2  dependence above the 

superconducting transition at T
c
: heavy fermions, A !15  compounds, borocarbides, etc. It is natural 

to expect that the pre-transitional scattering is related the pairing interaction, as has been shown, e.g. 

for aluminum, where the ! = AT
2

 has been traced down to phonon mediated e-e-s [5]. In particular, 

it would be interesting to study the T
c
!vs!A correlation. However, this can only be done properly if 

both properties vary simultaneously under a external parameter, e.g. pressure. A long term study of 

superconductors, together with the reanalysis of published data has allowed us to determine a direct 

relationship between the coefficient A and the superconducting transition temperature, Tc, that we 

present on Fig. 1. It is clear from the figure that T
c
 is a monotonous increasing function of A , thus 

the stronger the scattering the stronger the T
c
. The empirical relationship that follows from the results 

shown on this figure has never been reported (nor even addressed). 

 

 

 
 

Figure 1 Empirical relation between Tc and the coefficient A of the quadratic temperature term for 

different values of an external parameter is applied, pressure unless specified otherwise. 

PrPt2B2C(blue squares)[6]; Y-Pd-B-C(blue dots)[7]; YNi2B2C(blue diamonds)[Our data]; Nb3Sn (α or 

e- irradiation, green dots)[8]; V3Si (green squares)[Our data]; MgB2(red diamonds)[9]; UPt3(magenta 

squares)[10]; Sr2RuO4(magenta diamonds)[11]; UBe13(magenta dots)[12]; (TMTSF)
2
ClO

4
 (brown 

dots)[13], (TMTSF)
2
PF

6
 (brown squares)[13]. 



 

 

 

 

 

 

2.  Theory 

We can understand this relationship within Landau theory for Fermi liquids as follows. 

 

2.1. Theoretical relationship between τ and Tc 

We reduce the inverse quasiparticle-quasiparticle scattering time and the transition temperature to the 

superfluid phase, to the Landau amplitude scatterings within the s-p approximation. From standard 

Landau FL theory[14] we obtain the inverse quasiparticle-quasiparticle scattering time !
"1
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Where m
*
 is the effective mass, V the volume, N(k

F
)  the density of states at the Fermi level, 

<W (!,") >  is the transition probability which describes the scattering of two quasiparticles whose 

momenta are related by the standard angles !  and ! , the bracket indicating the angle average through 

the Abrikosov-Khalatnikov angles; k
B

 the Boltzmann constant and   !  the Planck's constant. 

Developing in Legendre polynomials within the s-p approximation[15] we obtain for the triplet 

transition probability 
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where A!!( ,#)  is the triplet scattering amplitude and T
F

 the Fermi temperature and 
l

!
 the 

Landau scattering amplitudes (we have taken A
0

s
=1). A similar result, ( T

2
)
#1 $ A

1

ep
2

, is 

obtained for singlet scattering taking Al

s
= Al

a
= Al

ep
, as in this case the interaction does not depend on 

spin direction. 

Now, following Ref. [16], Patton and Zaringhalam [17] (PZ) estimated the transition temperature to 

a condensed state as a function of the Landau scattering amplitudes, T
F

 being the Fermi temperature 

and !""  the triplet coupling constant, and !  a parameter, 

T
c
1.13!T

F
e
1/"##   

!"" A""(#,$) /3cos($) (%)l

l

& (A
l

s

A
l

a

) /12 ' %(1 A0
a

) /6                     (4) 

where we have limited the development to l 0,1 within the s-p approximation and we have 

neglected singlet scattering. For singlet scattering, neglecting triplet scattering, we have !
"�

$ 2A
1

ep
. 

From (3) and (4) we conclude that (!T
2
)
"1# $%%

2

, the same for singlet scattering. Thus 

T
c
! e

"# / ($T 2
)
"1

    (5) 

2.2. Electrical resistivity formula 

The FL resistivity of metals[18] is given by !
ee

m
*

ne
2
"
R

, where n is the carrier density, m
*
 the 

effective mass, e the electronic charge and !
R
= number " ! . From (1) , (2) and (4) we find now that 
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A similar result can be obtained for singlet scattering. 



 

 

 

 

 

 

3.  The case of Helium 3 

We can test formula (5) adapting it for the most studied Fermi liquid, i.e. 
3
He ; it becomes 

T
c

/T
F

**
= !e

"#  / ($T 2
)
"1

(7), where T
F

**
is the Fermi temperature renormalized by all the interactions at 

each pressure. We plot T
c
/T

F

**
(P)data as a function of the thermal conductivity scattering rates [19] 

and fit with expression (7) with !  and !  as adjustable parameters (Figure 2). We can thus extract the 

coupling constant ! = "T 2( ) /# . The obtained values 0.2 < ! < 0.4  are in very good agreement 

with theoretical calculations [20]. We must note, though, that all pressure effects other than those on 

! are probably taken into account by the renormalization with T
F

**
(P).The application on 

3
He  

confirms our analysis based on the idea that the pre-transitional scattering determinesT
c
. 

 

 
 

Figure 2 Superfluid transition temperature T
c
of 

3
He  normalized by T

F

**
(P), the Fermi temperature 

renormalized by all the interactions at each pressure, as a function of the inverse square root of the 

scattering time extracted from the thermal conductivity multiplied by the square of the temperature. 

Fitting with Tc /T
F

**
= !.e

"#  / ($T 2
)
"1

 (blue line) allows the determination of the parameter !  and 

the coupling constant ! ("T 2)#1 /$  in excellent agreement with theory [20]. 

4.  Application to superconductors 

Having shown the utility of expression (5), we come back to the superconductors of Figure 1. As 

A ! "T
2

#1

, we can now attempt an equivalent type of fit T
c

!e
"# / A

. We must bear in mind, 

though, that application of elementary FL to materials with complex Fermi surfaces is bound to be 

cumbersome. In this case other parameters that are now present besides  λ  in  Α, may vary, as well.  



 

 

 

 

 

 

 

Figure 3 The dependence of Tc on A  and the fit with expression T
c

.e
" A

 (solid black) for a 

V3Si sample (Our data). The agreement of the obtained !  with published data [21] is excellent. 

 

 
Figure 4 The same type of fit shown for the compounds of Fig. 1, presented now with each Tc 

normalized to the fitting parameter !  and as a function of ! = A /" . The values of λ we obtain for 

A-15 compounds and borocarbides agree within 10% with those obtained from other methods, while 

those of heavy fermions are much lower than reported previously. 



 

 

 

 

 

 

Also, we ignore the pressure dependence of the θ parameter (
  
! "1.13!#

D
 for conventional 

superconductors, where !
D

 is the Debye frequency). We show on Fig. 3 an example of a fit on the 

3
Si  data, that allows us to obtain!  and ! , and hence the coupling constant! = A /" . It yields 

! " 0.87  at ambient conditions, in excellent agreement with the value obtained from tunneling 

methods ! = 0.89 [21]. Thus, the variation of T
c
and A  seems to be controlled mainly by the 

variation of! . 

Applying the same procedure to the compounds of Fig. 1, we can obtain for each material the 

corresponding !  and ! . Plotting now T
c
/!  against ! = A / "  we obtain Fig. 4. All the dispersed 

data of Fig. 1 collapse onto one single curve, that scales the compounds according to their respective 

superconducting coupling constants, derived from their resistivity coefficients Α. For heavy fermions, 

the variation of Α with pressure seems to be controlled by m
*
 not ! , invalidating our method. The fact 

that our analysis works properly on irradiated Nb3Sn, suggests that it may be interesting to study the 

variation of Tc and A in heavy fermions by using irradiation, not pressure, as defects should have a 

stronger effect on the scattering rate τ than on m
*
. 
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