Furstenberg maps for CAT(0) targets of finite telescopic dimension - Archive ouverte HAL Access content directly
Journal Articles Ergodic Theory and Dynamical Systems Year : 2016

Furstenberg maps for CAT(0) targets of finite telescopic dimension

(1) , (2) , (3)
1
2
3
Uri Bader
  • Function : Author
  • PersonId : 955151
Jean Lécureux

Abstract

We consider actions of locally compact groups $G$ on certain CAT(0) spaces $X$ by isometries. The CAT(0) spaces we consider have finite dimension at large scale. In case $B$ is a $G$-boundary, that is a measurable $G$-space with amenability and ergodicity properties, we prove the existence of equivariant maps from $B$ to the visual boundary $\partial X$.
Fichier principal
Vignette du fichier
Bmaps.pdf (264.08 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00977894 , version 1 (11-04-2014)

Licence

Copyright

Identifiers

Cite

Uri Bader, Bruno Duchesne, Jean Lécureux. Furstenberg maps for CAT(0) targets of finite telescopic dimension. Ergodic Theory and Dynamical Systems, 2016, 36 (6), pp.1723-1742. ⟨10.1017/etds.2014.147⟩. ⟨hal-00977894⟩
256 View
150 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More