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ABSTRACT

Accurate simulation of seismic wave propagation in com-
plex geologic structures is of particular interest nowadays.
However, difficulties arise for complex geologic structures
with great and rapid structural changes, due, for instance, to
the presence of shadow zones, head waves, diffractions and/
or edge effects. Different methods have thus been developed
and are typically tested on synthetic configurations against
analytical solutions for simple canonical problems, reference
methods, or via direct comparison with real data acquired in
situ. Such approaches have limitations, especially if the propa-
gation occurs in a complex environment with strong-contrast
reflectors and surface irregularities because it can be difficult
to determine the method that gives the best approximation of
the “real” solution or to interpret the results obtained without
an a priori knowledge of the geologic environment. An
alternative approach for seismics consists in comparing the

synthetic data with data obtained in laboratory experiments.
In contrast to in situ experiments, high-quality data are col-
lected under controlled conditions for a known configuration.
In contrast with numerical experiments, laboratory data pos-
sess many of the characteristics of field data because real
waves propagate through models with no numerical approxi-
mations. Our main purpose was to test the approach of using
laboratory data as reference data for benchmarking 3D numeri-
cal methods and techniques using the setup that we have
designed for this study. We performed laboratory-scaled mea-
surements of zero-offset reflection of broadband pulses from a
strong topographic environment immersed in a water tank. We
compared these measurements with numerical data simulated
by means of a discretized Kirchhoff integral method. The com-
parisons of synthetic and laboratory data indicated a good
quantitative fit in terms of time arrivals and acceptable fit in
amplitudes. Thus, the first step of the approach was success-
fully applied.

INTRODUCTION

Accurate simulation of seismic wave propagation in complex
geologicl structures is of particular interest nowadays due to its
applicability in various forward and inverse problems (e.g., Ursin,
2004; Robertsson et al., 2007; Virieux and Operto, 2009; Virieux
et al., 2011). It is widely used for environmental and industrial ap-
plications for subsurface structure evaluation and in various aspects
of seismic exploration, such as seismic data acquisition, data
processing, interpretation, and as a core tool of seismic imaging
and inversion methods.

In models with simple structures and slowly varying material
properties, conventional methods (e.g., ray methods and finite-dif-
ference methods) are efficient. However, difficulties arise for com-
plex geologic structures with great and rapid structural changes, and
conventional methods may then fail to simulate realistic wavefields
due to the presence of shadow zones, head waves, diffractions and/
or edge effects. Numerous attempts have been made to improve
seismic modeling methods for complex geologic models with struc-
tural complexities such as faults with steep dips or curved reflectors.
Different methods have thus been developed and are typically

tested on synthetic configurations against analytical solutions for
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simple canonical problems or reference methods. Several projects
focusing on verification and validation of numerical methods have
been conducted in the last few years. The most recent are, for ex-
ample, the SPICE code validation project (Moczo et al., 2006) and
its continuation, the SISMOWINE verification project, aimed at
creating a long-term basis for benchmarking numerical methods
and codes for seismic wave propagation and earthquake motion
simulation and the SEAM project (Fehler and Keliher, 2011) used
to generate synthetic data sets for benchmarking and testing new
processing algorithms. Different numerical codes were compared
during the latter project to choose the most suitable one. Such
an approach has limitations, especially if the propagation occurs
in a complex environment with strong-contrast reflectors and sur-
face irregularities because it can be difficult to determine the
method that gives the best approximation of the real solution given
by a reference method. Another approach is to validate these meth-
ods via direct comparison with real data acquired in situ (Houbiers
et al., 2012; Zhang et al., 2012). Unfortunately, without a priori
(good) knowledge of the geologic environment, the interpretation
of the obtained results may be a tedious task due to the existence
of diffraction and sideswipe events.
An alternative approach for seismic simulation consists in com-

paring the synthetic data with data obtained in the laboratory. The
main assumption underlying this approach is that scaled physical
mechanisms are identical to field physical mechanisms (Ebrom
and McDonald, 1994). Such an approach holds in our case because
we will resort to a linear wave equation. In contrast to in situ experi-
ments, high-quality data are collected under controlled conditions
for a known configuration, which is important for comparisons with
numerical propagation models. Moreover, unlike synthetic data,
laboratory data possess many of the characteristics of field data
(random and signal-generated noise, multiples, mode conversions),
as real waves propagate through models with no numerical approx-
imations.
Since the first part of the 20th-century small-scaled physical

modeling approaches have been extensively exploited in seismic
simulation for a better understanding of wave propagation phenom-
ena by studying the kinematics (Rieber, 1936; Howes et al., 1953;
Oliver et al., 1954; Woods, 1956; Angona, 1960), and for validation
of theoretical predictions by using amplitude measurements (Gran-
nemann, 1956; Roever et al., 1959; Hilterman, 1970; Howson and
Sinha, 1984; Pant et al., 1992; Chen and McMechan, 1993). The
advent of computing technologies has led to application of physical
model data in testing seismic processing and imaging techniques
(French, 1974; Macdonald et al., 1987; Lo et al., 1988). Initially,
the main reason for developing physical modeling for studying
complex wave propagation was the low level of computational
power that made numerical modeling unrealistic. But even nowa-
days, physical modeling is still frequently used for configurations
whose response is difficult to model numerically. It has been used to
study wave propagation in complex 3D media, such as anisotropic
(Stewart et al., 2013), random heterogeneous (Sivaji et al., 2002),
dynamic (Sherlock and Evans, 2001), fractured (Ekanem et al.,
2013), or anelastic (Lines et al., 2012) media. Data from laboratory
experiments are considered as input data in inverse problems (Pratt,
1999), for testing new data processing algorithms (Campman et al.,
2005), in time-lapse 3D studies (Sherlock et al., 2000), and to
benchmark numerical model solutions (Bretaudeau et al., 2011).

Our aim is to study 3D complications in zero-offset reflection pro-
files acquired over a strong topographic environment to improve the
understanding of the physical mechanisms involved in the interaction
of the waves with irregular surfaces. As noted previously, in such a
complex environment the numerical methods based on approxima-
tions may fail to simulate accurately the seismic wavefields and pro-
duce different results depending on their intrinsic hypotheses. The
main purpose of this article is therefore to test the approach of using
laboratory data as reference data for benchmarking 3D numerical
methods and techniques using the Marseille model setup that we
have specially designed for this study. The Marseille model is partly
based on French’s model (French, 1974). In addition to a plane fault
and a full dome, it contains original features such as a truncated
dome and a truncated pyramid. The presence of the edges and
the corners of these structures is expected to complicate the wave-
fields significantly. Using the indoor tank facilities of the Laboratoire
de Mécanique et d’Acoustique (LMA, Marseille, France), we have
performed laboratory-scaled measurements of zero-offset reflection
of broadband pulses on the Marseille model immersed in a water
tank. In what follows, we will present comparisons of these measure-
ments with numerical data simulated by means of a discretized
Kirchhoff integral method. The choice of the numerical method
can be explained by several factors: it is computationally inexpensive
and fast, still able to model piecewise smooth interfaces (at least ap-
proximately); and it allows for modeling events independently,
which leads to an easier interpretation of the results. The discretized
Kirchhoff integral method can be seen as a simplified version of the
tip-wave superposition method software package (TWSM) (Ayzen-
berg, 2008) with conventional plane-wave reflection coefficients
(PWRCs) used instead of the effective reflection coefficients
(ERC) suggested by the authors of the method. TWSM has been
tested for various synthetic configurations, such as a plane interface
against exact modeling (Ayzenberg et al., 2007), French’s model
against the finite-difference method (Ayzenberg, 2008; Ayzenberg
et al., 2008), and flexural interfaces against the generalized ray
tracing method (Ayzenberg et al., 2009). The numerical tests showed
very good fit with analytical solutions, numerical methods, and
asymptotic theoretical estimations in terms of traveltimes and ampli-
tudes. It has been shown that the TWSMwith ERC can be effectively
applied in seismic modeling of reflections and transmissions, a wide
range of caustic effects, head, diffracted, and creeping waves at
smooth or irregular interfaces. TWSM with PWRC is faster and ef-
ficient in terms of memory usage and produces similar results for
precritical offsets, but it can become inaccurate for near- and post-
critical offsets. For the zero-offset configuration with a focused-beam
source presented here, the discretized Kirchhoff integral method, i.e.,
the TWSM with PWRC, can be used to decrease the computational
costs while still preserving the accuracy.
Here also, we will be concerned only with propagation problems.

Discussion of migration problems is left for further articles. Some
preliminary results of the comparison between laboratory data and
numerical methods used for 2D modeling of wave propagation have
already been reported at conferences (e.g., Cristini et al., 2012;
Tantsereva et al., 2012). Here, we present additional results for
3D modeling and quantitative evaluation of the comparison be-
tween experimental and numerical data.
This paper is organized as follows: In the first section, we describe

the experimental setup and present the laboratory data obtained
in zero-offset configurations with narrow-beam and broad-beam
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transducers. The second section is devoted to the description of the
numerical modeling method. In the third section, we compare the
laboratory and synthetic data and discuss the results obtained.

SMALL-SCALE SEISMIC MODELING

Experiment description

Several laboratory experiments were carried out at LMA in Mar-
seille, France. Wave propagation occurs in small-scale conditions;
i.e., for instance, if a scaling factor μ ¼ 2 · 104 is considered, an
experimental frequency of 500 kHz corresponds to a real frequency
of 25 Hz, and an experimental distance of 10 mm corresponds to a
real distance of 200 m, velocities as well as densities and attenu-
ations remaining unchanged.
The model used in these experiments, called the “Marseille

model,” is partly based on French’s model (French, 1974), but it
contains original topographies such as a truncated dome and a
truncated pyramid (see Figure 1). The model of size 600 × 400 ×
70 mm is made of PVC, which is isotropic at ultrasonic frequencies
and whose elastic properties are in the same range as those of typ-
ical geologic media. The thickness of the model is from 30 to
70 mm, the difference between the two levels separated by a planar
fault being 40 mm. The domes are parts of the spheres on the lower
level with the radii equal to 90.83 and 51.25 mm for the truncated
and full dome, respectively, the radius of their base being equal to
100 mm. The height of the truncated dome is 15 mm, and the height
of the full dome is 40 mm. The base of the truncated pyramid is a
square 90 × 90 mm, and the height of the pyramid is 30 mm. These
values have been chosen to be much greater than the wavelength in
water for the considered frequency range. The model is immersed in
a water tank equipped with a computer-controlled system that al-
lows for accurate positioning of the source and receiver. The
measured properties of the materials are c ¼ 1476 − 1493 m∕s
(depending on the water temperature) and ρ ¼ 1000 kg∕m3 in
the water layer, and VP ¼ 2220 m∕s, VS ¼ 1050 m∕s, and ρPVC ¼
1412 kg∕m3 in the PVC. Attenuation in the PVC layer is described
by the quality factors 40 < QP < 60 and
27 < QS < 31 for P- and S-waves, respectively.
Attenuation in the water is negligible.
As we consider the zero-offset seismic con-

figuration only for these experiments, we illumi-
nate the model using a piezoelectric transducer
operated as a source and a receiver. We use
two types of piezoelectric transducers with a
dominant frequency equals to 500 kHz. The
two transducers have different beam apertures,
namely narrow-beam and broad-beam apertures,
which allow us to obtain two different zero-
offset data sets. Diameters of the piezoelectric
elements for narrow-beam and broad-beam trans-
ducers are D ¼ 25.4 mm and D ¼ 3 mm, re-
spectively. The width of the main lobe of the
beams generated by the transducers is 8.3° and
45° at −3 dB for the narrow-beam and the
broad-beam transducers, respectively. The re-
sponse of each transducer has been measured
by pointing its beam toward the air-water inter-
face. The waveform has been filtered after ac-
quisition, to eliminate the harmonic resonances

of the transducer. Filtering consists in applying a eighth-order But-
terworth filter to the acquired data, which corresponds to a low-pass
filter with a cut-off frequency of 1.1 MHz. The resulting filtered
source signal associated to each transducer and its frequency spec-
trum are indicated in Figures 2 and 3. It can be noticed from the
figures that each transducer covers a wide frequency range. The dis-
tance of separation between the near-field and the far-field regions
is calculated using the known formula (Zemanek, 1971)

dFF ¼ D2∕ð4λwaterÞ;

where λwater ¼ 3 mm denotes the wavelength in water. It is equal
to 55 and 7.5 mm for the narrow- and broad-beam transducers,
respectively.
We use a conventional ultrasonic pulse-echo technique to obtain

the reflection data. The piezoelectric transducers are located at a
distance of 105 mm (�1 mm) or 150 mm (�1 mm) above the flat
part of the model surface. The shortest distance to the model surface
being 65 or 110 mm, the far-field zone condition being thus fulfilled
for any position of the transducer over the Marseille model. The
acquisition design is shown in Figure 4. The area covered by the

Figure 1. Marseille model with its fault, full and truncated domes,
and truncated pyramid. The size of the model is 600 ×
400 × 70 mm.
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Figure 2. Time signal and associated spectrum for the narrow-beam transducer.
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acquisition is different depending on the beam width of the trans-
ducer operating as the source; i.e., it is smaller for the broad-beam
transducers than for the narrow-beam ones to avoid diffractions by
the edges of the model. We perform acquisitions along Y-lines with
a spatial samplingΔx equal to 2 mm. The collected data thus consist
of numerous parallel profiles composed of a collection of reflection
data for dense grids of source-receiver locations. We process reflec-
tion data to produce seismograms corresponding to different cross
sections of the model. We pay more attention to a few specific pro-
files because they are of high interest as they cross the main struc-
tures of the model. The data collected along these profiles might
thus contain reflections and diffractions from all the structures.

These profiles are represented by dotted and dashed-dotted lines
in Figure 4. Line Y150 provides the profile over the top of the trun-
cated dome, line Y200 is located between the two domes, and line
Y250 cuts the top of the full dome and the pyramid.
The seismograms are obtained after application of a low-pass fil-

ter to raw data to eliminate the harmonic resonances of the trans-
ducers. Additionally, for visualization purposes, we apply a clipping
procedure to all seismograms presented below with the clipping
number x ¼ 50, i.e., saturation of all the signals whose amplitude
is greater than x% of the maximum amplitude to enlighten weaker
signals. Small variations in the two-way traveltimes for reflections
from the plane parts of the model can be observed. They are due to

nonconstant tilt of the Marseille model during ac-
quisition, with position errors of less than 2%.
Varying water temperature in the tank during
long-lasting acquisitions can also have some ef-
fect on the time arrivals (see Bilaniuk and Wong
[1993]) for the discussions on water velocity var-
iations with temperature).

Data for the narrow-beam source

For the first experiment with the narrow-beam
transducer, the distance from the transducer to
the flat part of the model surface is 105 mm. Fig-
ure 5a–5c, left, shows data recorded in the labo-
ratory along the three lines Y150, Y200, and
Y250. Events with a time arrival smaller than
0.15 ms correspond to primary reflections from
the top surface of the model. Events with a
greater time arrival corresponding to either multi-
ples or reflections from the bottom surface of the
model are not shown here. One can see that the
recorded signals are of high quality due to a high
signal-to-noise ratio.
By qualitatively analyzing Figure 5a–5c, we

can note that the structures are partly visible only
if the top of their surfaces, cut by the acquisition
profiles, is quite parallel to the piezoelectric
element of the transducer. For line Y200, posi-
tioned between the domes, sideswipe reflections
are not visible. The steep slopes of the nontrun-
cated dome, the pyramid, and the fault cannot be
observed. Diffractions at the edges of the topo-
graphic structures also cannot be clearly ob-
served.

Data for the broad-beam source

For the second experiment with the broad-
beam transducer, the distance from the trans-
ducer to the flat part of the model surface is
150 mm. Figure 6a–6c, left, shows data recorded
in the laboratory along the same three lines
Y150, Y200, and Y250. Events with a time
arrival smaller than 0.21 ms correspond to pri-
mary reflections from the top surface of the
model. Events with a greater time arrival corre-
sponding to either multiples or reflections from
the bottom surface of the model are not shown
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Figure 3. Time signal and associated spectrum for the broad-beam transducer.

Figure 4. Acquisition design and area covered by acquisition with the narrow-beam
transducer (dark gray) and with the broad-beam transducer (light gray).
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here. Again, one can note that the recorded signals are of very high
quality due to a high signal-to-noise ratio.
Though these data are zero-offset, they exhibit interesting 3D ef-

fects, such as diffractions at the edges of the topographic structures
and reflections from the out-of-plane structures and the fault. Never-
theless, the steep slopes of the truncated pyramid remain invisible.

NUMERICAL MODELING

We use a discretized Kirchhoff integral method for synthetic
modeling of the zero-offset experiments.
We consider the model used in the experiment described above:

a homogeneous fluid medium (water) overlying an isotropic

a)

b)

c)

d)

e)

f)

Figure 5. Laboratory seismograms (left) and single-scattering synthetic seismograms (right) obtained with the narrow-beam transducer along
(a) line Y150, (b) line Y200, and (c) line Y250.
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viscoelastic medium (PVC). The fluid medium D1 is characterized
by the wave velocity c and the mass density ρ. The viscoelastic
medium D2 is characterized by the P-wave velocity VP, S-wave
velocity VS, the mass density ρPVC, and the quality factors QP

and QS. The media are separated by a piecewise smooth interface

Σ. A piezoelectric disk transducer SD of a finite diameter D is im-
mersed in the fluid and acts as a source of incident radiation and as a
receiver of reflected and diffracted wavefields. We thus consider a
zero-offset configuration. The vertical section of the described con-
figuration is sketched in Figure 7.

a)

b)

c)

d)

e)

f)

Figure 6. Laboratory seismograms (left) and single-scattering synthetic seismograms (right) obtained with the broad-beam transducer along
(a) line Y150, (b) line Y200, and (c) line Y250.
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Let x ¼ ðx1; x2; x3Þ be a fixed Cartesian coordinate system. The
pressure wavefield pðx; tÞ and its spectrum Pðx;ωÞ are connected
via the forward and inverse temporal Fourier transforms using the
sign convention in Aki and Richards (2002) and Chapman (2004).
Here, t is the time and ω is the angular frequency. In the following,
we shall not write the dependence on ω explicitly.
The Green’s function for the Helmholtz equation�

▿2 þ ω2

c2

�
Gðx; xsÞ ¼ −4πδðx − xsÞ (1)

is

Gðx; xsÞ ¼ eiωr∕c

r
; (2)

where r ¼ jx − xsj is the distance between the points xs and x, xs

being the position of the point source.
We consider the integral representation theorem for a fluid

medium bounded by a piecewise smooth interface Σ. The total
wavefield from a source in the fluid consists of the direct source
field, the singly scattered field, and the multiply scattered field.
We shall only consider single scattering, which includes single
reflections from interfaces and single diffractions from edges and
vertices (Tygel and Ursin, 1999). The singly scattered pressure
wavefield PsscðxrÞ at a given receiver point xr can be represented
by the Kirchhoff-Helmholtz surface integral (see, e.g., Haddon and
Buchen, 1981):

PsscðxrÞ ¼
1

4π

Z Z
Σ

�
∂Ĝðxr; xÞ

∂n
PrefðxÞ

− Ĝðxr; xÞ ∂PrefðxÞ
∂n

�
dΣðxÞ; (3)

where Ĝðxr; xÞ is the response at the transducer at xr from the sur-
face point x.
When the interface is located in the far zone with respect to the

transducer, there are theoretical estimations and laboratory experi-
ments proving that the response function Ĝðxr; xÞ can be approxi-
mated by (see, e.g., Zemanek, 1971; Harris, 1981)

Ĝðxr; xÞ ≈ Gðxr; xÞA½ψðxr; xÞ�; (4)

with the directivity function A½ψðxr; xÞ�, which is the same for ra-
diation and reception, ψðxr; xÞ being the angle between the normal
to transducer’s surface and the ray connecting points x and xr. For
the narrow-beam transducer, it is shown in Zemanek (1971) that the
directivity function is given by

A½ψðxr; xÞ� ¼ C
J1ðξÞ
ξ

; (5)

where ξ ¼ πD
λ sin ψðxr; xÞ, J1 being the first-order Bessel function

of the first kind, C ¼ const. For the broad-beam transducer, the di-
rectivity function A½ψðxr; xÞ� is given by a table of discrete mea-
sured values instead of analytical representation.
Applying the Kirchhoff approximation (Bleistein, 1984), we can

represent the boundary values of the reflected wavefield PrefðxÞ and
its normal derivative at the interface Σ in the Kirchhoff-Helmholtz
integral 3 in terms of the PWRC R½θðx; xsÞ� as

PrefðxÞ ≈ FðωÞR½θðx; xsÞ�Gðx; xsÞA½ψðx; xsÞ�;
∂PrefðxÞ

∂n
≈ −FðωÞR½θðx; xsÞ� ∂Gðx; x

sÞ
∂n

A½ψðx; xsÞ�; (6)

where θðx; xsÞ is the angle of incidence at the fluid-PVC contact and
the Fourier transform of the source wavelet FðωÞ is included.
Substituting approximation 6 in the singly scattered pressure

wavefield 3 for zero-offset configuration xr ¼ xs, we obtain the fol-
lowing approximation for the singly scattered pressure wavefield:

PsscðxrÞ ≈
FðωÞ
2π

Z Z
Σ

∂Gðxr; xÞ
∂n

R½θðx; xrÞ�Gðx; xrÞ

× A2½ψðx; xrÞ�dΣðxÞ: (7)

Approximation 7 is valid for precritical values of the incident
angle θ, which is a suitable assumption for zero-offset configu-
ration.
We calculate the Kirchhoff-type surface integral 7 by discretiza-

tion of the reflector into small rhombic elements. It is shown in Ay-
zenberg et al. (2007) that, if an element is less than a quarter of the
wavelength, then surface integral 7 becomes a sum of the integrals
over a plane projection of each rhombic element to the tangent
plane

PsscðxrÞ ¼
X
m

P̄mðxrÞ; (8)

ΔP̄mðxrÞ ¼
FðωÞ
2π

Z Z
ΔΠm

∂Gðxr; xÞ
∂n

R½θðx; xrÞ�Gðx; xrÞ

× A2½ψðx; xrÞ�dx: (9)

In the far-field approximation, the contribution from one element
can be computed as

ΔP̄mðxrÞ ≈
iωFðωÞ
2πc

Gðxr; xmÞGðxm; xrÞR½θðxm; xrÞ�
× cos θðxr; xmÞA2½ψðxm; xrÞ�ΔΠm: (10)

P S

Figure 7. Vertical section of the considered model.
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We cover the model along the considered profiles with squares
consisting of 200 × 200 square elements for 10 subsequent posi-
tions of the transducer. We choose the area of the square in such
a way that it covers the surface illuminated by the transducer, taking
into account the distance from the transducer to the surface and the
width of the beam generated by the transducer. We choose the size
of the element as a quarter of the dominant wavelength in the water
to apply the above-mentioned approximations.
We use the Kolsky-Futterman model (Kolsky, 1956; Futterman,

1962) to introduce the attenuation in the PVC layer to numerical
modeling. The Kolsky-Futterman model assumes that attenuation
is strictly linear with the frequency over the seismic frequency
range (1–200 Hz), which fits well with the experiments. The reflec-
tion coefficient R½θðx; xrÞ� thus becomes complex and frequency-
dependent as a function of complex and frequency-dependent
velocities in the PVC layer.
In Figures 5 and 6, right, we show the results of modeling of the

primary reflection from the top of the PVC along the Y-lines. All data
sets are normalized by dividing the signal amplitude by the maximum
amplitude of the whole data set acquired for the same transducer, and
we apply a static time shift to the whole data set. We also apply addi-
tional trace-dependent time shifts to synthetic seismograms due to the
above-mentioned data inconsistencies in traveltimes, i.e., we adjust
the reflections from the plane parts of the model based on a normal-
ized crosscorrelation coefficient.

DATA COMPARISONS

In this section, we compare the experimental data to the synthetic
data. Visual observation of the total seismograms for laboratory data
and single-scattering seismograms for synthetic data shows a good
fit in the modeling of reflection and diffraction events (Figures 5
and 6). Let us provide a quantitative analysis by performing a
numerical comparison of three selected traces for each profile line,
corresponding to the source positions marked with crosses in
Figure 4 and with arrows in Figures 5 and 6. Note that the source
positions are the same for narrow- and broad-beam transducers.
We use several error norms for quantitative analysis of the misfit

between numerical and laboratory data. Let us consider two seismo-
grams sðtÞ and srefðtÞ, where sðtÞ is the numerical signal, srefðtÞ is
the laboratory (reference) signal, and t is time.
The single-valued normalized crosscorrelation coefficient cc is

defined as (Wilks, 2011)

cc ¼
P

tðsðtÞ − s̄Þ · ðsrefðtÞ − s̄refÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
ðsðtÞ − s̄Þ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
ðsrefðtÞ − s̄refÞ2

r ; (11)

where s̄ and s̄ref are the mean values of the corresponding series.
That crosscorrelation coefficient estimates the degree to which
two signals are correlated in terms of phase and satisfies
−1 ≤ cc ≤ 1. The equality cc ¼ 1 is for perfect correlation,
cc ¼ 0 for uncorrelated series, and cc ¼ −1 for negative correlation.
The most commonly used single-valued misfit criterion is the

root mean square (rms) misfit defined as

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tjsðtÞ − srefðtÞj2P
t
jsrefðtÞj2

vuut : (12)

The disadvantage of using the rms misfit is that it gives the quan-
titative measure of the difference between the signals without indi-
cating the reason of the difference. Moreover, it often overestimates
the difference between two signals due to misinterpretation of time
shifts as amplitude differences. To define the phase and amplitude
misfits separately, the crosscorrelation coefficient cc can be used to
determine the phase misfit (PM) and the rms misfit to determine the
amplitude misfit after shifting the seismogram by the PM (see, e.g.,
Fehler and Keliher [2011] for more details on the technique and
discussion of shortcomings of using the rms misfit alone).
However, the frequency dependence of the misfit cannot be de-

fined this way. Therefore, in addition we consider the misfit criteria
based on the time-frequency representation using the continuous
wavelet transform introduced by Kristeková et al. (2009). They de-
fine a time-frequency envelope difference

ΔEðt; fÞ ¼ jWðt; fÞj − jWrefðt; fÞj (13)

and a time-frequency phase difference

ΔPðt; fÞ ¼ jWðt; fÞj arg½Wðt; fÞ� − arg½Wrefðt; fÞ�
π

; (14)

where Wðt; fÞ and Wrefðt; fÞ are the complex functions of the
continuous wavelet transforms of the numerical and reference sig-
nals, respectively. See Kristeková et al. (2009) for a detailed de-
scription of the time-frequency representation. The free software
package TF-MISFITS can be downloaded from www.nuquake
.eu/Computer_Codes/.
The time-frequency envelope misfit (EM) is then obtained as

TFEMðt; fÞ ¼ ΔEðt; fÞ
maxt;fðjWrefðt; fÞjÞ

; (15)

and the time-frequency PM as

TFPMðt; fÞ ¼ ΔPðt; fÞ
maxt;fðjWrefðt; fÞjÞ

: (16)

The term TFEMðt; fÞ characterizes the difference between the enve-
lopes of the two signals as a function of time and frequency, and
TFPMðt; fÞ characterizes the difference between the phases of the
two signals. In addition, Kristeková et al. (2009) define time-inde-
pendent (frequency envelope misfit [FEM] and frequency phase
misfit [FPM]) and frequency-independent (time envelope misfit
[TEM] and time phase misfit [TPM]) misfits as a projection of
the time-frequency misfits onto one of the two domains. Here,
we will also use single-valued measures of fit based on the error
norms defined above, i.e., a single-valued EM

EM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f

P
t jΔEðt; fÞj2P

f

P
t
jWrefðf; tÞj2

vuuut (17)

and a single-valued PM

T84 Tantsereva et al.

D
ow

nl
oa

de
d 

03
/2

5/
14

 to
 1

94
.1

99
.9

9.
89

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

www.nuquake.eu/Computer_Codes/
www.nuquake.eu/Computer_Codes/
www.nuquake.eu/Computer_Codes/


a) b) c)

d) e) f)

g) h) i)

Figure 9. Time-frequency representation of the misfits for source positions NB1 (a), NB2 (b), and NB3 (c) for the narrow-beam transducer
along the line Y200. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, (c) and frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.

a) b) c)

d) e) f)

g) h) i)

Figure 8. Time-frequency representation of the misfits for source positions NB1 (a), NB2 (b), and NB3 (c) for the narrow-beam transducer
along line Y150. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, (c) and frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, (f) and frequency phase misfit FPMðfÞ. (i-g) Comparison
of the laboratory (red) and numerical (blue) seismograms.
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PM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f

P
t jΔPðt; fÞj2P

f

P
t
jWrefðf; tÞj2

vuuut : (18)

The values of the normalized crosscorrelation coefficient, the rms
misfit, the single-valued EM, and the single-valued PM for the se-
lected traces are given in the Tables 1–4, respectively.

Comparison for narrow-beam data

We provide the more detailed comparison of three traces obtained
using the numerical modeling and recorded in the laboratory for
each of the three lines (see Figures 8–10). In these figures, we show
the TFEMðt; fÞ and TFPMðt; fÞ for the three source positions along
lines Y150, Y200, and Y250 together with the comparison of the
laboratory and numerical traces in the time domain. Note that the
range of the color scale and the misfit axes is the same for all plots
and spans �40%.
In Figure 8, the (a) trace corresponds to the reflection from the

flat part of the model, the (b) trace to the reflection from the top of
the truncated dome, and the (c) trace to the reflection from the flat
part of the model in the vicinity of the cut of the dome. The quali-
tative comparison between TFEMðt; fÞ and TFPMðt; fÞ plots
shows a good fit of the traces in terms of the shape and the phase
of the signal, but it reveals discrepancies in terms of amplitude,
which are quite low for reflections from the flat part of the model,
but become significant over the top the dome.
Figures 9 and 10 present the same comparisons for lines Y200

and Y250, respectively. In Figure 9, all the traces correspond to the

Table 1. Normalized crosscorrelation coefficient.

Line Y150 Line Y200 Line Y250

NB1 0.9854 0.9816 0.9862

NB2 0.9762 0.9884 0.9881

NB3 0.9834 0.9850 0.9878

BB1 0.9730 0.9816 0.9833

BB2 0.9798 0.9611 0.9782

BB3 0.9225 0.9467 0.9501

Table 2. The rms misfit.

Line Y150 Line Y200 Line Y250

NB1 0.2417 0.2170 0.3875

NB2 0.2792 0.2229 0.2364

NB3 0.2981 0.2247 0.2180

BB1 0.2461 0.2170 0.1995

BB2 0.2490 0.2762 0.2279

BB3 0.4287 0.3222 0.3271

a) b) c)

d) e) f)

g) h) i)

Figure 10. Time-frequency representation of the misfits for source positions NB1 (a), NB2 (b), and NB3 (c) for the narrow-beam transducer
along the line Y250. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, (c) and frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfits TFPMðt; fÞ, (e) time phase misfits TPMðtÞ, and (f) frequency phase misfits FPMðfÞ. (g-i) Com-
parison of the laboratory (red) and numerical (blue) seismograms.
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reflection from the flat part of the model, and in Figure 10, the (a)
trace corresponds to the reflection from the top of the full dome, and
the (b) and (c) traces correspond to the reflection from the flat part
of the model. Similar qualitative results, i.e., a good fit in terms of
the shape and the phase of the signal, but discrepancies in terms of
amplitude, can be observed for these two lines as well.
The qualitative results shown above are confirmed quantitatively

by the high values of the normalized crosscorrelation coefficient
(see Table 1, top) and the low values of PM (see Table 4, top)
on the one hand, indicating that the phase fit is very good, and
by relatively high values of the rms misfit and EM (see Tables 2
and 3, top) for the reflections from the domes on the other hand.
Note that the highest values are for the reflection from the top
of the full dome. The problems with amplitude modeling over
highly curved structures can be explained by oversimplification
in description of reflection phenomenon with the PWRCs instead
of the ERCs (see Ayzenberg et al., 2007) for more details on the
topic). Using the PWRCs leads to increasing of relative errors in
amplitude even for short offsets in the case of highly curved reflec-
tors. The main source of error is that reflection of the incident wave-
front from a convex spherical dome is numerically equivalent to
reflection of an apparent wave with a higher front curvature at
an apparent plane reflector. Note that the apparent front curvature
is equal to the sum of the actual front curvature and the actual cur-
vature of the reflector at the reflection point. Then, an apparent
transducer is located at a twice as short distance from the reflector
as the actual one is, which corresponds to the near-field region, and
the ERCs should be applied. Therefore, the singly scattered wave-
field modeled with the PWRCs contains larger amplitude errors.

Table 3. Single-valued EM.

Line Y150 Line Y200 Line Y250

NB1 0.1995 0.1267 0.3409

NB2 0.2190 0.1752 0.1958

NB3 0.2553 0.1561 0.1692

BB1 0.1633 0.1945 0.1355

BB2 0.1909 0.1422 0.1387

BB3 0.1865 0.1794 0.1982

Table 4. Single-valued PM.

Line Y150 Line Y200 Line Y250

NB1 0.0394 0.0545 0.0370

NB2 0.0517 0.0394 0.0350

NB3 0.0485 0.0487 0.0367

BB1 0.0677 0.0562 0.0573

BB2 0.0547 0.0785 0.0507

BB3 0.1165 0.0955 0.0839

a) b) c)

d) e) f)

g) h) i)

Figure 11. Time-frequency representation of the misfits for source positions BB1 (a), BB2 (b), and BB3 (c) for the broad-beam transducer
along the line Y150. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, and (c) frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.
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(%)

a) b) c)

d) e) f)

g) h) i)

Figure 13. Time-frequency representation of the misfits for source positions BB1 (a), BB2 (b), and BB3 (c) for the broad-beam transducer
along the line Y250. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, and (c) frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.

a) b) c)

d) e) f)

g) h) i)

Figure 12. Time-frequency representation of the misfits for source positions BB1 (a), BB2 (b), and BB3 (c) for the broad-beam transducer
along line Y200. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, and (c) frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.
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Comparison for broad-beam data

We provide a more detailed comparison of three traces obtained
using numerical modeling and recorded in the laboratory for each
of the three lines (see Figures 11–13). Note that the considered
traces correspond to the same source positions as for the narrow-beam
data. In these figures, we show the TFEMðt; fÞ and TFPMðt; fÞ for
the three source positions along lines Y150, Y200, and Y250 together
with the comparison of the laboratory and numerical traces in the time
domain. The range of the color scale and the misfit axes is again the
same for all plots and spans �40%.
In Figure 11, the (a) trace corresponds to the reflection from the

slope of the truncated dome and the flat part of the model, the (b)
trace to the reflection from the top of the truncated dome, and the
(c) trace to the diffraction from the cut of the truncated dome and
the reflection from the flat part of the model. The qualitative com-
parison and the TFEMðt; fÞ and TFPMðt; fÞ plots show a good fit
of the traces in terms of the shape and the amplitude of the signals,
but it reveals a phase shift of the diffraction from the cut of
the dome.
The qualitative result is confirmed quantitatively by the high val-

ues of the normalized crosscorrelation coefficient (see Table 1) and
low values of the rms misfit, EM and PM (see Tables 2–4) for the
first two traces, showing that the amplitude and the phase fit is very
good. For the third trace, however, the visible phase shift of the
diffraction results in a low crosscorrelation value and higher rms
misfit and PM, while the EM is not affected. Larger time, amplitude,
and phase errors for reflection from the cut of the dome can be ex-
plained by neglecting the double-scattering wavefield in the code.
This event received by the transducer is created by the wedgelike
structure from the vertical cut and horizontal part of reflector. It is
composed of two sequential reflections from the cut and horizontal
part and two sequential diffractions at the upper circular and lower
straight edges having common tip points.
Figures 12 and 13 present the same comparisons for lines Y200

and Y250, respectively. In Figure 12, the (a) trace corresponds to the
reflection from the slope of the out-of-plane full dome, the flat part
of the model, and the slope of the out-of-plane truncated dome. The
(b) trace corresponds to the reflection from the slope of the out-of-
plane full dome and truncated dome and the flat part of the model.
The (c) trace corresponds to the reflection from the slope of the fault
and the reflection from the flat part of the model. In Figure 13, the
(a) trace corresponds to the reflection from the top of the full dome,
the (b) trace to the diffraction from the slope of the pyramid and the
reflection from the flat part of the model, and the (c) trace to the
reflection from the slope of the fault and the reflection from the flat
part of the model. Again, qualitative comparison of the TFEMðt; fÞ
and TFPMðt; fÞ plots shows a good fit of the traces in terms of the
shape and the amplitude of the signals, except for the reflections
from the slope of the fault, where small phase shifts can also be
observed.
These results are confirmed quantitatively by slightly lower val-

ues of the normalized crosscorrelation coefficient (see Table 1, val-
ues for BB3) and higher values of rms misfit and PM (see Tables 2
and 4, values for BB3), while relatively low values of EM (see Ta-
ble 3, values for BB3), showing that there are phase shifts, though
the amplitude fit is good. It has been shown (Ayzenberg, 2008) that
the time errors for reflected waves at plane reflectors and diffracted
waves at straight edges modeled by the code do not exceed one
sample. That is why the larger time shifts observed for the reflec-

tions from the slope of the fault can be explained by a wrong tilt of
the model used for modeling.

CONCLUSIONS

We have tested an alternative approach for benchmarking
numerical methods for 3D wave propagation. This approach con-
sists in comparing synthetic data computed using numerical mod-
eling to laboratory data obtained for a known configuration. We
have obtained the laboratory data by laboratory scale measurements
of reflection of broadband pulses from a strong topographic envi-
ronment immersed in water. The experiments have been performed
in zero-offset seismic configuration using a physical model with
strong 3D topographies and narrow- and broad-beam sources/
receivers. The features of the model have complicated surface cur-
vatures, several edges, and vertices, which increase the diffraction
effects produced on the wavefields significantly. These diffraction
effects, together with the existence of shadow zones, make the lab-
oratory experiments of interest. We have computed synthetic data
by means of a discretized Kirchhoff integral method. The compar-
isons between synthetic and laboratory data exhibit a good quanti-
tative fit in terms of time arrivals and acceptable fit in amplitudes for
narrow-beam and broad-beam data sets. Errors in amplitude mod-
eling can be explained by oversimplification in description of re-
flection phenomenon with the PWRCs.
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