
HAL Id: hal-00977798
https://hal.science/hal-00977798v1

Submitted on 11 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Repair of Buggy If Conditions and Missing
Preconditions with SMT

Favio Demarco, Jifeng Xuan, Daniel Le Berre, Martin Monperrus

To cite this version:
Favio Demarco, Jifeng Xuan, Daniel Le Berre, Martin Monperrus. Automatic Repair of Buggy
If Conditions and Missing Preconditions with SMT. Proceedings of the 6th International Work-
shop on Constraints in Software Testing, Verification, and Analysis, 2014, Hyderabad, India.
�10.1145/2593735.2593740�. �hal-00977798�

https://hal.science/hal-00977798v1
https://hal.archives-ouvertes.fr


Automatic Repair of Buggy If Conditions and Missing
Preconditions with SMT

Favio DeMarco
Universidad de Buenos Aires

Buenos Aires, Argentina

Jifeng Xuan
INRIA Lille - Nord Europe

Lille, France

Daniel Le Berre
University of Artois & CNRS

Lens, France

Martin Monperrus
University of Lille & INRIA

Lille, France

ABSTRACT

We present Nopol an approach for automatically repairing
buggy if conditions and missing preconditions. As input, it
takes a program and a test suite which contains passing test
cases modeling the expected behavior of the program and at
least one failing test case embodying the bug to be repaired.
It consists of collecting data from multiple instrumented test
suite executions, transforming this data into a Satisfiability
Modulo Theory (SMT) problem, and translating the SMT
result – if there exists one – into a source code patch. Nopol

repairs object oriented code and allows the patches to con-
tain nullness checks as well as specific method calls.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Program-
ming; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms

Algorithms, Verification

Keywords

Automatic repair, test suite, buggy if condition, missing pre-
condition, SMT, angelic fix localization

1. INTRODUCTION
Automatic software repair consists in automatically fix-

ing known bugs in a program. For instance, an automatic
software repair approach can generate a patch that makes
a failing test case pass. This is “test-suite based program
repair”, as pioneered by Le Goues et al. [7], and further
explored by Nguyen et al. [15] as well as Kim et al. [11].
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+if (l!=null && l.size()>0) {
compute(l);

+}

Listing 1: Example of synthesized patch. Nopol re-
pairs buggy if conditions and missing precondtions
of object-oriented source code written in Java.

The main motivation of automatic software repair is to de-
crease the cost of fixing bugs. The synthesized patches can
be proposed as potential solutions to developers [18] or used
as is when it is urgent. In the latter case, it is believed that
having a draft solution eases the time needed to comprehend
the bug and to design a fix [7, 15, 11].

In the context of automatic repair, a fault model refers to
the kind of bugs that can be fixed with a given approach
[12, 14]. In this paper, we concentrate on the following
fault model: the automatic repair of buggy if conditions
and missing preconditions. Both are members of the family
of condition-related bugs. Pan et al. [16] as well as Martinez
and Monperrus [13] have shown that fixes of such bugs are
among the most common ones. Our repair approach, called
Nopol

1, repairs buggy if conditions and missing precond-
tions of object-oriented source code written in Java.

For instance, Nopol can synthesize a patch that adds a
precondition as shown in Listing 1.

As previous work on repair, Nopol is test-suite based. As
input, it takes a program and its test suite, given that there
is at least one failing test case embodying the bug to be
repaired. Then, Nopol analyzes one by one the statements
that are executed by the failing test case in order to identify
those for which there may exist a patch. This is what we
call “fix point localization”: finding potential fixing locations
(as opposed to fault localization which consists of finding
potential root causes).

In the process of finding potential fixing locations, Nopol

identifies fix oracles. In the example above, that means
we know that skipping statement compute() would enable
the test to pass. Of course, completely removing the state-
ment is not an option, it would break the passing test cases.
In other words, we know that the synthesized precondition

1
Nopol is an abbreviation for “No-Polillas” in Spanish,

which literally means “No-Moth”.



must output “false” for the failing test case2. The “false” is
a fix oracle.

Then, Nopol collects information from test suite execu-
tion through code instrumentation. This information is basi-
cally the local program state at each fix point. This informa-
tion contains both “primitive” values (integer, booleans) as
well as object-oriented ones (nullness, object state). Next,
those runtime traces are transformed into a Satisfiability
Modulo Theory (SMT) problem. An SMT solver says whether
there exists a solution. If such a solution exists, it is trans-
lated back as source code, i.e. a source code patch is gener-
ated.

Nopol provides a complete approach for fixing buggy if

conditions and missing precondtions. It blends existing tech-
niques with novel ideas. From the literature, we reuse: the
idea of fixing buggy if conditions [15], the concept of artifi-
cially manipulating the program state during program exe-
cution [19, 9], the encoding of program synthesis as an SMT
problem [8, 10]. The novelty of this paper lies in:

• the design of a repair approach for a new kind of fault:
missing preconditions;

• an algorithm called “angelic fix localization” for iden-
tifying at once potential repair locations and repair
oracles;

• the extension of the SMT encoding for handling null-
ness and certain methods calls of object-oriented pro-
grams;

• a case study of a real bug on a real-world large piece
of software, the Apache Common Maths library: 5000
lines of executable code and 352 test cases (test meth-
ods in JUnit).

2. BACKGROUND

2.1 Test Suite based Program Repair
Test-suite based program repair consists in repairing pro-

grams for which a test suite is available and for which at
least one failing test case states the bug. This failing test
case is either a regression bug or a new bug that has just
been discovered. Then, repair algorithms search for patches
that make the failing test pass while keeping the other test
cases green. If such a patch is found, the patch fixes the bug
and at the same time does not degrade the existing func-
tionalities. Test-suite based program repair has been mostly
disseminated by the work of Le Goues et al. on GenProg
[7], and is an actively explored research area [15, 11].

2.2 Oracle-based Program Repair
Nguyen et al. [15] have invented the idea of oracle-based

program repair. It decomposes program repair in two phases.
First, oracle-based program repair looks for a pair (l, v)

that would fix the bug under repair as follows. If one uses the
value v at source code location l, the bug is fixed. Nguyen et
al. defines two kinds of pairs (l, v): (arithmetic assignment,
arithmetic value) and (if conditions, boolean value). The
former could state for instance “if one assigns 3 to variable x
at line 42 of Foo.java, the bug is fixed”. The latter expresses
“if the if condition at line 57 of Foo.java is falsified, the bug
is fixed”. In Nguyen’s terms, the value v (3 and false in our

2Also, “true” for the passing ones.

examples) is called the oracle. We call this phase “oracle
mining”.

The second phase consists in finding a piece of code that,
given the program state at location l would yield value v.
The patch is correct if and only if for all executions of loca-
tion l (not only the buggy one), the synthesized expression
outputs a correct value. We call this phase ”repair synthe-
sis’.

In the context of test-suite program repair, repair synthe-
sis means for all executions of location l by test cases, the
synthesized expression must output a value that eventually
enables the test case to pass. Note that a location can be
executed n times in the same test case. In this case, the
synthesized expression must output n values that, given all
combinations and effects of the program, yield a passsing
test case.

For oracle mining, Nguyen et al. [15] use symbolic execu-
tion: the oracle is a value that satisfies a set of constraints.
For repair synthesis, they use oracle-guided program synthe-
sis [10]. However, both phases can be implemented in differ-
ent ways. For instance, in this paper, we replace symbolic
execution with another technique (see Section 3.2). Repair
synthesis can be based on constraint satisfaction or on evo-
lutionary computation [7].

An interesting property of oracle-based program repair is
to replace the concept of “fault localization” by the concept
of “repair localization”. While “fault localization” empha-
sizes finding the root cause (the fault) to fix it, “repair local-
ization”emphasizes finding places where a fix can be written.
For instance, it may happen that there exists several differ-
ent variables for which changing the initialization value fixes
the bug. “Repair localization” is more pragmatic than fault
localization: in real-world life there are many cases where
the root cause can not be identified at a reasonable cost,
but where it is sufficient to mitigate the error propagation.
Note that one of the repair locations can indeed be the root
cause of the fault.

Each pair (location, value) is a potential fix locations. If
a patch can be correctly synthesized for all executions, it be-
comes an actual fix location. Indeed, there may be different
locations for which there exists a value that fixes the bug.

This corresponds to what developers know in their every
day bug fixing activities: the very same bug can be fixed
at different places. In particular, it occurs that a bug can
be fixed at a place that is different from the root cause. In
this case, one does not prevent the bug to appear, but one
prevents the fault to be propagated.

2.3 Buggy if condition bugs
Conditional statements (e.g., if (condition) {...} in Java),

are widely-used in programming languages. Pan et al. [16]
show that among seven studied Java projects, up to 18.6%
of bug fixes have changed a buggy condition in if statements.
For a buggy program, a buggy if condition may lead to a dif-
ferent branch. In this paper, our tool, Nopol, is motivated
by addressing fixing conditional bugs. A buggy if condi-
tion is defined as a bug in the condition of an if/then/else
statement. Pan et al. [16] divide buggy if condition fixing
into six sub-patterns, i.e., the addition/removal of a clause,
a variable, an operator. The following example is a real
example of buggy if condition found in Apache Commons
Math library. gcd is a method of calculating the greatest
common divisor between two integers. A condition in that



method is to check if any of the two parameters u and v is
equal to 0. In the buggy version, the developer compares
the product of the two integers to zero. However, this may
lead to an arithmetic overflow. A safer way to proceed is to
compare each parameter to zero. Such fix is synthesizable
by Nopol.

public static int gcd(int u, int v) {

- if (u * v == 0) {

+ if ((u == 0) || (v == 0)) {

We will explain how to fix buggy if condition bugs in Sec-
tion 3 and two case studies of solving this kind of bugs can
found in Sections 4.1 and 4.2.

2.4 Missing precondition bugs
Another type of common bugs related to branching is

missing preconditions. One of the usages of preconditions
is to distinguish different values of a variable, e.g., detecting
null pointers or invalid indexes in an array. Developers add
preconditions to ensure the program meets their expecta-
tion of variables. We define a missing precondition as a bug
without its proper preconditions.

An example of missing preconditions is the absence of null-
pointer detection as follows. The buggy version without if
will throw an exception signaling a null-pointer at runtime.
A case study of solving this kind of bugs can found in Section
4.3.

+ if (directory != null)

File[] files = directory.listFiles();

3. OUR APPROACH
This section presents our approach for automatically re-

pairing buggy if conditions and missing preconditions in
Java source code. Our approach blends existing ideas (such
as encoding the program synthesis in SMT) with new ones
(such as angelic fix localization). This approach has been
implemented in a tool called Nopol.

3.1 Overview
Nopol is a test-suite based program repair approach ded-

icated to incorrect if conditions and missing precondition
bugs. Nopol requires a test suite which represent the pro-
gram expected functionality in which a failing test case rep-
resents the bug to be fixed. Nopol uses a novel technique
to identify potential repair locations (angelic localization).
For each repair location, Nopol runs the whole test suite
in order to collect the context of the conditional expression
and its expected value in each test. Then such information
is used to generate an SMT formula modeling expressions
which preserves the behavior of the expression for passing
tests while modifying it for failing tests. If this SMT formula
is satisfiable, the SMT solution is translated as a source
code patch. Nopol supports a subset of object-oriented
primitives (nullness and certain method calls). For instance,
Nopol can output:

Fix found!

At line 348 of file Foo.java, replace

if (a<b)

by

if (l!=null && l.size()<0)

Data:
- F is a failing test case
- Trace is the execution trace of F
Result: R is a set of pairs (location, angelic value)
R← ∅ ;
foreach if condition i in Trace do

force i to true
if test case F passes then

R← R ∪ {(i, true)}
else

force i to false
if test case F passes then

R← R ∪ {(i, false)}
end

end

end
return R

Algorithm 1: Angelic Fix Localization Algorithm for
Buggy if Conditions

3.2 Angelic fix localization
As presented in Section 2.2, oracle-based program repair

needs pairs {location, value}. SemFix [15] uses symbolic
execution for extracting those pairs. In Nopol, we propose
to use value replacement [9] for this.

Value replacement [9] comes from fault localization re-
search. It consists in replacing at runtime one value by an-
other one. More generally, the idea is to artificially change
the program state for locating faults. There are a couple of
papers that explore this idea. For instance, Zhang et al. [19]
calls it “predicate switching” and Chandra et al. [4] use the
term “angelic debugging”.

In this paper, we call “angelic fix localization” the tech-
nique of modifying the program state to find angelic pairs
(l, v).

Definition (angelic value) An angelic value is a value
that is arbitrarily set during test execution by an omniscient
angel and that enables a test to pass.

Angelic fix localization gives two key pieces of information:
first, where a fix point may exist (a fix consists of a piece of
code put at a certain fix point), second the expected value
for driving the repair synthesis. Our key insight is that
the search space of angelic values is small for two kinds of
bugs and locations: the buggy if conditions and the missing
preconditions.

3.2.1 For Buggy if Conditions

For buggy if conditions, angelic fix localization works as
follows. For each if condition that is evaluated during the
test suite execution, an angel forces the if condition to be
evaluated to true or false in the failing test case embodying
the bug to be fixed. For a pair (if condition, boolean value),
if the failing test case now passes, it means that we have
found a potential fix location and an oracle for SMT program
repair. Algorithm 1 is the pseudocode of this algorithm.
One really sees the parallel with angelic debugging: when
the failing test case executes, an angel comes and forces the
if condition to be evaluated to either true or false, i.e. forces
the program to take one or the other branch.

It may happen that the same if condition is executed sev-
eral times in the same test case. In this case, angelic fix
localization considers the expression always yield the same



value. Doing so, the search space of angelic fix localization
algorithm for buggy if conditions is small. Let n be the num-
ber of if conditions that are executed in the failing test case.
The search space is simply 2× n (checking independently n
binary values). In practice, according to our experience with
open-source test suites, a test case executes around 101–102

ifs and rarely more than 103. Note that our angelic fix lo-
calization algorithm for buggy if conditions only requires to
run the failing test case, not the entire test suite.

3.2.2 For Missing Preconditions

The angelic fix localization for missing preconditions is
slightly different from angelic fix localization for if condi-
tions. For each statement3 that is evaluated during the test
suite execution, an angel forces to skip it. If the failing test
case now passes, it means that a potential fix location has
been found. The oracle for repair is then “False”, meaning
that the precondition to be synthesized must output False
(i.e. the statement should be skipped). Algorithm 2 is the
pseudocode of this algorithm. Again, it is only a potential
fix location. The repair synthesis may fail to find an expres-
sion which evaluates to false in all test cases but the failing
one.

Similarly to angelic fix localization for buggy if condi-
tions, if a statement is executed several times in the same
test case, angelic fix localization completely skips it. The
size of the search space of angelic fix localization for missing
preconditions is simply the number of executed statements.
For each of them, the failing test case is run once with one
statement skipped.

3.2.3 Discussion

Nopol uses an existing fault localization technique to in-
crease the likelihood of finding an oracle. The statements
are not skipped randomly, but according to their “suspi-
ciousness”. The suspiciousness of a statement measures its
likelihood of containing a fault. Nopol uses the Ochiai spec-
trum based metric [1] for that purpose. Given a program and
a test suite, the suspiciousness susp(s) of a statement s is
defined as follows.

susp(s) =
failed(s)

√

total failed ∗ (failed(s) + passed(s))

where total failed denotes the number of all the failing test
cases and failed(s) and passed(s) respectively denote the
number of failing test cases and the number of passing test
cases, which cover the statement s. if conditions are also
evaluated with the angel based on suspiciousness. We rank
all the if conditions based on their suspiciousness. The an-
gel first manipulate the most suspicious executed if (resp.
statement), then the second one, etc.

If no angelic pair can be found, it may mean two things.
First, if the if condition (resp. statement) is executed only
once in the failing test case, it means that we know for sure
that it is impossible to fix the bug by changing this par-
ticular condition (resp. adding a precondition before this
statement). Second, if the if condition (resp. statement)
is executed more than once in the failing test case (say p
times), there may exist a sequence of p angelic values (say
true, true, false, true) resulting in a passing test case. How-
ever, recall that Nopol assumes that, for a given test case,

3It works also for missing precondition for blocks since in
Java blocks are just specific statements.

Data:
- F is a failing test case
- Trace is the execution trace of F
Result: R is a set of pairs (location, angelic value)
R← ∅ ;
foreach statement s in Trace do

force s to be skipped
if test case F passes then

//the precondition should evaluate to false
// to skip s ;
R← R ∪ {(s, false)}

end

end
Algorithm 2: The Angelic Fix Localization Algorithm for
Missing Preconditions

the angelic value is the same during the whole test case exe-
cution (for sake of having a small search space – 2 instead of
2p see 3.2). Consequently, angelic sequences are not taken
into account (finding of those sequences is computationally
too expensive when n is large). How does this affect the ef-
fectiveness of the tool? According to our experiments with
real test suites, most if conditions are evaluated only once
per test case. A systematic empirical study on this point is
future work.

SemFix uses symbolic execution for oracle mining and
symbolic execution is known to be heavyweight. In their
paper [15], they apply it only on small examples. We have
applied it to real bugs, one being presented in Section 4.
We do not have access to the code of SemFix, so we cannot
measure their execution time against ours.

3.3 Runtime Trace Collection for Repair
Once Nopol has found an angelic pair (location, value),

it collects the values that are accesible at this point in the
program execution. Those value are meant to be used to
synthesize a correct patch. There are different kinds of data
to be collected.

3.3.1 Primitive Type Data Collection

At the location of an angelic pair, Nopol collects the val-
ues of all local variables, method parameters and fields that
are typed with a basic primitive type (integer, float, boolean,
etc.). They form the core of Cl,m,n the set of collected val-
ues at location l during the m-th execution of the n-th test
case. Cl,m,n is also enriched with constants for further use
during synthesis.

In order to be able to synthesize conditions that use liter-
als (e.g. “if (x>0)”), we create a set of predefined constants
to be passed to the SMT solver afterwards. We have set so
far two strategies for creating the set of predefined constants.
The first one consists of {0, -1, 1}, it is a baseline that fixes
many conditional bugs related to emptiness and off-by-one.
The second one consists of collecting all numerical literals of
the codebase. Assessing the effectiveness of both strategies
is out of the scope of this paper.

3.3.2 Expected Outcome Data Collection

Let us call O the set of expected outcomes in order to pass
all tests. Ol,m,n is the expected outcome at location l during
the m-th execution in order to pass the n-th test case.

For buggy if conditions. Ol,m,n is the expected outcome



of the condition expression l. For failing test cases, the ex-
pected outcome is the angelic value. For passing test cases,
the expected outcome is the actual one, i.e. the result of the
evaluation of the actual if condition expression.

Ol,m,n =

{

eval(l) for passing test cases
angelic value for failing test cases

For missing preconditions. Ol,m,n is the expected value
of the precondition of statement l, i.e. true if all cases but
the failing test cases. The latter comes from angelic fix lo-
calization: if the precondition returns false for the failing
test case, the buggy statement is skipped and the test case
passes.

Ol,m,n =

{

true for passing test cases
false for failing test cases

Nopol collects Ol,m,n for all execution of location l.

3.3.3 Object-oriented Specific Data Collection

Nopol aims at supports the automatic repair of if condi-
tions and missing preconditions of object-oriented programs.
In particular, we would like to support not-null checks and
method calls to some extent. For instance, we would like to
be able to synthesize the following missing precondition.

+if (l!=null && l.size()>0) {

compute(l);

+}

To do so, in addition to collecting all values of primitives
types, Nopol collects two kinds of information. First, the
nullness of object encodes whether all objects of the current
scope are null or not. Second, Nopol collects the output of
“state query methods”as defined as the methods that enable
one to inspect the state of objects and are side-effect free.
For instance, methods size() and isEmpty() on collections
are state query methods.

Nopol is manually fed with a list of such methods. The
list is set with domain-specific knowledge. For instance, in
Java, it is easy for developers to identify such side effect free
state query methods on core library classes such as String,
File and Collections. For each type T , those predefined
methods are denoted sqm(T ).

Nopol collects the nullness and the evaluation of state
query methods for all objects in the scope (local variable,
method parameter, fields) of an angelic pair.

3.3.4 Repair Equation

The repair synthesis of buggy if conditions and missing
preconditions consists in finding an expression (a function)
exp such that

∀l,m,n exp(Cl,m,n) = Ol,m,n (1)

3.3.5 Number of Collected Values

Let us assume there are j primitives values and k objects
(denoted O) in the scope of an angelic pair. In total, Nopol

collects the following values:

• the j primitive variables in the scope;

• the k boolean values corresponding to the nullness of
each object;

•
∑

o∈O
|sqm(type(o))| values corresponding to the eval-

uation of the state query methods of all objects avail-
able in the scope;

• the constants.

All this information is used for finding a solution statisfy-
ing Equation 1. There are different ways of finding such
as solution. Nopol, as SemFix [15], uses a variation of
oracle-guided component-based program sythesis [10] based
on SMT.

3.4 Encoding Repair in SMT
We now present how we encode Equation 1 as an SMT

problem. The solution of the SMT problem is then trans-
lated back as a boolean source code expression exp repre-
senting the correct if conditional or the missing precondi-
tion. Our encoding extends the SMT encoding defined in
[15, 10]. In particular, we explicitly take into account the
type of the variables so that a boolean expression can mix
operations on booleans, integers and real.

3.4.1 Building Blocks

We define a building block (called component in [10]) as a
type of expression that can appear in the boolean expression
to be synthesized. For instance, the logical comparison op-
erator “>” is a building block. As building block types, we
consider comparison operators (>,<, 6=, ≤, =, ≥), the three
arithmetic operators4 (+,−,×) and the boolean operators
(∧, ∨, ¬). The same type of building blocks can appear
multiple times in the same expression.

We define the ith building block bi as a tuple of input
variables Ii, an output variable ri, an expression φi(Ii, ri)
encoding the meaning of the building block (e.g. ri = ∧Ii).
That is b = (φi(Ii, ri), Ii, ri). r is the return value of the
synthesized expression, hence there exists one building block
i whose output is bound to the return value ri = rfinal.

Suppose we are given a set B of building blocks and a list
CO of pairs (Cl,m,n, Ol,m,n) (the collected values and angelic
oracles at location l during the m-th execution of the n-th
test case). Cl,m,n includes values of different type: boolean,
integer or real expressions. A patch is a sequence of building
blocks < b1, b2, ..., bk > with bi ∈ B, whose input values are
either taken from Cl,m,n or from other building blocks.

3.4.2 Wiring

The problem is thus to wire the input of the building
blocks < b1, b2, ..., bk > to the input values of the program
I0 or to other building block’s output values and to make
sure that one building block produces the expected output
value r (the angelic value). Compared to previous work [10,
15], we need to make sure that the type of the variables
are valid operands (i.e. that an arithmetic operator only
manipulates integers, etc.).

Let us assume Cl,m,n having two values “False” (boolean)
and “3” (integer), and two building blocks:
BOOL← f1(BOOL) and BOOL← f2(INT, INT ).
The synthesis consists of finding a well formed expression
combining False, f1(False), f2(3, 3), f1(f2(3, 3)) which eval-
uates to r the angelic value.
4Adding the division is possible but would require specific
care to avoid division by zero.



3.4.3 Mapping Inputs and Outputs with Location Vari-
ables

We define I = ∪Ii and O = ∪{ri} the sets of input and
output values of the building blocks. Let I0 be the input
(Cl,m,n) and r the output in the final patch. We define IO
as IO = I ∪ O ∪ I0 ∪ {r}. We partition the variables of IO
according to their type in BOOL, INT and REAL.

The SMT encoding relies on the creation of location vari-
ables L = {lx|x ∈ IO} representing an index of elements
x ∈ IO. Value variables V = {vx|x ∈ IO} represent the
values taken by those elements. Let m be the number of
possible inputs m = |I0| + |B|. Location variables are of
type integer (L ⊂ INT ). Value variables are of any sup-
ported type (boolean, integer or real). Location variables
are invariants for all test case execution Cl,m,n: they repre-
sent the patch structure. Value variables are used internally
by the SMT solver to ensure that the semantic of the pro-
gram is preserved.

3.4.4 Constraints

Let us first define the domain constraints over the location
variables. The location variables of the elements of I0 and r
are fixed:

φFIXED(I0, r) =

|I0|
∧

i=1

lI0,i = i ∧ lr = m

The location variables of the elements of O have a domain
of [|I0|+ 1, |I0|+m]:

φOUTPUT (B) =

|B|
∧

i=1

(|I0|+ 1 < lbi ≤ m)

Handling typing Only the locations corresponding to
the values of the same type are allowed. Suppose that
type(x) returns the set of elements with the same type than
x among BOOL, INT and REAL. Then we can restrict the
values taken by the location variables of the input values of
building blocks using the following formula:

φINPUT (I) =
∧

x∈I

∨

y∈type(x),x 6=y

(lx = ly)

In our example, for a single input value of type integer,
we have the following domains for location variables:

lI0 = 1 // input value, integer

lc1 = 2 // boolean constant False

lc2 = 3 // integer constant 3

lr = 5 // expected output value, boolean

lrf1 ∈ [4, 5] // output of f1, boolean

lrf2 ∈ [4, 5] // output of f2, boolean

lIf1,1
∈ {lrFalse

, lrf1 , lrf2 } // param. of f1, boolean

lIf2,1
∈ {lI0 , lr3} // first param. of f2, integer

lIf2,2
∈ {lI0 , lr3} // second param. of f2, integer

The following additional constraints are used to control
the values of the location variables. First, we need to make

sure that there is only one building block output per building
block input (wires are one-to-one).

φCONS(L,O) =
∧

x,y∈O,x 6=y

lx 6= ly

Second, we need to order the building blocks in such a
way that its arguments have already been defined.

φACY C(B,L, I,O, B) =
∧

(φi,Ii,ri)∈B

∧

x∈Ii

lx < lri

Putting all together:
φWFF (B,L, I,O, I0, r) = φFIXED(I0, r)∧ φOUTPUT (B)
∧φINPUT (I) ∧φCONS(L, I) ∧ φACY C(B,L, I,O)

An assignment of L variables respecting the predicate
φWFF (B,L, I,O, I0, r) corresponds to a syntactically cor-
rect patch.

Values variables corresponding to the input and output of
a building block are related according to its functional defi-
nition using a predicate pbi such that pbi(values(Ii), vri) =
true iff bi(Ii) = ri. Let VIO = {vx|x ∈ I ∪O}.

φLIB(B, VIO) =
∧

(Ii,ri)∈B,vri∈VIO

pbi(VIO(Ii), vri)

The location and the value variables are connected together
using the following rule which states that elements at the
same location should have the same value. Note that be-
cause in our case the input or output values can be of dif-
ferent types, we need to limit the application of that rule to
values of the same type. That limitation to the elements of
the same type is valid because the domain of the locations
are managed using constraints φINPUT (I).

φCONN(L, VIO) =
∧

S∈{BOOL,INT,REAL} ∧x,y∈S lx = ly → vx = vy
The semantic of the patch for a given input I0 and a given

output r is preserved using the following existentially quan-
tified constraint:

φFUNC(L,Cl,m,n, Ol,m,n) =
∃VIOφCONN (L, VIO)[values(I0)← Cl,m,n, vr ← Ol,m,n]
∧φLIB(B, VIO)

Here the notation α[vr ← Ol,m,n] means that the value of
the variable vr in α has been set to Ol,m,n.

Finally, finding a patch which satisfies all expected in-
put/output pairs (Cl,m,n, Ol,m,n) requires to satisfy the fol-
lowing constraint:
φPATCH(L, I,O, CO) =
∃L(∧(Cl,m,n,Ol,m,n)∈CO φFUNC(L,Cl,m,n, Ol,m,n))

∧φWFF (B,L, I,O)

3.4.5 Levels

Ideally, one would feed SMT with many instances of all
kinds of building blocks we are considering (see 3.4.1). Only
the required ones would be wired to the final result. This is
not efficient in practice. Some building blocks require com-
putationally expensive theories (e.g. multiplication). We
first try to synthesize an expression with only one instance
of easy building blocks (<, 6=, =, ≤5). Then, we add new
building blocks (logic, then arithmetic) and eventually we

5≥ and > are obtained by symmetry: a ≥ b = b ≤ a



increase the number of instances of building blocks. This
is encoded in arbitrary “levels” as Semfix does [15]. The
optimization of those predefined levels is future work.

3.5 Deriving a Patch from an SMT model
If the problem is satisfiable, the SMT solver provides an

assignment to all location variables. Here is a possible an-
swer for our running example: li0 = 1, lc1 = 2, lc2 = 3,
lrfinal

= 5, lrf1 = 4, lrf2 = 5, lIf1,1
= 3, lIf2,1

= 1,
lIf2,2

= 1.
The corresponding source patch is obtained with a back-

ward traversal starting at the output location. There often
exists building blocks which are wired (SMT produces a line
number), but that are not connected to the final output of
the expression.

In our example, this reads that the output is bound to
line 5 which is the output of f2. f2 takes as parameter line
1 which is the integer input value i0. The final patch is thus
the expression f2(i0, i0) which returns a boolean. It is the
repair of the bug, i.e. the fixed if condition (or the missing
precondition). In this example, f1 is never used.

4. EVALUATION
Nopol focuses on repairing conditional bugs in Java. In

this section, we evaluate our approach with three case stud-
ies. First, we repair the running example of [15]; then, we
repair a real-world conditional bug from the Apache Com-
mons Math library; finally, we show how to repair a missing
precondition bug on an artificial example.

Our prototype implementation of Nopol uses the Spoon
library [17] for manipulating Java source code (angelic value
mining, instrumentation, final patch synthesis and assess-
ment) and the GZoltar fault localization to order repair lo-
cations [3]. Nopol generates SMTLIB files using jSMTLIB
[5] and we use CVC4 [2] as SMT solver. Thanks to the
generic file format, Nopol can be used with any SMTLIB
2.0 compliant SMT solver.

4.1 Case Study: Tcas Example from SemFix
We first take a classical program, Tcas, which was used

as example in previous work (SemFix [15]). Tcas, a traffic
collision avoidance system6, is a program consisting of 135
lines of code, which originates from Software-artifact Infras-
tructure Repository (SIR) [6]. Figure 1 shows a code snippet
of Tcas. For this code snippet, five test cases are listed in
Table 1.

Table 1: Test suite with five test cases for Tcas
Test Input Expected Observed

Status
case inhibit up set down set output output
1 true 0 100 0 0 pass
2 true 11 110 1 0 fail
3 false 100 50 1 1 pass
4 true -20 60 1 0 fail
5 false 0 10 0 0 pass

As shown in Figure 1, the faulty line in this code snippet
is Line 4, where down sep should be fixed with up sep+100.
To our own surprise, Nopol generated a radically different
patch as follows. For this faulty code, Nopol first employs
angelic fix localization to find candidate lines. In this snip-
pet, both Line 3 and Line 7 have the same likelihood of
6Available in http://sir.unl.edu/

1 int is_upward_preferred(boolean inhibit,

int up_sep, int down_sep) {

2 int bias;

3 if(inhibit)

4 bias = down_sep; //fix: bias=up_sep+100

5 else

6 bias = up_sep;

7 if (bias > down_sep)

8 return 1;

9 else

10 return 0;

11 }

Figure 1: The buggy method “is upward preferred”
of Tcas

fault locations. However, angelic fix localization states that
only Line 7 is subject to repair (there exists angelic values
for which the failing test cases pass), Nopol then collects
testing traces by running the whole test suite. Finally, the
testing trace is encoded as an SMT problem and Nopol

outputs the following patch as solution to the bug:

- if (bias > down_sep)

+ if (up_sep != 0)

To encode as an SMT program, the set of building blocks
for Line 7 are list as follows. The input and output are I0 =
{inhibit:BOOL, up sep:INT, down sep:INT} and r = True.

(f1:If1,1 < If1,2, If1 = {If1,1:INT, If1,2:INT}, rf1 :BOOL)

(f2:If2,1 ≤ If2,2, If2 = {If2,1:INT, If2,2:INT}, rf2 :BOOL)

(f3:If3,1 == If3 ,2, If3 = {If3,1:INT, If3,2:INT}, rf3 :BOOL)

(f4:If4,1 6= If4,2, If4 = {If4,1:INT, If4,2:INT}, rf4 :BOOL)

Among these four building blocks, comparison operators
in Java are defined from f1 to f4, e.g., f1 and f2 denote <
and ≤, respectively.

After solving with SMT, the solution is f4(up sep, 0)), i.e.,
up sep != 0 as mentioned above. This patch is not identical
to the fix discussed in the SemFix paper [15] (shown as com-
ment in Figure 1 at line 7). However, from the perspective
of test-suite based program repair, Nopol patch is also a
correct patch since it passes all test cases. The reason for
the existence of two different patches is that the test suite in
Table 1 does not provide test cases to differentiate the two
patches.

4.2 Case Study: Commons-Math Library
In this section, we present how Nopol is able to repair

a real bug7 in Apache Commons Math. Apache Commons
Math is a lightweight library for common mathematics and
statistics problems8. This library consists of 5000 lines of ex-
ecutable code and 352 test cases (each test case is expressed
as a JUnit method). Figure 2 shows the buggy source code
of its Percentile class. As its name suggests, Percentile re-
turns an estimate of the pth percentile of the values stored
in the array values.

7See details, https://github.com/apache/commons-
math/commit/23277b96dae68928fbe7a785d080fc0fbf6eb27d
8http://commons.apache.org/proper/commons-math/



1 public double evaluate(final double[] values,

final double p){

...

2 double n = values.length;

...

3 double pos = p * (n + 1) / 100;

4 double fpos = Math.floor(pos);

5 int intPos = (int) fpos;

6 double dif = pos - fpos;

7 double[] sorted = new double[n];

8 System.arraycopy(values, 0, sorted, 0, n);

9 Arrays.sort(sorted);

10 if (pos < 1)

11 return sorted[0];

12 if (pos > n) //fix: if (pos >= n)

13 return sorted[n - 1];

14 double lower = sorted[intPos - 1];

15 double upper = sorted[intPos];

16 return lower + dif * (upper - lower);

17 }

Figure 2: Code snippet of Percentile in Commons
Math

According to the documentation, the algorithm of Per-
centile is implemented as follows. Let n be the length of the
(sorted) array. Compute the estimated percentile position
pos = p∗(n+1)/100 and the difference, dif between pos and
floor(pos). If pos >= n return the largest element in the
array; otherwise return the final calculation of percentile.
Thus, Line 12 in Figure 2 contains a bug, which should be
corrected as if(pos >= n). Table 2 shows one failing test
case exists for this bug and one of the 351 passing test cases.
For the failing test case, an ArrayIndexOutOfBounds ex-
ception is thrown in Line 15.

Table 2: Test suite with one failed test case for Per-
centile

Input Output evaluate(values,p)
Status

values p Expected Observed
{0,1} 25 0.0 0.0 pass
{1,2,3} 75 3.0 Exception fail

The building blocks for this program are as follows (the
same as building blocks in Section 4.1, except replacing INT
with REAL).

(f1:If1,1 < If1,2, If1 = {If1,1:REAL, If1,2:REAL}, rf1 :BOOL)

(f2:If2,1 ≤ If2,2, If2 = {If2,1:REAL, If2,2:REAL}, rf2 :BOOL)

(f3:If3,1 == If3,2, If3 = {If3 ,1:REAL, If3,2:REAL}, rf3 :BOOL)

(f4:If4,1 6= If4,2, If4 = {If4,1:REAL, If4 ,2:REAL}, rf4 :BOOL)

Based on the above building blocks, the solution to SMT
is f2(n, pos). That is pos >= n in Java. Thus, Nopol

can generate the expected patch (if(pos >= n)). Nopol’s
angelic fix localization was able to spot a fixable if condition
after analyzing 11 candidate if conditions. In contrast with
the example of Section 4.1, this is a real-world use case.
Based on a test suite of 352 test cases with only one failed
test case, Nopol finds a patch that matches the patch made
by the developers.

4.3 Case Study: Missing Precondition Exam-
ple

In this section, we take an artificial example to show how
to repair a missing-precondition bug with Nopol. Figure 3
presents a method for extracting the folder of a given path.
Its related test suite consists of two test cases: one for an ab-
solute File path, in which case the method should return the
enclosing folder; one for a local file, in which case an empty
string is expected. The bug of this method is a missing pre-
condition in Line 5. In the absence of this precondition, an
ArrayIndexOutOfBounds exception is thrown in Line 6.

//In Linux, separator is "/"

1 private final String separator = File.separator;

2 public String extractFolder(String path) {

3 String result = "";

4 int index = path.lastIndexOf(separator);

5 //fix: if(index > 0)

6 result = path.substring(0, index);

7 return result;

8 }

Figure 3: Code snippet of an example of missing-
precondition bug

Table 3: Test suite with two test case for a missing
precondition bug
Test Input Output

Status
case path Expected Observed
1 /home/user/Path.java /home/user /home/user pass
2 File.java Exception fail

With Nopol, the bug in Line 5 can be repaired. Build-
ing blocks for Line 5 are the same as those in Section 4.1.
Then the solution to the SMT based on these above build-
ing blocks is f1(result.length(), index). Thus, the result of
Nopol is as follows.

+ if(result.length() < index)

Note that this repair is a little different from Line 5 in Figure
3. Since the length of result is 0, the repair by Nopol is
equivalent to Line 5. For this bug, Nopol finds no candidate
buggy if conditions with angelic fix localization. When it
studies whether the bug might be a missing precondition, it
tries to skip all statements of the method. After adding an
angelic precondition at Line 6, the failing test passes. Then,
the runtime data is encoded as SMT and the SMT solution
is converted as the final patch.

5. LIMITATIONS
In this section, we list several limitations of our work.
Single point of failure As most of the previous work

in test-suite based program repair, our approach, Nopol,
can only deal with faulty programs, where there is only one
fault. In the current version, we do not stack patches (the
search space would be exponentially larger).

Granularity of building blocks The ability to fix a bug
heavily depends on the buildings blocks expressible in SMT.
If B is too small, there are few chances to fix the bug, unless



it is trivial. If B is too large, the generated patch may be
too large and complex to be accepted by a developer since
we have no warrantee of minimality. Improving the way we
set the building blocks of B is in our research agenda.

Non-fixable bugsNopol cannot generate patches for all
buggy if conditions and missing preconditions. The ability
of patch generation is limited by the test suite. In our work,
for a buggy if condition, we use angelic fix localization to
flip the boolean value of the condition for the failing test
cases. However, if no passing test case covers this flipped
boolean value, a trivial repair would be to replace the con-
ditional expression by a boolean constant. It means that to
generate a non trivial patch for a buggy if condition, both
boolean values of a condition should be covered by at least
one passing and one failing test cases.

Conditions including methods with parameters In
our work, we can currently support the synthesis of con-
ditionals with methods without parameters. Our approach
cannot generate a patch if a method with parameters has
to appear in a condition. For example, no patch can be
generated for if(list.contains(object)) due to its parameter
object. The reason is that since we need to gather the pos-
sible values of the method call, we would need to evaluate
that method for each possible parameter when running the
tests. While it is feasible for methods with one parameter,
methods with more parameters would induce a combinatoric
step during the data collection phase. We plan to support
methods with few parameters in the future by leveraging
semantic analysis.

Limitations of SMT solvers In the current state of our
research, the performance and intrinsic limitations of SMT
is not an issue. Given our set of constraints (as given by our
encoding of the repair problem), the solver we use (CVC4)
is sufficient for our needs (it takes a few seconds to fix the
Apache Common Maths bug). However, our evaluation is
preliminary. In particular, we anticipate one major problem:
CVC4 does not have currently a full support for non linear
arithmetic. This is problematic for synthesizing conditional
expressions that use multiplication or division. We consider
using another SMT solver (e.g Z3) in order to overcome this
issue.

6. RELATED WORK
Test-suite based program repair generates patches and ex-

amines patches with a given test suite. Le Goues et al.
[7] propose GenProg, a test-suite based program repair ap-
proach using genetic programming. In GenProg, a program
is viewed as an Abstract Syntax Tree (AST) while a patch is
a newly-generated AST by weighting statements in the pro-
gram. Based on genetic programming, candidate patches
are generated via multiple trials. Then for each candidate
patch, a given test suite is evaluated to identify the patch
with all passing test cases. The role of genetic programming
is to obtain new ASTs by copying and replacing nodes in
the original AST. An evaluation on 16 C programs shows
that GenProg can generate patches with an average success
rate of 77 percent.

Nguyen et al. [15] propose SemFix, a program repair ap-
proach via semantic analysis. In contrast to genetic pro-
gramming in GenProg, SemFix generates patches by com-
bining symbolic execution, constraint solving, and program
synthesis. As mentioned in Section 2.2, SemFix generate
constraints by formulating passed test cases and then solve

such constraints via traversing a search space of repair ex-
pressions. Compared with GenProg, SemFix reports a higher
success rate on C programs within less time cost. In this
paper, we also focus on program repair by leveraging con-
straint solving and program synthesis. The key difference
compared to SemFix is that Nopol is able to repair missing
preconditions, a kind of fault that is not handled by SemFix.

Kim et al. [11] propose Par, a repair approach using fix
patterns representing common ways of fixing common bugs.
These fix patterns can avoid the nonsensical patches due to
the randomness of some mutation operators. Based on the
fix patterns, 119 bugs are examined for patch generation. In
this work, the evaluation of patches are contributed by 253
human subjects, including 89 students and 164 developers.

Martinez and Monperrus [13] mine historical repair ac-
tions to reasoning future actions with a probabilistic model.
Based on a fine granularity of abstract syntax trees, this
work analyzes over 62 thousands versioning transactions in
14 repositories of open-source Java projects to collect prob-
abilistic distributions of repair actions. Such distributions
can be used as prior knowledge to guide program repairing.

Program synthesis is a related topic to program repair.
Program synthesis aims to form a new program by syn-
thesizing existing program components. Jha et al. [10]
mine program oracles based on examples and employs SMT
solvers to synthesize constraints. In this work, manual or
formal specifications are replaced by input-output oracles.
They evaluate this work on 25 benchmark examples in pro-
gram deobfuscation. Their following work [8] addresses the
same problem by encoding the synthesis constraint with a
first-order logic formula. The maximum size of constraint is
quadratic in the number of given components.

In our work, fault localization is used as a step to pro-
vide faulty statements. The goal of fault localization [6] is
to rank suspicious statements (or blocks, classes) to find out
the location of bugs. A general framework of fault local-
ization is to collect program spectrum (a matrix of testing
results based on a given test suite) and to sort statements in
the spectrum with specific metrics (e.g., Tarantula [6] and
Ochiai [1]). Among existing metrics in fault localization,
Ochiai [1] has been evaluated as one of the most effective
ones. In Ochiai, each statement is assigned with its sus-
piciousness value, which is the Ochiai index between the
number of failed test cases and the number of covered test
cases.

7. CONCLUSION
In this paper, we propose Nopol, a test-suite based repair

approach using SMT. We target two kinds of bugs: buggy
if conditions and missing preconditions. Given a faulty pro-
gram and its test suite, Nopol employs a specific fault local-
ization technique, angelic fix localization, to find suspicious
statements. For each candidate statement, Nopol collects
test execution traces at this point of the program. Those
traces are then encoded as an SMT problem and the solu-
tion to this SMT is converted into a patch for the faulty
program. Preliminary results on a real-world bug in Apache
Common Maths library and two artificial examples show
that our approach can fix the bugs of our fault model: buggy
if conditions and missing preconditions.

In future work, we plan to evaluate our approach on more
real-world bugs. We also would like to extend Nopol to fix
bugs in conditionals of loop structures (while, for, etc.).
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