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Quantum critical points (QCP) accompanied by superconductivity are ubiquitous in 

condensed matter physics. In general, the transition temperature �! of an ordered 

state, e.g. antiferromagnetic, goes to zero under the influence of an external 

parameter, e.g. pressure. Superconductivity appears before the disappearance of the 

ordered state, but reaches its maximum T
c
 when �! = 0. Presently, the implications 

of the QCP's on superconductivity are a subject of debate. It is propose here that both 

transition temperatures satisfy the relation �!
!

+ �!
!

= 1, where the tilde indicates 

normalization to the maximum values. Inspired from the basic postulate of SO(N )

theories of superconductors, it is proposed as an extension from Bilbro-McMillan 

relation.  

  



The study of phase transitions is central to the understanding of the physical 

properties of condensed matter [ 1]. Standard phase transitions, at a transition 

temperature �! ≠ 0, can be treated classically, even those between different quantum 

states. Quantum phase transitions, where the transition between two different phases 

takes place at T
c
= 0 , are qualitatively different, as their critical fluctuations must be 

treated quantum mechanically [ 2 , 3 ]. Great progress has been made in their 

understanding, e.g. in the case of magnetic quantum phase transitions [4,5,6]. In a 

large number of materials including pnictides, heavy fermions, charge or spin density 

wave materials, the phase transition at T
c
= 0  as a function of a certain parameter �  

(pressure, doping, etc.) from an ordered, generally bad conductor, state to a 

conducting disordered phase, is surrounded in the � − �  plane by a superconducting 

region (see Fig. 1). The central point is that there is a region where the ordered and 

the superconducting state (SC) coexist. For charge density waves (CDW) this 

coexistence has been studied by several groups [7,8,9]. In particular, Bilbro and 

McMillan (BM)[8] studied the interaction of CDW and SC in A15 materials within 

mean field. Here, both states compete for developing their respective gaps in the same 

Fermi surface. They obtained the following relation between , the superconducting 

transition temperature, and �! , the CDW transition temperature, 

�!
!!!! � �!

!! � = �!!"#
                                (1) 

where is the fraction of the Fermi surface under the CDW gap and the 

superconducting transition with no CDW. 

 Different works have shown that under pressure there are clearly two regimes 

for the evolution of  on its way to the QCP. First a classical BCS at low pressures 

one and then a quantum fluctuations (QF) one near the QCP. For example, both the 
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one dimensional transition metal trichalcogenide , a well-studied charge 

density wave (CDW) compound [10,11,12] and Cr metal [13] display, at low 

pressures, an decrease of  following an exponential with pressure BCS tuned 

variation, consequence of the dependence of �!with the coupling parameter �  , i.e. 

�!~�
!!/! . A quantum region appears below a crossover value of  where QF take 

control through a power law behavior with an exponent ψ = ½ (See the behavior of  

 ��!.!!�!�! on Fig. 1).  

It is clear that Eq. (1) can only be applied in the BCS régime and is that not valid in 

the QF region. However, at least for CDW and SDW materials, a direct relation 

between  and  describing that both states are the result of the same Fermi surface 

and electron-phonon interaction is expected and needed. In order to have a hint 

towards it, an analysis of how the BM relation works experimentally is clarifying. 

In A-15 compounds,  ~ some 10%'s and changes only a few percents in the 

measured pressure range [8]. Considering then  approximately constant in the 

pressure range, expression (1) becomes, 

1− �! ���! � + �!���!(�) ≈ ���!!"#
      (2). 

We see from Fig. 2 where the variation with pressure of both transition temperatures 

for the two most studied A-15 compounds, and is plotted as logarithms, 

that expression (2) is verified,  being constant within experimental error, and 0.26 

for  and 0.14 for ; the obtained  are 17.7K and 20.1K for  and 

, respectively. Experimentally we ���! � = ���! 0 + �!� have , �! being a 

constant and x either c or 0. The logarithmic variation with pressure of both transition 

temperatures is the result of the exponentially tuned BCS expression. In other words, 

at all the shown pressures, both transitions without any doubt obey BCS statistics. 

NbSe
3

T
0

T
0

T
0

T
c

n
0

n
0

V
3
Si Nb

3
Sn

n
0

V
3
Si Nb

3
Sn T

c
Max

V
3
Si

Nb
3
Sn



 However, as described above, the CDW/SDW transition deviates from the 

exponentially tuned BCS behavior towards a power law dependence of the type 

�! ∝
!!!!

!!

!/!

 near to the QCP. It is apparent that the transition temperature does 

not more follow BCS statistics, but another possibly due to the QF near the QCP. QF 

accelerate the rhythm of decrease of �!, destabilizing the CDW/SDW and, at the same 

time, inducing a faster transfer of carriers from the CDW/SDW gap to the SC gap. 

Equation (1) is thus no longer valid. Phenomenologically, expression (1) adds the 

variations of the  using the functional that is linear with pressure, which in the 

BCS régime is the logarithm of the transition temperature. The same approach may be 

taken for the power law régime. Thus, instead of the logarithms, as now 

�! �!(0)
!
= 1− �/�! , the squares of the transition temperatures should be added 

and equated to a constant. It is thus expected that the equivalent of BM for the power 

law region would be a summation of squares of the type  

��!
!
+ ��!

!
= �             (3) 

To advance further in obtaining a BM formula for the quantum régime, it is useful to 

take into account the SO(5) formulation. In the paper [14] on SO(5), it was argued 

that the simplest way to construct an unified theory of antiferromagnetism and 

superconductivity for cuprates was to define a five dimensional spinor composed by 

the three components of the magnetization and the real and imaginary part of the d-

wave superconducting gap. In this way, it would be possible to recover all the 

relevant physics of the problem of high temperatures superconducting cuprates[15]. 

More complicated problems would require higher dimensions spinors to obtain all the 

physics, i.e. the complete phase diagram with all the possible ground states, e.g. 

SO(8) for a two chains model of correlated fermions[16]. However, experimentalists 

can be less ambitious, and just try to describe phenomenologically with the most 

T
x
's



compact expression a restricted region of the phase diagram, e.g. the one near to QCP. 

Basically, there are two coexisting phases. The ordered phase should rigorously have 

several components. However, systems with presumed different number of 

components, show the same behavior near the QCP. SO(5) and SO(4) has been 

successfully used to explain properties of the Co doped BaFe
2
As

2
 system[17], and 

the Beechgard salt[18] (TMTTF)
2
PF

6
, respectively. Thus, just one component for the 

ordered phase may be enough for this portion of the phase diagram. A similar 

reasoning can be used for the superconducting phase, that may also be accounted by 

one component. The actual formula is suggested by expression (3). It is (Fig. 3a) 

!!(!)
!

!!!"#

!
+

!!(!)
!

!
!!"#

!
= 1             (4) 

The procedure to apply this formula is as following : the �!  dependence with 

pressure, concentration, etc. is fitted by a �! � = �!!"#

!!!!

!!

!

 (5) law, from which 

the dependence of �! � = �!!"#
1−

!! !

!! !!!

!

 (6) can be calculated. The 

normalization to �! �!!  is a way to apply the formula only to the actual region of 

coexistence of the ordered and superconducting phase (Fig. 3b). Thus, the dependence 

of �! �  determines that of �! � . The satisfactory application of the formula is also 

shown for the examples on Fig. 1. 

For � > �! the dependence of �! is naturally extended to negative values (low-right 

quadrant of Fig. 3a), and its module is used in the determination of . In the case of 

magnetic QCP's, this extension can be associated to the crossover or coherence line, 

below which the system recovers normal Fermi liquid properties. It follows the power 

law �!"!~
� − �!

�!

!"

 [6], where � is the correlation length exponent and z the 

T
c



dynamical exponent. As for low dimensions �� = � is often valid, i.e. both �! ≡ �!  

and T
coh

should follow the same power law. On the other hand, for CDW-s, a negative   

�! can be traced to the soft phonon that exists even with values of � that hinder the 

occurrence of the lattice distortion[19,20]. In other words, the interaction, responsible 

for the ordering, does not obviously disappears when �! = 0, and the extrapolation to 

negatives values of �! is an approximation to its magnitude.  

In fact, already a study of the antiferromagnetic QCP, considering that 

superconductivity is due to spin fluctuations caused by its criticality, arrives at a 

formula of similar nature by derivation of the lines of constant coherence lengths [21] 

�!
!
+

!!!!

!!

!

= �!!"#
!  (7). In the case of a T

N
 ( T

coh
) with a critical exponent 

� = 1 (�� = 1) , expressions (4) and (7) are almost identical. It is clear that the type 

of analysis done on Ref. 21 can be a way for the understanding of superconducting 

domes around QCP's of different nature.  

In conclusion, a formula equivalent to the Bilbro-McMillan expression for 

coexistence between a charge density wave and superconductivity but applicable to 

the quantum fluctuations controlled regions of the phase diagram is proposed to 

describe the superconducting domes that appear around quantum critical points. It is 

shown that it describes phenomenologically the observed behavior for several 

systems.  

  



 
 

Figure 1 

 

Examples of materials showing a QCP surrounded by a superconducting dome .  The 

compound  (��!.!!�!�!) [22] follows at low pressures an exponential with pressure 

BCS tuned variation up to ~5GPa (blue dashed right line). Above this pressure, the 

compound crossovers to a quantum fluctuations regime, following the power law of 

the type �! ∝
!!!!

!!

!/!

 (blue solid line). The other three compounds (�����)!��! 

[23], ��!����! [24] and ��(��!!!��!)!��! [25] show power laws at all pressures. 

Also shown (red circles) is the superconducting dome. The red line is obtained using 

formula (4), see text and Fig. 3. 



  



 

Figure 2 

Left (Right) Panel: Evolution of the lnT0, inverted triangles, and lnTc ,triangles, with 

pressure for  ; data from Ref.  26 ( ; data from Ref. 27 ). The straight 

dashed line verifies Eq. (2) with =0.26 and =17.7K ( =0.14 and 

=20.1K). 
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Figure 3 

a) Proposed vector rotating in a (Δ!;Δ!") plane with an angle determined by �. 

b) Example of application of formula [4], [5] and [6] on CePd
2
Si
2
. The formula for 

TC automatically uses the fitted value of T
N

 only where there is coexistence between 

the antiferromagnetic and the superconducting phases (solid curves), although the 

power law for TN is fitted to all the reported pressure range (dashed curve). For 

� > �!  , the expression for T
N

corresponds, in fact, to that of the coherence line T
coh

 

as their power laws often have the same exponents in low dimensions. 
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