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Abstract

Engineering design problems generally involve a high-dimensional input space of design variables yielding
an output space by means of costly high-fidelity evaluations. In order to decrease the overall cost, reduced-
order models for the output space such as Proper Orthogonal Decomposition (POD) and proper Generalized
Decomposition (PGD) are an active area of research. However, little research has been conducted into
alleviating the problems associated with a high-dimensional input space. In addition to higher dimensionality
being an impediment to efficient design by itself, complex shapes involve a high number of explicit/implicit
constraints restricting the design space. Geometric parameterization methods in traditional CAD present
difficulties in expressing these constraints leading to a high failure rate and the generation of inadmissible
shapes. In this paper, we propose a simultaneous meta-modeling protocol for both input and output spaces.
We perform a reparametrization of the input space using constrained shape interpolation by introducing
the concept of an α-manifold of admissible meshed shapes. The output space is reduced using constrained
Proper Orthogonal Decomposition. By simultaneously using meta-modeling for both spaces, we facilitate
interactive design space exploration for the purpose of design. The proposed approach is applied to the
industrial problem of designing a car engine intake port.

Keywords: Input space reduction, model reduction, finite elements, design, diffuse approximation.

1. Introduction, literature reviewed and motivation for research

When ”high fidelity” computer simulations (finite elements, finite volumes, etc.) are used for calculating
the objective functions and nonlinear constraints in the process of optimizing mechanical systems, the CPU
time frequently becomes disproportionately large. This is due to the cost of individual simulations, the
number of simulations or function evaluations needed, and the various additional aspects like license man-
agement of the legacy codes and the stability of a complex simulation chain involving multiple codes. All of
these brought about a need for the development and validation of efficient surrogate-based methods in design
optimization. Some of the recent advances in surrogate-based design methodology have been thoroughly
discussed in [1]. In physical modeling, several techniques have been used to replace a complicated numerical
model by a lower-order meta-model, like polynomial response surface methodology (RSM), kriging, least-
squares regression and Moving Least Squares [2]. Surrogate functions and reduced-order meta-models have
also been used in control systems to reduce the order of the overall transfer function [3]. [4] proposed a
goal-oriented, model-constrained optimization framework. A popular physics-based meta-modeling tech-
nique consists of carrying out the approximation on the full vector fields using PCA and Galerkin projection
[5] in CFD [6] as well as in structural analysis [7]. This approach has been successfully applied to a number
of areas such as flow modeling [8, 9] optimal flow control [10], aerodynamics design optimization [11] or
structural mechanics [12].
However, this requires manipulation of the input variables V̄ . Now for complex shapes the dimensionality
d can be very high [13] and can greatly exceed the intrinsic dimensionality of the design problem. Another
far more serious implication is the generation of inadmissible/infeasible structural shapes [14], which could
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eventually lead to crashes of either the mesh generator or the solver. This was pointed out in [15] where
none of the POD solutions, and only a few of the constrained POD solutions could be validated, since nearly
ALL of the optimal geometries obtained were inadmissible and generated errors in the CAD stage!
The phenomenon of CAD failure due to the generation of inadmissible shapes is due to the difficulties in ex-
pressing all the technological and common sense constraints needed to convert a set of geometric parameters
to an admissible shape. This issue is frequently encountered but remains relatively under-discussed in the
context of design and optimization, and is the motivation for our work. While traditional shape morphing
([18, 19]) is popular, it requires a single reference shape and an arbitrary definition of the morphing boxes
and control points and does not always yield exploitable CAD models.
A final inconvenience is that gradients/sensitivities need to be calculated using either finite differences or
the Adjoint method [16]. All in all, geometric parameterization is an impediment to truly non-intrusive [17]
optimization using a clearly separated offline/online approach that would allow for interactive design using,
for example, a tablet PC.
The authors have not observed much if any research into using decomposition-based surrogate models for
reducing dimensionality of the design domain in design or shape optimization [20]. This area is promising
considering the obvious advantages of having far fewer parameters describing the domain with implicit

verification of technological/admissibility constraints: better applicability to gradient-based solvers due to
reduced dimensionality, and from the implementation point of view, a separation between the CAD and the
simulation phases in system design.
In this paper, we develop an approach that builds up a design space by learning using shape interpolation
between shape/mesh instances given by a sequence of parameter values. The input space is reduced using
first direct POD on a set of admissible structural shapes in the local neighborhood of the evaluation point,
followed by analyzing the inter-relationship between the projection coefficients α’s in this local neighbor-
hood (µ(ᾱ) = 0), represented using a local parametric expression ᾱ = ᾱ(t̄). For this we introduce the
concept of the α-manifold. The output space (physics) is modeled using constrained Proper Orthogonal
Decomposition [21] giving the smallest set of coefficients β1...βm needed to conserve linear objective and
constraint functions. The POD coefficients for the shape and physics are then analyzed together to get the
local parametric expression for both α’s as well as β’s in the neighborhood of the evaluation point.
In addition, our approach gives an elegant, practical and straightforward method to compute the so-called
”shape derivatives” of the performance objective(s), which are increasingly popular as used in ”shape cal-
culus” [34, 28, 29, 35].
The methodology and the overall algorithm are described in the next section with the help of a simple
structural test case, and then applied to an industrial shape optimization problem in section 3 with a full
set of numerical results and discussion before the concluding paragraph.

2. Meta-modeling for both the output and input spaces

On account of the computational cost of launching a number of ”high fidelity” computer simulations and
factors such as license management of the legacy codes and complex computing chains in engineering design
optimization, research has been focussed on the development of efficient surrogate-based methods. One of
the most popular among these is the method of Proper Orthogonal Decomposition (POD).

2.1. Output Space ROM

This Reduced Order Model (ROM) strategy for the output space approximates a physical field v̄ ∈ Rn in
the vicinity of the current iteration point V̄ ∈ Rd, where n is typically the size of a FE/CFD mesh/grid, and
d is the design space dimensionality. The field vector v̄(V̄ ) may then be approximated around the nominal
value v̄0 using a basis Ψ = [ψ̄1...ψ̄M ] [5], typically obtained using a set of a priori computer experiments
V̄ (1)...V̄ (2) using Design of Experiments techniques [22], or other methods [23, 24]. This is followed by
calculating the projection coefficients [17].
The reduced-order model is then built either by interpolation of Ψ e.g. [25] interpolated the basis Ψ vectors
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onto the manifold of symmetric positive-definite matrices, or by interpolation of the β’s using kriging/Radial
Basis Functions [21]/Diffuse Approximation [17, 26]. Assuming that only the projection coefficients β’s
depend on the V̄ and that Ψ is constant for the design problem, followed by truncating the basis Ψ to a
small number (m << M) of highly energetic modes, we get

v̄(V̄ ) ≈ ṽ(V̄ ) = v̄0 +

m
∑

1

βi(V̄ )ψ̄i. (1)

Since β̄ = β̄(V̄ ) we need to manipulate the vector of design variables V̄ either after optimization to verify
the design or during the optimization/design to verify intermediate solutions. But as mentioned in the
introduction working with V̄ can lead to issues like inadmissible geometries (infeasible V̄ ) and thus CAD
failures and frequently an elevated problem dimensionality, all of which are even more troublesome when
using the meta-model in a non-intrusive procedure [15].

2.2. Input space ROM

We therefore seek to meta-model the input space, in other words the structural shape Ω itself in a POD-
like manner in order to implicitly guarantee admissiblity in β-space AND limit the dimensionality while
performing the design. An ideal representation of Ω for this purpose (as will be explained in the next
section) is by using the shape indicator function χ. The idea then is to perform POD on χ yielding

χ = χ0 +
∑

i

αiφ̄i. (2)

2.3. Combined input/output meta-modeling

The general approach to simultaneous reduction of both spaces of the design problem is shown in figure
1 with the input space meta-model on the left hand side, and the output space meta-model on the right.
The final step for the simultaneous meta-modeling is to obtain the relationship between the POD coefficients
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α2

α
3

t1

t2

POD-based ROM for shape Ω

R1

R3
θ1

α, Φ β, Ψ

β1β2

β
3
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F

ΓD

ΓN
Ω = ?

Figure 1: Basic idea of interactive design/optimization

for shape (α’s) and those for the physical fields (β’s). This can be easily obtained using a polynomial
Response Surface:

β̄ = β̄(ᾱ) = p̄(ᾱ)T ā (3)

where p̄(ᾱ) is a series of monomials in ᾱ. In the next few sections, we will focus on the input space.
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3. Analyzing the input space: the problem of admissibility and parameterization

The shape design problem in its fundamental form may be written as:

Find Ω∗ = ArgminJ(Ω)

where G(Ω) ≤ 0

div(σ) = 0 on Ω, σn̄ = F̄ on ΓN

σn̄ = 0 on Γ, ū = 0 on ΓD (4)

where Ω ⊂ R3 is a representation of the structural shape, ∂Ω = ΓD ∪ ΓN is the boundary and G is the
full set of admissibility conditions on Ω. What we concern ourselves with here is the existence of G, so the
details of stress and displacement boundary conditions though still present are not retained in the following
discussion for the purpose of simplicity.
Now consider A ⊂ R3, the exhaustive set of admissible shapes for the particular shape design problem. This
means that if we limit the search for solutions to A

Find Ω∗ = ArgminJ(Ω)

where Ω ∈ A ⊂ R3. (5)

The first step is then finding an adequate and convenient representation for the structural shape Ω. There
are two possible approaches: Lagrangian and Eulerian.

3.1. Lagrangian representation and issues

The traditional CAD approach is a local approach to shape parameterization that attempts to express
a complex structural shape as a set of geometric primitives (rectangles, circles/cylinders, splines, NURBS
[? ],etc), giving us a shape representation Ω = Ω(V̄ ) using a bounded vector of geometric parameters
V̄ ∈ [V̄min, V̄max] ⊂ Rd.
This is convenient in allowing us to visualize a complex shape as a combination of simpler shapes. However,
since this approach is local, it lacks a global comprehension of overall shape, topology and thus admissibility.
In addition, there are redundancies possible in the final shape description.
The main issue is that it is difficult to express admissibility conditions (e.g. tangentiality in figure 2(a)) for
complex shapes, and this can cause CAD failures despite respecting geometric bounds [14], in addition to
possibly overestimating dimensionality for complex shapes [13], an impediment to optimization algorithms.
Finally, the derivatives and Hessians are not easy to evaluate (if not available analytically) and frequently
expensive (finite differences/adjoint method). For all these reasons, it is not always ideal for a non-intrusive
design procedure.
The shape design problem is now posed in the familiar form:

= 1

= 0

(a) (b)

R1

R3
θ1

Figure 2: (a) Lagrangian representation, and (b) Eulerian representation of a structural shape Ω
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Find V̄ ∗ = ArgminJ(Ω(V̄ ))

V̄ ∈ [V̄min, V̄max] ⊂ RN

subject to: Y (ū(V̄ )) = 0, GL(V̄ ) ≤ 0 (6)

where Y (u) represents the previously stated stress/displacement constraints, evaluated using FEA (for
example) and GL represents the eventually implicit admissibility conditions on V̄ such that:

A = {Ω(V̄ )|GL(V̄ ) ≤ 0} (7)

Since GL is difficult to express, the design algorithm takes a more or less trial-and-error format and the
entire chain can be thrown into disarray the instant a design is found to be infeasible. The key then is to
attempt to find the subset of admissible shapes so that we can avoid this happening.

tangentiality 
conditions, 
etc

VL

VU

Infeasible 
space

feasible 
region

possible mini-

hypercubes

(a)
(b)

R1

R3
θ1

R1

R3
θ1

technological 

constraints, etc

Figure 3: (a) Technological and admissibility constraints (b) Geometric space not a hypercube

Admissibility conditions need to be enforced on the geometric parameters (figure 3(a)) to ensure an
admissible shape. By not explicitly enforcing these conditions - as is usually the case with traditional CAD,
ergo the failures/crashes - we are incorrectly assuming that the design domain is a hypercube in RN , as
illustrated in figure 3(b) thus limiting the design domain.

3.2. Eulerian representation

Eulerian representations [27] (figure 2(b)) use a fixed reference grid with a pre-determined resolution and
fit the set of structural shapes to this grid.
In other words we represent a shape Ω by the indicator function χ(x̄): a unique, common and parameter-free
representation of structural shape, where:

χ(x̄) = 1, x̄ ∈ Ω

= 0, x̄ /∈ Ω (8)

Where again Ω ⊂ R2 (R3 in 3D) is the set of all points in space contained in the shape χ which may be
obtained in discrete form in several ways for negligible computational cost; for e.g. ”voxellization” to create
a binary array [31]Si ∈ RNc , i = 1..M , Nc = grid resolution, or the level sets approach [28, 30].
The Eulerian representation, if adopted directly as a parameterization, has some advantages over its La-
grangian counterpart: it gives us a global, unique description of shape and topology. Since it is basically an
image, this representation is intrinsically linked with engineering and visualization (pixel/voxel maps, level
sets). However, the Eulerian approach by itself does not permit us to reliably interpolate between admissible
shapes.
When working with complex shapes, it would be desirable to work directly in ”shape space” as we will
explain in section 5.
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4. Simultaneous meta-modeling using ”shape space” and POD

The key points of our approach in this paper are as follows:

1. We build the parameterization scheme (shape space) directly by ”learning” directly from example
admissible shapes (regardless of the original parameterization scheme).

2. We perform POD directly on the structural shapes in alocal neighborhood of admissible shapes.

3. We do not truncate the basis, i.e. we retain ALL the modes without losing precision. Instead we look
at the inter-relationship between the projection coefficients.

4. We calculate gradients, Hessian etc in this local shape space to get the so-called shape derivatives of
the performance objectives.

To this end, consider a typical structural design problem in equation 9 (equivalent of (6))with geometric
dimensionality d with performance objective J(V̄ ) (calculated using FEM):

Find V̄ ∗ = Argmin
V̄ ∈[V̄min,V̄max]⊂Rd

J(Ū(V̄ ))

such that K(V̄ )Ū(V̄ ) = F̄ (equation of equilibrium)

and C̄(V̄ ) = 0̄(shape/admissibility constraint)

and AH(V̄ ) ≥ Ao(mass constraint) (9)

where K(V̄ ) (stiffness matrix), Ū = K−1F̄ , force F̄ and Ao are constants, C̄ : [V̄min, V̄max] → Rnc is the
shape constraint function that is unknown/difficult to express analytically (nc =size of constraint vector)
where ∀V̄ ∈ Ee ⊂ [V̄min, V̄max], C̄(V̄ ) = 0̄, Ee is the subset of admissible shapes.
So we need to restrict our search to the subset of admissible shapes i.e. Ee in the original design domain.
NOTE: We need not concern ourselves with the mass constraint at this stage, although we could further
restrict the design space to the admissible shapes that also satisfy the mass constraint if needed. So we treat
the mass constraint separately from the shape admissibility constraint.
Now, the basic premise is to represent a design point (i.e. admissible shape) in a reduced (α,Φ)-space where:
- The basis Φ is calculated locally using sample admissible shapes
- ᾱ is obtained by projecting a design point on to Φ.
We transform the problem from the original space to this reduced space in such a way as to implicitly satisfy
the admissibility criterion i.e. V̄ (ᾱ) ∈ Ee. Equation (9) would then reduce to a form:

Find ᾱ∗ = Argmin
Φ=const

{J(ᾱ,Φ)},

s.t. ᾱ ∈ [ᾱmin, ᾱmax] ⊂ Rm, c(ᾱ) = 0, ah(ᾱ) ≤ 0, (10)

where m << d. The basis Φ is fixed in (10) since even though it will vary globally, (10) is applied locally.
We achieve the transformation from equation 9 to 10 in a series of steps outlined in the next few subsections.

4.1. Design domain and shape indicator functions

We first study the range of admissible shapes (i.e. snapshots [32]) sweeping the neighborhood of the
evaluation point in the physical design domain, typically in a Lagrangian description with a sampling of the
geometry-based design variables within their range V̄ ∈ [V̄min, V̄max] ⊂ Rd, (this could simply be the finite
set of points describing the edges/boundaries of a series of CFD meshes/grid points) for an initial random
sampling of M admissible designs V̄ 1..V̄M (i.e. satisfying C̄(V̄ ) = 0̄).
NOTE: No numerical analysis is performed for these M snapshots that are solely to analyze the overall
”shape” variation and gauge the intrinsic dimensionality of the design domain.
We next convert each of these snapshots to the corresponding shape indicator functions S1...SM in one of
the ways described earlier. here voxelization has been used.
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4.2. Principal Components Analysis of the Shapes

This is the first stage of the model reduction. We calculate the deviation and covariance matrices Ds

and Cv for the snapshots S1..SM :

Ds =
[

S1 − S̄ S2 − S̄ ... SM − S̄
]

and Cv = DS .D
T
S (11)

allowing us to express any Sj in terms of the eigenvectors φ̄i of Cv where M << Nc = number of snapshots,
Si = ith individual snapshot and S̄ is the mean snapshot.

Sj = S̄ +

M
∑

i=1

αij φ̄i , αij = φ̄Ti S
j (12)

for the jth indicator function. (NOTE: −1 ≤ φ̄i ≤ 1, 0 ≤ S̄ ≤ 1 while Sj is binary). The usual reduction
approach would be to limit the basis to the first m << M most ”energetic” modes:

S̃j = S̄ +

m
∑

i=1

αij φ̄i and ǫ(m) = 1−

∑m

i=1 λi
∑M

i=1 λi
(13)

where ǫ(m) is the relative projection error, λ’s are the eigenvalues of Cv.
However, the last equation does not provide a sufficient basis for establishing the value ofm since we need to
specify a threshold value for ǫ. Since the α’s can not be directly interpreted as new design variables without
taking into account the possible inter-relationships that exist between them so as to render feasible shapes.
In addition, truncating the basis Φ would limit precision. Therefore, instead of truncating the basis, we
instead analyze the inter-relationships between these α’s obtained from the M snapshots in order to detect
the true dimensionality (p) of the design domain.

4.3. Concept of ”Shape Space” using the α-manifold

We represent the inter-relationship between the α-coefficients by a manifold in RM space, which we call
the α-manifold. For illustrative purposes, we will use some simple test-cases using a global sampling of 2000
points:

1. A Plate with a circular hole of varying radius, shown in figure 4.

2. Plate with two circular holes of independently varying radii, shown in figure 5.

In all cases, we consider the design domain of admissible shapes, bounded e.g Rmin ≤ r1, r2 ≤ Rmax for the
two holes plate, and each time, the approach is able to detect the feasible region and dimensionality from
a set of shape snapshots (images) regardless of the geometric parameterization used. For example, in the
first case, there is only one parameter (hole radius r) the dimensionality is clearly 1 and to detect this we
generate a set of random snapshots by varying r followed by PCA on the Si giving us a set of α’s. Figure
4(b) shows the one-dimensional α-manifolds clearly indicating that the design domain is parametrized by
ONE single parameter t. Similarly, the α-manifolds for the second case are 2D in figure 5(b) (2 parameters)
indicating a local parametric expression t1, t2
While 1D and 2D manifolds have been chosen since manifolds of higher order cannot be visualized in 3
dimensions, it is important to state that:
1. Any point outside the manifold will result in NON admissible shapes.
2. Any additional admissible point generated in V̄ space and then projected onto the existing basis (Φ̄) will
always be on this manifold.
This illustrates that the α-manifold truly approaches the shape space for the given design problem and thus
captures its intrinsic dimensionality (p). This hypothesis is important, since at no point do we explicitly
inform the algorithm about the dimensionality or even a set of parameters (geometric or otherwise).
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Figure 4: α-manifolds for plate with a circular hole of fixed center varying radius
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Figure 5: α-manifolds for plate with two circular holes - fixed centers, independently varying radii

4.4. Model reduction using the α-manifold instead of basis truncation

In the general case, we obtain a p-dimensional manifold with the local parametric expression ᾱ = ᾱ(t̄), t̄ ∈
Rp, p ≤ d). t1....tp are local parameters that allow us to move along the tangent plane to the manifold. For
e.g., from the previous section - for a plate with an elliptical hole of varying radii, the α’s form a set of
two-dimensional manifolds (figure 6) rather than a cloud of points in 3D space regardless of the particular
triplet of modes used, clearly indicating that the design domain is parametrized by two local parameters
t1, t2. This means that α1 = α1(t1, t2), α2 = α2(t1, t2)....
Basically, points lying outside the manifolds always produce inadmissible shapes so the surfaces α1, α2, ... vs t1, t2...tp
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Figure 6: (a) Traditional POD truncation to m modes versus the α-manifold (feasible region of admissible shapes), (b) ǫ(m)

may be interpreted as the set of all possible ”constraints” (direct geometric constraints, technological con-
straints etc that are difficult to express mathematically) on the geometric parameters V̄ in the α-space. In
other words, the α-manifold represents the feasible region of admissible shapes. In our work, we
introduce this local parametric expression ᾱ = ᾱ(t1, ..., tp)) using Diffuse Approximation [26].
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4.5. Local manifold construction in the neighborhood of the design point

We present here a formal approach to locally identify the system dimensionality p from the α-manifolds.
Consider the snapshots in α-space: ᾱ1, ...ᾱM ∈ RM . We would like to implement an algorithm that:
1. Detects the ”true”/inherent dimensionality of the design domain (p ≤ M) from the local rank of the
α-manifold in the vicinity of the evaluation point, so that the feasible region may (locally) be expressed as
α1 = α1(t1..tp), ....αM = αM (t1..tp).
2. Constrains the evaluation point (ᾱev) to stay on the feasible region of admissible shapes, during the
course of the design process.

To locally detect the dimensionality of the α1...αM hyper-surface in the neighborhood of ᾱev , we extend
the method of Fukunaga and Olsen [33]. First, we establish a sufficiently dense local neighborhood. Let
β̄1...β̄nbd be nbd neighboring points in α-space, we next use a polynomial basis centered on ᾱev

P(ᾱev) =





1 β1
1 − αev

1 β1
2 − αev

2 .... β1
M − αev

M ....
. . . .... . ....
1 βnbd

1 − αev
1 βnbd

2 − αev
2 .... βnbd

M − αev
M ....



 (14)

with an appropriate weighting function (e.g. Gaussian w(d) = e−cd2

) and assemble the moment matrix
Mt = PTWP , where W is the diagonal matrix whose elements correspond to the weighted contributions of
the nodes β̄1...β̄nbd.
Next, we detect the local rank of the manifold by calculating the rank of the moment matrix from the
number of singular values of Mt, this gives us the dimensionality p ≤M .

4.6. Diffuse predictor-corrector ”walking” algorithm

This algorithm will bring the design point (in α-space) in the interactive design procedure back down to
the α-manifold in subsequent iterations using a predictor-corrector scheme. The local surface tangent to the
manifold is defined with respect to the tangent space iteratively updated. We ”walk” along the manifold
using a Diffuse Approximation-based scheme consisting of the following steps (figure 8).
1. Let Qi be the current design point: ᾱev in α-space. In the predictor stage, using a single Quasi-Newton

*

centroidal plane

Q
0

i+1

*

neighborhood

prediction correction

*
Q
i *

tangent plane (initial)

t

t Q
f

i+1

(initial) Q
i

(convergence)
tangent plane

feasible region

(α-manifold) 

Figure 7: Overall shape interpolation algorithm for design space exploration

step from Qi, let Q
0
i+1 be the new candidate point that needs to be brought back on to the manifold/feasible

region (correction phase). We first establish the α-neighborhood µ̄1...µ̄nbd of Q0
i+1.

2. Calculate the centroid µ̄m = (
∑nbd

i=1 β̄i)/nbd.
3. Find the centroidal plane for the neighborhood from the eigenvectors of the covariance matrix Cnbd, the
first eigenvector representing the plane normal:

Cnbd = (1/nbd)

nbd
∑

i=1

(µ̄i − µ̄m)(µ̄i − µ̄m)T , (v̄1, v̄2...) = eigenvectors(Cnbd) (15)
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4. Project the evaluation point as well as the neighborhood points in the local coordinate system v̄1, v̄2...
(origin at centroid β̄m) to get the local co-ordinates h, t1...tp for a general ᾱ where h is height over the
centroidal plane using:

h = v̄T1 (ᾱ− µ̄m) , t1 = v̄T2 ᾱ , etc (16)

5. We next obtain the shape (indicator function) and calculate J for the evaluation point. We recreate the
structural shape for an arbitrary design point (t̄) using the α coefficients obtained from t̄ (location on the
α-manifold), and thus the indicator function S̃:

S̃(t̄) = S̄ +

m
∑

i=1

αi(t̄)φ̄i (17)

To calculate the objective function J(S̃) we use a response surface between the output-space (previous
section) and input space meta-models giving us the output space POD coefficients β1..βm as β̄(ᾱ(t̄)). We
now get the objective function using J̄(ṽ) where ṽ is the physical vector field reduced by the physics meta-
model.

J ≈ J(ṽ) = J(v̄0 +Ψβ̄(ᾱ(t̄))) (18)

6. Do the Diffuse Approximation for ᾱev as well as the objective function J using the nbd neighboring points
to get the local surface h = h̃(t1...tp) using a polynomial basis Pq(ᾱ

ev) with weighting W, and J = J̃(t1..tp)
in a similar fashion using a basis Pj(ᾱ

ev).

[h̃(t̄ev),
∂h̃

∂t1
(t̄ev),

∂h̃

∂t2
(t̄ev), ....]T = (Pq

TWPq)
−1Pq

TW[h1, ..., hnbd]
T (19)

[J̃(t̄ev),
∂J̃

∂t1
(t̄ev),

∂J̃

∂t2
(t̄ev), ....]T = (Pj

TWPj)
−1Pj

TW[J1, ..., Jnbd]
T (20)

where the term in the LHS is the local tangent hyper-plane at Q0 in the neighborhood β̄1...β̄nbd.
7. We then project the point Q0

i+1 onto this tangent plane to get the adjusted evaluation point Q1
i+1, and

then repeat by finding the new neighborhood, tangent plane and projection point ,etc till the evaluation
point stops changing Qf

i+1.
In this, we ”walk” the evaluation point Qi along the surface of the α-manifold to ensure that we stay in the
domain of feasible solutions.

4.7. Gradient and Hessian: Diffuse ”Shape derivatives”

Our concept of shape derivatives ∇J (and Hessian H with additional derivatives) is simply that of
the ”diffuse” derivatives [26] of J with respect to t̄ (from the previous section), since t̄ is simply the local
description of the shape manifold:

∇J = [
∂J̃(t̄)

∂t1
,
∂J̃(t̄)

∂t2
, ..] (21)

which is then evaluated using equation (20). However, the above may also be written as:

∇J = ΦT dJ

dS
(22)

which is simply the projection of the Eulerian derivative onto the POD basis Φ.
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Figure 8: 2D interpretation of local Diffuse Approximation

4.8. Design problem in shape-space

The design problem in reduced-space now becomes:

Find t̄∗ = Argmint̄∈Rp{J(ᾱ(t̄))}

s.t. c(ᾱ(t̄)) = 0, ah(ᾱ(t̄)) ≤ 0, ᾱmin ≤ ᾱ(t̄) ≤ ᾱmax (23)

where c represents the admissibility constraint (i.e. the α-manifold), ah represents the mass constraint, and
ᾱmin and ᾱmax are the bounds on ᾱ.
In simple terms, we satisfy the admissibility constraint and bounds implicitly by constraining the evaluation
point to stay on the manifold of admissible shapes by generating ”neighbors” exclusively from admissible
solutions close to the evaluation point, using tangent space construction by Diffuse Approximation. This is
illustrated for a simple structural case in figure 9.

5. TEST-CASE: Design of 93-parameter engine intake port

5.1. Description of Test-Case, CAD issues and non-intrusive approach

This test-case is related to the design for performance improvement of an engine intake (figure 10(a)),
originally proposed by Renault as a third benchmark test-case for the OMD2 project [36]. A sand model of
this intake pipe is shown in figure 10(b). The intake pipe and port system has a very complex structural
shape with physical details as shown in figure 10(c). Optimizing the combustion process within an engine
block is central to the performance of many motorized vehicles. Associated with this process are two impor-
tant performance objectives: the mass flow rate Q through the cylinder and tumble pattern of flow (vorticity
τ), which optimize the mixing of fluid within each of an engine’s cylinders. This variable 3D geometry is
parameterized by using 93 bounded geometric design variables V̄ ∈ [V̄L, V̄U ] ⊂ R93 in CATIA, involving
an exorbitantly high CAD failure rate of over 60%: tested at the beginning with a random sampling of
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Figure 10: (a) Full system (b) Sand model of intake pipe (c) External & internal details of engine intake

1000 points in [V̄L, V̄U ] resulting in only 553 admissible shapes after regular CAD using CATIA. As in the
previous test-case, this failure-rate of regular CAD was expectedly a serious impediment to standard search
routines: gradient-based or otherwise, and also limiting the use of a standard POD to represent the physical
solution fields alone since design points found using the ROM would frequently not be admissible.

5.2. Design of experiments and PCA

For the purpose of demonstrating the nature of the manifolds, 2300 design points were picked for CAD
generation without meshing/CFD by a Latin Hypercube sampling between V̄min and V̄max, and these yielded
a grand total of 1080 admissible designs.
These were then voxelized using a resolution of 300 × 300 × 300 giving the indicator function snapshots
S1...S1080.
The 1080 snapshots were next decomposed using PCA/POD with a truncated basis of size 13, giving a set
of α1...α13 for each of the 1080 snapshots.
It is vital to understand that this procedure was performed solely for the purpose of demonstrating the
manifolds, since only 7-8 snapshots in a local neighborhood are analyzed at any given stage.

5.3. Output Space meta-model

In this paper, we choose a simple linearly constrained POD approach [15] since the objective functions
(flow rate Q and tumble T ) are linear functions of the field variable vector compactly written in the form:.

J̄ = [Q, T ]T = CT v̄ (24)

This approach first modifies the basis Ψ = [ψ̄1..ψ̄m] itself in order to automatically conserve linear inte-
gral quantities by design followed by modifying the coefficients βi to conserve quadratic objective func-
tions/constraints if needed.
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The first level involves QR decomposition of C

C = QR =
[

Q1 Q2

]

[

R1

0

]

(25)

The relative snapshots are now projected on Q2:

v̄
(k)
Q = QT

2 (v̄
(k) − v̄0) (26)

where v0 is the mean snapshot. The covariance matrix VQ is computed using

VQ =
∑

v̄
(k)
Q (v̄

(k)
Q )T (27)

The modes ψ1...ψm are obtained from the formula

Ψ = {Q1, Q2γ} (28)

where γ are the first m− p eigenvectors of VQ.
Finally, the constrained projector may be written as

ṽ(k) = v̄0 +ΨΨT (v̄(k) − v̄0) (29)

or

ṽ(k) = v̄0 +Ψβ̄(k) (30)

where the coefficients β(k) are given by projection of relative snapshots into the modal space

α(k) = ΨT (ṽ(k) − v̄0) (31)

This basis Ψ automatically guarantees that CT ṽ = CT v̄ for a linear constraint matrix C.

5.4. Results & Discussion

5.4.1. α-manifolds for the engine intake

The α-manifolds for the design problem of an engine intake are shown in figures 11. We obtain the
same 3D extrusions regardless of the particular triplet of modes used for the calculation. This is very
interesting since it indicates a dimensionality p less than 3, and this has been drawn using a set of snapshots
corresponding to the set of admissible shapes generated using 93 geometric parameters.
Of course, this needs to be verified using the Fukunaga-Olsen algorithm [33] and this is shown in figure
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Figure 11: α-manifolds for the engine intake problem

12(a) using two Gaussian weighting functions for the neighborhood, and three values of modes retained (m).
While mode truncation is NOT part of the proposed approach, using fewer modes in the estimation of p
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Figure 12: (a) Dimensionality p calculation, (b) Constrained shape interpolation using p = 1, (c) α-manifold approximation
using p = 2 (normalized)

can definitely reduce the total computational effort without compromising the results. We can see that a
p = 1 first-level approximation is possible (figure 12(b)).
It bears mentioning that the analysis of dimensionality from a cloud of points in ND-space is a multi-scale
problem. At this level with the data points, we can build a p = 1 system, but if we zoom on a certain
portion of the extrusion/curve and then resample the geometric space to generate 1000 points but in a
smaller neighborhood, p might creep up to a value of 2 as illustrated in figure 12(c) showing the 2D α-
manifolds (adjusted/normalized) for the same problem.
For the first stage, we will perform single-parameter shape morphing using a p = 1 approximation of the
manifold, and for the second, we will use the zoomed-in approximation (p = 2) to build a 2D representation
that we link the with CPOD meta-model for interactive design.

5.4.2. Single-parameter shape morphing for 93-parameter engine intake

Keeping the previous discussion in mind, we can safely build a single parameter (p = 1) approxima-
tion/representation of the engine intake design space. So from the set of α-manifolds, we generate a set of
58 points on the axis of the manifold, yet again using the Diffuse Approximation [26]. These are shown in
figure 12(b).
We reconstruct the 58 admissible shapes using CATIA to generate smooth transitions in structural shape
with a single t parameter. In the interest of providing an adequate representation of the great number of
shape features changing while still being captured with a single parameter, we have selected 8 of these points
and shown these in figure 13. In short, we are able to vary 93 geometric parameters using a single parameter
(position along the axis of the manifold), giving us V̄ = V̄ (α1(t), α2(t)...αM (t)), while constantly staying in
the feasible region. This will greatly simplify the task of optimizing the intake shape i.e. V̄opt for a given
objective.

5.4.3. Design space exploration using 2 parameters and interactive design using meta-model for both spaces

Figure 14 shows 4 frames of the interactive design for the engine intake problem, using 2D α-manifolds
in MATLAB. We see:

1. The flow streamlines within the zone of interest of the engine intake.

2. The physics of the design problem evolving with the CPOD coefficients (β1, β2) corresponding to the
two objectives.

3. The α-manifold with the current design point (red) and 7-8 neighbors (green)

for 4 different locations on shape space, easily handled using even modest computing resources. Two points
of ”compromise” are obtained using the predictor-corrector
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Figure 13: Shape morphing between admissible shapes of a 93-parameter engine intake, using a SINGLE parameter

No. Q/Qmax T/Tmax

1 0.9482 0.4682
2 0.8981 0.7421

Table 1: Design points of compromise found

6. Computational effort and admissibility of CAD shapes generated

From the point of view of computational effort, there is significant saving in the calculation of shape
derivatives of the objectives Q, T using the α-manifold in addition to the usual reduction in effort by using
a constrained POD meta-model β1, β2 for the physical fields. This avoids the need for finite differenc-
ing/Adjoint equation and reduces the number of exact function evaluations needed.
From the point of view of optimization, at every stage, the optimization was performed with respect to 2
(local) variables instead of 6, and the total number of iterations from various starting points was usually
between 5 and 10 (in the reduced α(t̄) space), but this can always be adjusted by controlling the step size
of the single Quasi-Newton ”leap” at every iteration. In addition to reducing the dimensionality of the
problem, the presented predictor-corrector approach consistently produced admissible solutions from vari-
ous initial points, despite the 60% failure rate of traditional CAD when optimizing/designing without the
approach.

Conclusions

In this paper, the authors have introduced a concept of simultaneous POD on structural shapes as well
as the outputs variables.
The overall interpolation technique is nonlinear, and is constrained to produce only shapes from an ab-
stract manifold in shape space induced by learning. The non-varying zones used for boundary conditions
are naturally preserved and additional constraints may by imposed using constrained versions of Proper
Orthogonal Decomposition or simply further filtering the admissible solutions used for the ”learning” phase.
The method is intuitive and makes physical sense. Interpolation in shape space yields the minimum possible
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Figure 14: Interactive design using α-manifolds and CPOD coefficients for the 6-parameter intake problem

system dimensionality while guaranteeing solution admissibility. This allows us to develop a reparameteri-
zation procedure fine-tuned for the particular type of shape being designed. The main message here is that
the feasible region is the α-manifold, and that moving along this manifold allows us to sweep the design
space of admissible shapes.
The methodology definitely needs more evolution before it can be used as a robust protocol: testing the
α-manifolds for continuity, branching, more complex test-cases etc.
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