

Deposition of artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in French areas low-impacted by Chernobyl

Gaël Le Roux, Céline Duffa, Françoise Vray, Philippe Renaud

▶ To cite this version:

Gaël Le Roux, Céline Duffa, Françoise Vray, Philippe Renaud. Deposition of artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in French areas low-impacted by Chernobyl. Journal of Environmental Radioactivity, 2010, vol. 101, pp. 211-218. 10.1016/j.jenvrad.2009.10.010. hal-00977781

HAL Id: hal-00977781 https://hal.science/hal-00977781

Submitted on 11 Apr 2014 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : <u>http://oatao.univ-toulouse.fr/</u> Eprints ID : 11365

To link to this article : DOI: 10.1016/j.jenvrad.2009.10.010 http://dx.doi.org/10.1016/j.jenvrad.2009.10.010

> **To cite this version** Le Roux, Gaël and Duffa, Céline and Vray, Françoise and Renaud, Philippe *Deposition of artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in French areas low-impacted by Chernobyl.* (2010) Journal of Environmental Radioactivity, vol. 101 (n° 3). pp. 211-218. ISSN 0265-931X

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

Deposition of artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in French areas low-impacted by Chernobyl

Gaël Le Roux*, Céline Duffa, Françoise Vray¹, Philippe Renaud

Institut de Radioprotection et Sûreté Nucléaire, DEI/SESURE, Laboratoires d'Etudes Radioécologiques en milieu Continental et Marin, CEN Cadarache Bât. 153 BP 3, 13115 St Paul lez Durance, France

ABSTRACT

Soil inventories of anthropogenic radionuclides were investigated in altitudinal transects in 2 French regions, Savoie and Montagne Noire. Rain was negligible in these 2 areas the days after the Chernobyl accident. Thus anthropogenic radionuclides are coming hypothetically only from Global Fallout following Atmospheric Nuclear Weapon Tests. This is confirmed by the isotopic signatures (238 Pu/ $^{239+240}$ Pu; 137 Cs/ $^{239+240}$ Pu; and 241 Am/ $^{239+240}$ Pu) close to Global Fallout value. In Savoie, a peat core age-dated by 210 Pb_{ex} confirmed that the main part of deposition of anthropogenic radionuclides occurred during the late sixties and the early seventies. In agreement with previous studies, the anthropogenic radionuclide inventories are well correlated with the annual precipitations. However, this is the first time that a study investigates such a large panel of annual precipitation and therefore of anthropogenic radionuclide deposition. It seems that at high-altitude sites, deposition of artificial radionuclides was higher possibly due to orographic precipitations.

Keywords: Atmospheric deposition ¹³⁷Cs Plutonium Americium Nuclear Weapon Tests France

1. Introduction

Artificial radionuclides in soils of Western Europe are mainly due to global fallout from Nuclear Weapon Tests (NWTs) in the late fifties and sixties, to the American SNAP 9A satellite explosion in 1964, and to deposition from Chernobyl accident in May 1986. To discriminate and evaluate separately these three causes of soil contamination, different strategies were considered in the past:

- measurements of soils before and after 1986 (e.g. Aoyama et al., 2006),
- measurements of radionuclide or radionuclide ratio specific of one event (e.g. Mitchell et al., 1990),
- use of rain-deposition map considering that annual precipitations have driven the deposition of artificial radionuclides due to global fallout and that precipitations at the beginning of May

E-mail address: gael.leroux@ensat.fr (G. Le Roux).

1986 have driven deposition of artificial radionuclides after the Chernobyl accident (e.g. Almgren et al., 2006).

In France, no reliable maps for artificial radionuclides in soils before 1986 were available and therefore Renaud et al. (2003) used annual precipitation map and map of precipitation of 1–5 May 1986 to estimate respectively global fallout deposition and Chernobyl deposition. To estimate global fallout, Renaud et al. used the relationship established in Ireland (Mitchell et al., 1990), which is based on ¹³⁴Cs/¹³⁷Cs ratio considering that there was no ¹³⁴Cs in western Europe coming from Nuclear Weapon Test (NWT). It appeared that some French areas were theoretically unaffected by wet deposition of artificial radionuclides from Chernobyl accident.

We investigate soil inventories of artificial radionuclides in two of these areas: Savoie and Montagne Noire. In addition, these 2 areas are mountain ranges and give us information on how the deposition of artificial radionuclides was in altitude sites. Finally, the contamination of the Montagne Noire was already investigated by a non-profit organisation (CRIIRAD, 2003) and it was shown that the contamination was quite high in the soil up to 1800 Bq kg⁻¹ for ¹³⁷Cs.

The aims of this research study were 1) to validate rain-deposition estimation of global fallout and check if there were also

^{*} Corresponding author. Present address: EcoLab/Campus Ensat, Avenue de l'Agrobiopole, BP 32607, Auzeville tolosane, 31326 Castanet-Tolosan, France. Tel.: +33 (0) 5 62 19 39 40; fax: +33 (0) 5 62 19 39 01.

¹ Dedicated to the memory of Françoise Vray.

artificial radionuclides from Chernobyl accident; 2) to investigate into details global fallout in mountain areas where deposition of atmospheric pollutants (POP, heavy metals) is known to be higher due to occult and orographic deposition (Graustein and Turekian, 1989; Roe, 2005; Daly and Wania, 2005; Le Roux et al., 2008).

2. Methods

2.1. Site description

Soils were sampled between 2004 and 2006 along transects of increasing altitude and subsequently increasing annual precipitation rate. Annual precipitation rates were given at each sampling site by data from Météo-France following AURELHY method (Bénichou and Le Breton, 1986, 1987).

Based on the map established by Renaud et al. (2003, 2004, 2005) and Roussel-Debet et al. (2007), areas where no precipitation occurred in the first week of May 1986 were chosen: Savoie and Montagne Noire (Fig. 1; Table 1). These mountains have different landscape and climate features. The Montagne Noire is a small mountain massif (Pic de Nore $-z_{max} = 1210$ m) in the Southern Part of Massif Central influenced both by Atlantic and Mediterranean air masses under a Mediterranean climate. Savoie (Tarentaise and Beaufortin) is a region part of the Western Alps and is characterised by a high mountain climate bordered by le Mont Blanc Massif ($z_{max} = 4810$ m) in the North and Vanoise Massif in the South.

2.2. Soil sampling and preparation

Sampling sites were located in undisturbed areas, i.e. non-ploughed grassland or woodland, that were assumed flat enough (slope < 5%) to prevent soil migration and heavy run-off erosion. In each site, undisturbed soil samples were collected using an 8 cm diameter stainless steel corer. Three cores (where possible) were collected together at each sampling site in order to minimize heterogeneity. The depth of each core was at least 30 cm. Some cores were sub-sampled (5 or 10 cm) in order to investigate the vertical distribution of the radionuclides. Sub-sections for the same

depth interval of the three cores were then bulked and each composite interval was prepared separately. Soil profiles exhibiting very low anomalous inventory were discarded from data set.

Soil samples were homogenised, dried at 80 °C and sieved to remove coarse particles (greater than 2 mm) prior to spectrometry analyses. Soil samples were discarded when the amount of coarse material exceeds 30% of total material.

In addition, a peat core was taken in a minerotrophic peatland at the little Saint-Bernard Pass with a plexiglas tube of 1 m long and 9.4 cm diameter. The core was frozen, transported to the Institute of Environmental Geochemistry, Heidelberg, Germany and was prepared according to the protocol of Givelet et al. (2004). The first 55 cm powder samples were analysed by Gamma spectrometry like soil samples.

2.3. Gamma spectrometry

Direct gamma spectrometry analyses were performed on closed volumes of 60 ml of soil using γ -spectrometers with low background level HPGe-detectors with a 0.5 mm thickness beryllium window at the "Laboratoire de Mesure de la Radioactivité dans l'Environnement" (IRSN Orsay, France) (Bouisset and Calmet, 1997). Samples were measured for 24–48 h. Detectors were located underground, under a 3 m slab of concrete, in a room shielded with 10 cm low activity lead and 5 mm electrolytic copper. Efficiency calibrations were obtained using different densities of pitchblende sources prepared in the same geometry as the samples. The calibration energy range was 46 keV to 2.7 MeV. 137 Cs activity (half-life: 30.2 years) was determined based on its peak at 661.7 keV. For peat samples, 241 Am, 214 Pb and 210 Pb were measured respectively based on their peaks at 59.4; 351.9 and 46.5 keV. 214 Pb was used to estimate supported 210 Pb (Appleby, 2001). Self-adsorption corrections were done according to sample type, density and gamma energy using in-house standards.

2.4. ²³⁹⁺²⁴⁰Pu and ²⁴¹Am determination

Pu isotopes and ²⁴¹Am were measured at the "Laboratoire de Mesure de la Radioactivité dans l'Environnement" (IRSN Orsay, France), by alpha-counting

Fig. 1. Location of the sampling zones in France with respect to mean annual precipitations inferred from AURELHY Météo-France data and altitude.

after radiochemical treatment, using a protocol of Goutelard et al. (1998). Briefly, samples are first ashed at 480 °C in order to eliminate organic matter and then spiked with ²⁴²Pu and ²⁴³Am, to control the recovery efficiency of the treatment. A double-step leaching using concentrated HNO₃ and H₂O₂ makes the radio-nuclides soluble. Pu and Am are then separated from stable elements and natural alpha-emitting radioisotopes by co-precipitation exchange chromatography and extraction chromatography (Goutelard et al., 1998). The 2 fractions (respectively Pu and Am) are then electro-deposited and alpha-counted for seven days.

2.5. Radionuclide inventories

Radionuclide inventories were calculated as follows:

$$I = \sum_{i} A_i \times \delta_i \times z_i \quad (\text{SI units}) \tag{1}$$

where *I* is the total soil inventory of the measured radionuclide, A_i the activity for the radionuclide in each layer *I* of the <2 mm dry soil fraction, δ_i the soil density for each layer *I* and z_i the depth interval for each layer *I*,

3. Results and discussion

3.1. Artificial radionuclide distribution

There is a large scale of variation in 137 Cs, $^{239+240}$ Pu and 241 Am inventories, for Savoie respectively 1500–8700 Bq m $^{-2}$, 50–350 Bq m $^{-2}$ and 20–150 Bq m $^{-2}$ and for Montagne Noire respectively 2300–6900 Bq m $^{-2}$, 76–190 Bq m $^{-2}$ and 30–73 Bq m $^{-2}$.

We show that more than 60% of these radionuclides are preserved in the first 20 cm of the soils, ascertaining no major loss by vertical migration [ESI 1] and have the same behaviours in the soil [Fig. 2]. Because we collected soil up to at least 30 cm depth, we think that we get a complete recovery of the radionuclides deposited onto the soils. In addition, the similar distribution of the three elements (Cs, Am and Pu) [for Pu and Cs relationship see Fig. 2, for Am and Pu relationship see ESI 2] indicates principally a physical, mechanical migration (i.e. bioturbation, infiltration by soil cracks...) and not a chemical migration since these elements have different chemical behaviours.

3.2. Origin of the artificial radionuclides

It is now well-established that ¹³⁷Cs from Chernobyl accident was deposited on soils mainly during raining events at the beginning of May 1986 (Almgren et al., 2006; Mitchell et al., 1990; Renaud et al., 2003). In Montagne Noire and Savoie, no precipitation occurred between 1 and 5th May 1986 and our hypothesis was that the artificial radionuclides were mainly coming from Nuclear Weapon Tests (NWTs) global fallout. This is confirmed by the mean ratio $^{239-240}$ Pu/ 137 Cs of 0.034 ± 0.006 (Savoie samples) [Fig. 3] compared to the ratios measured by Mitchell et al. (1990), Hodge et al. (1996) and Bunzl and Kracke (1988) between 0.03 and 0.033. This is also confirmed by the constant values of ^{239–240}Pu/¹³⁷Cs with increasing ¹³⁷Cs values [Fig. 3]. Indeed any additional input of 137 Cs coming from Chernobyl will decrease the $^{239-240}$ Pu/ 137 Cs ratio in soils since there was negligible plutonium deposition in Western Europe after Chernobyl. Concerning ¹³⁷Cs, the ratio to plutonium is thus constant and typical of global fallout taking into account radioactive decay until 2007.

Plutonium isotopes [Fig. 4] have a typical isotopic ratio representative of global nuclear fallout $(^{238}Pu/^{239+240}Pu = 0.0284 \pm 0.005$ for Savoie samples) which is very closed to the value of 0.03 according to Hardy et al. (1973) and soil values of 0.034 ± 0.013 from Italy measured by Jia et al. (1999). 241 Am/ $^{239+240}$ Pu ratio displays also relative uniform value (0.41 ± 0.06 for Savoie samples) with 2 outliers from nearby sites displaying one higher

value and one lower. These results are also in good agreement with soil results from South-West France (IRSN, unpublished results) [Fig. 4] and Switzerland (Eikenberg et al., 2004; Froidevaux et al., 2004).

3.3. Relationship between soil inventories of artificial radionuclides and annual precipitations

AURELHY ("Analyse Utilisant le RELief pour l'Hydrométéorologie") is a method of precipitation estimation based on numerous meteorological stations from Meteo France and measurements over thirty years. AURELHY method is also based on the topographic features of terrain and therefore precipitations are well correlated with altitudes for a same mountain range (Bénichou and Le Breton, 1986, 1987). The resulting map is a grid data layer at 1-km resolution with a monthly average for each point. We use it to estimate annual precipitations.

The relationships between mean annual precipitation (MAP) and soil inventories of radionuclides from Nuclear Weapon Tests in undisturbed locations are well-established (e.g. Pourcelot et al., 2007; Sanchez-Cabeza et al., 2007, for a summary see table 2 in Sutherland, 1996). Our rain-deposition relationships for plutonium [Fig. 5a] and for ¹³⁷Cs [Fig. 5b] in Savoie and Montagne Noire agree well with previous relationships established in neighbouring countries in Ireland by Mitchell et al. (1990) and Germany by Bunzl and Kracke (1988). At both sites, plutonium and ¹³⁷Cs total inventory are correlated with annual precipitations. For ¹³⁷Cs, where the data set is more complete than for plutonium, the general relationship between ¹³⁷Cs total inventory (I_{cesium}) in Bq m⁻² and MAP in mm is:

$$I_{\text{cesium}} = 3.04 \times \text{MAP} - 110 \quad (n = 51; r^2 = 0.415, P_{0.05} < 0.01)$$
 (2)

In order to see if there was a difference between the 2 areas, I/MAP_{Savoie} and $I/MAP_{M-Noire}$ ratios were calculated. Median latencies in ratio for $I/MAP_{M-Noire}$ and, I/MAP_{Savoie} are respectively 2.91 and 2.59 Bq m⁻² mm⁻¹; the distributions in the two groups of I/MAP ratios are slightly different (Mann–Whitney test U = 382, $n_{Mt_Noire} = 21$, $n_{Savoie} = 27$, P = 0.041 < 0.05, two-tailed). Indeed excluding samples from one site in Savoie like Cormet de Roselend for example will make the relationships for the 2 areas statistically identical (Mann–Whitney test U = 150, $n_{Mt_Noire} = 21$, $n_{Savoie} = 21$, P = 0.08 > 0.05, two-tailed).

The slight differences between the two locations can be perhaps explained by the difference in altitude range and topographic features of the 2 areas. For example, high-altitude soils either in Montagne Noire (around 1400 mm y⁻¹ precipitations corresponding to the altitude of around 1000 m) or in Savoie (2 sites: 1850 mm y^{-1} , 8696 Bq m^{-2} ; 1808 mm y^{-1} , 7039 Bq m^{-2}) have larger inventories than predicted by "classical annual precipitation–deposition relationship" [Fig. 5b, ESI 3]. This can be due to snow accumulation (Pourcelot et al., 2003) or atmospheric processes such as orographic deposition (Le Roux et al., 2008), which are not well taken into account in the AURELHY method to spatialize annual precipitations. These different hypotheses should be further investigated, for example in Pyrenees mountain range.

3.4. Chronology of radionuclide deposition and comparison with other records

The age dating of the peat core was done using the ²¹⁰Pb Constant Rate of Supply (CRS) model (Appleby, 2001). The peak of

 Table 1

 Sample geographic coordinates, radionuclide inventories and ratios.

Mountainous area	Location	Site number	Sample	Latitude	Longitude	Altitude	Mean annual	¹³⁷ Cs	Δ^{137} Cs	²⁴¹ Am
			type			(m)	precipitation	inventory	inventory	inventory
							rate $(mm y^{-1})$	$({\rm Bq}{\rm m}^{-2})$	$({\rm Bq}{\rm m}^{-2})$	$(Bq m^{-2})$
Montagne Noire	Pic de Nore	PICNO2004-1	woodland	43.4185	2.4663	1112	1500	6348	292	73
	Castan	CASTA2004-2	woodland	43.4063	2.493	635	1480	3582	106	
	Pradelles-Cabardès	PRACA2004-2	woodland	43.4059	2.4324	814	1350	4411	259	
	Les Martys	MARTY2004-4	woodland	43.4172	2.2851	793	1390	5867	238	
	Mas-Cabardès	MASCA2004-5	woodland	43.3665	2.3685	357	920	2343	145	28
	Limousis	LIMOU2004-6	woodland	43.3187	2.3987	240	738	2555	108	30
	Lespinassière	SPINA2004-7	woodland	43.4077	2.5373	610	1390	3848	261	45
	Col de Salette	COLSA2004-8	woodland	43.422	2.5668	920	1420	6865	398	
	Col de Salette	COLSA2004-9	grassland	43.422	2.5668	920	1420	4646	170	
	Cassagnoles	CASSA2004-11	woodland	43.3829	2.621	485	1200	3775	203	
	Cassagnoles	CASSA2004-12	woodland	43.3829	2.621	690	1200	3448	125	
	Cassagnoles	CASSA2004-13	grassland	43.3829	2.621	690	1220	2951	119	
	Cassagnoles	CASSA2004-14	grassland	43.3829	2.621	526	1080	3144	207	
	Cassagnoles	CASSA2004-15	grassland	43.3829	2.621	382	1200	3309	235	
	Cassagnoles	CASSA2005-1	woodland	43.3829	2.621	524	1200	2361	163	
	Pic de Nore	PICNO2005-2	grassland	43.4185	2.4663	1180	1500	5889	507	
	Le Fournas, Ferrals-Les- Montagnes	FOURN2005-4	grassland	43.4375	2.6175	763	1380	3839	306	
	Le Fournas, Ferrals-Les-	FOURN2005-7	woodland	43.4375	2.6175	761	1380	4812	386	
	Bradellos Cabardòs	DPACA2005 9	graceland	42 4050	2 1221	710	1250	5676	208	
	Los Martus	MAPTV2005-0	grassland	43.4035	2.4324	710	1200	2752	267	
	Mas Cabardàs	MASCA2005-11	grassland	43.4172	2.2031	200	020	3732	207	
	Was-Cabarues	WINSCR2005-1112	grassianu	45.5005	2.575	233	520	2332	233	
Savoie	Courchevel	COURC2006-2	grassland	45.39387	6.6327	2060	1368	2291	272	37
	Courchevel	COURC2006-3	grassland	45.40036	6.63788	1913	1284	3190	384	45
	Saint Bon	STBON2006-4	grassland	45.431715	6.634648	1199	945	1619	269	21
	Saint Bon	STBON2006-5	grassland	45.427347	6.638135	1401	980	3386	398	34
	Saint Bon	STBON2006-6	grassland	45.427347	6.638135	1401	980	2970	358	58
	Versoye	VERSO2006-7	grassland	45.664478	6.796135	1698	1550	4014	535	43
	Versoye	VERSO2006-8	grassland	45.663722	6.800828	1557	1537	3434	479	44
	Versoye	VERSO2006-9	grassland	45.663612	6.80061	1547	1535	4877	597	54
	Versoye	VERSO2006-10	grassland	45.658563	6.79606	1392	1459	3411	408	42
	Bonneval	BONNL2006-11	grassland	45.653383	6.787328	1080	1340	3228	342	48
	La Plagne	PLAGN2006-12	grassland	45.50395	6.69279	2145	1368	3256	316	46
	La Plagne	PLAGN2006-14	grassland	45.50395	6.69279	2145	1368	3300	417	41
	La Plagne	PLAGC2006-15	grassland	45.514468	6.675112	1817	1299	2967	368	43
	La Plagne	PLAGC2006-17	grassland	45.52547	6.67322	1521	1122	2808	350	38
	Saint Bon	STBON2006-18	grassland	45.44318	6.638212	820	908	3141	379	43
	Villarlurin	VILLR2006-19	grassland	45.46491	6.530807	559	906	3066	332	42
	Macôt la Plagne	BONNG2006-20	grassland	45.543362	6.650897	1030	912	3042	363	45
	Macôt la Plagne	BONNG2006-21	grassland	45.550247	6.664133	725	777	2247	331	34
	Col du Petit St Bernard	ROS2006-22	grassland	45.67702	6.8808	2175	1808	7039	670	71
	Col du Petit St Bernard	ROS2006-24	grassland	45.6616	6.86561	2006	1648	5205	519	77
	Cormelet de Roselend	ROS2006-25	grassland	45.69171	6.8771	1973	1850	8686	930	144
	Cormelet de Roselend	ROS2006-26	grassland	45.689886	6.68793	1962	1922	3910	404	62
	Cormelet de Roselend	ROS2006-27	grassland	45.69829	6.69401	1996	1905	4627	527	70
	Cormelet de Roselend	ROS2006-29	grassland	45.69554	6.72371	1721	1896	3768	417	54
	Cormelet de Roselend	ROS2006-30	grassland	45.66628	6.77428	1200	1644	4385	478	63
	Cormelet de Roselend	ROS2006-31	grassland	45.62704	6.78608	886	997	2580	338	62
	La Rosière	ROS2006-32	grassland	45.62587	6.83579	1564	1037	3641	446	44
	Col du Petit St Bernard	PSB-II	peatland	45.680287	6.883954	2050	1922	2910	200	82ª

^a Measured by gamma spectrometry.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n/	Δ^{241} Aı	²⁴¹ Am [/]	Δ^{238} Pu/	²³⁸ Pu [/]	$\Delta^{239+240}$	²³⁹⁺²⁴⁰ Pu [/]	$\Delta^{239+240}$ Pu	²³⁹⁺²⁴⁰ Pu	Δ ²³⁸ Pu	²³⁸ Pu	Δ^{241} Am
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pu	239+240	²³⁹⁺²⁴⁰ Pu	²³⁹⁺²⁴⁰ Pu	²³⁹⁺²⁴⁰ Pu	Pu/137Cs	¹³⁷ Cs	inventory	inventory	inventory	inventory	inventory
7 5.5 0.5 190 8 0.030 0.003 0.029 0.004 0.39 0.05 3 2.0 0.3 76 4 0.032 0.004 0.027 0.005 0.37 0.06 3 2.2 0.4 82 4 0.032 0.003 0.027 0.006 0.37 0.06 5 3.0 0.4 111 4 0.029 0.003 0.027 0.004 0.41 0.06								$(Bq m^{-2})$	$(Bq m^{-2})$	$(Bq m^{-2})$	$(Bq m^{-2})$	$(Bq m^{-2})$
3 2.0 0.3 76 4 0.032 0.004 0.027 0.005 0.37 0.06 3 2.2 0.4 82 4 0.032 0.003 0.027 0.006 0.37 0.06 5 3.0 0.4 111 4 0.029 0.003 0.027 0.004 0.41 0.06		0.05	0.39	0.004	0.029	0.003	0.030	8	190	0.5	55	7
3 2.0 0.3 76 4 0.032 0.004 0.027 0.005 0.37 0.06 3 2.2 0.4 82 4 0.032 0.003 0.027 0.006 0.37 0.06 5 3.0 0.4 111 4 0.029 0.003 0.027 0.004 0.41 0.06		0.05	0.55	0.004	0.025	0.005	0.050	0	150	0.5	5.5	,
3 2.0 0.3 76 4 0.032 0.004 0.027 0.005 0.37 0.06 3 2.2 0.4 82 4 0.032 0.003 0.027 0.006 0.37 0.06 5 3.0 0.4 111 4 0.029 0.003 0.027 0.004 0.41 0.06												
3 2.0 0.3 76 4 0.032 0.004 0.027 0.005 0.37 0.06 3 2.2 0.4 82 4 0.032 0.003 0.027 0.006 0.37 0.06 5 3.0 0.4 111 4 0.029 0.003 0.027 0.004 0.41 0.06												
3 2.2 0.4 82 4 0.032 0.003 0.027 0.006 0.37 0.06 5 3.0 0.4 111 4 0.029 0.003 0.027 0.004 0.41 0.06		0.06	0.37	0.005	0.027	0.004	0.032	4	76	03	2.0	3
		0.06	0.37	0.006	0.027	0.003	0.032	4	82	0.4	2.2	3
		0.06	0.41	0.004	0.027	0.003	0.029	4	111	0.4	3.0	5
		0.00	0.11	0.001	0.027	0.005	0.025			0.1	5.0	5
4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		0.07	0.41	0.005	0.026	0.006	0.039	4	89	04	23	4
		0.06	0.40	0.006	0.028	0.006	0.035	5	111	0.5	31	5
3 15 03 49 2 0030 0006 0031 0007 042 007		0.00	0.42	0.007	0.020	0.006	0.030	2	49	0.3	15	3
4 33 0.5 121 5 0.036 0.006 0.028 0.006 0.28 0.05		0.07	0.42	0.007	0.028	0.006	0.036	5	121	0.5	33	4
6 28 05 100 4 0034 0006 0028 0006 058 008		0.08	0.58	0.006	0.028	0.006	0.034	4	100	0.5	2.8	6
6 32 0.5 112 5 0.028 0.005 0.028 0.006 0.38 0.07		0.00	0.38	0.006	0.020	0.005	0.024	5	112	0.5	3.2	6
8 30 08 107 6 0.021 0.006 0.028 0.000 0.11 010		0.07	0.50	0.000	0.020	0.005	0.020	6	107	0.5	3.0	8
7 44 07 132 6 0.07 0.004 0.033 0.006 0.41 0.70		0.10	0.41	0.005	0.023	0.000	0.027	6	132	0.7	1.0	7
7 4.4 0.7 102 0 0.027 0.004 0.033 0.000 0.41 0.07		0.07	0.41	0.000	0.033	0.004	0.027	6	106	0.7	2.4	5
5 5.4 0.7 100 0 0.051 0.005 0.022 0.006 0.40 0.07		0.07	0.40	0.008	0.032	0.005	0.031	5	112	0.7	2.4	5
5 5.7 0.0 115 5 0.055 0.005 0.055 0.007 0.42 0.06		0.00	0.42	0.007	0.035	0.003	0.055	3	115	0.0	5./ 2.9	3
4 2.8 0.3 107 4 0.033 0.004 0.026 0.004 0.43 0.00 5 25 0.4 100 4 0.020 0.005 0.005 0.005 0.006		0.06	0.43	0.004	0.026	0.004	0.033	4	107	0.3	2.8	4
5 2.3 0.4 100 4 0.030 0.005 0.025 0.005 0.41 0.00		0.00	0.41	0.005	0.025	0.005	0.030	4	100	0.4	2.3	5
-5 2.5 0.4 105 4 0.053 0.000 0.025 0.005 0.42 0.07		0.07	0.42	0.005	0.029	0.000	0.033	4	105	0.4	2.9	5
0 2.0 0.4 34 4 0.034 0.000 0.020 0.000 0.41 0.08		0.08	0.41	0.000	0.020	0.000	0.034	4	94 106	0.4	2.0	6
0 5.2 0.4 100 4 0.034 0.005 0.030 0.005 0.40 0.07		0.07	0.40	0.005	0.030	0.005	0.034	4	100	0.4	5.Z	5
5 2.9 0.4 107 4 0.035 0.005 0.027 0.005 0.40 0.06		0.06	0.40	0.005	0.027	0.005	0.035	4	107	0.4	2.9	5
5 2.8 U.5 104 4 U.034 U.006 U.027 U.006 U.43 U.07		0.07	0.43	0.006	0.027	0.006	0.034	4	104	0.5	2.8	5
4 2.6 0.4 81 4 0.036 0.007 0.032 0.007 0.41 0.07		0.07	0.41	0.007	0.032	0.007	0.036	4	81	0.4	2.6	4
7 5.2 0.4 183 7 0.026 0.003 0.029 0.003 0.39 0.05		0.05	0.39	0.003	0.029	0.003	0.026	7	183	0.4	5.2	7
7 5.1 0.5 194 7 0.037 0.005 0.026 0.003 0.40 0.05		0.05	0.40	0.003	0.026	0.005	0.037		194	0.5	5.1	12
12 8.6 0.6 350 11 0.040 0.006 0.025 0.003 0.41 0.05		0.05	0.41	0.003	0.025	0.006	0.040	11	350	0.6	8.6	12
7 4.2 0.5 146 5 0.037 0.005 0.029 0.005 0.43 0.06		0.06	0.43	0.005	0.029	0.005	0.037	5	146	0.5	4.2	7
7 4.7 0.5 164 6 0.035 0.005 0.029 0.004 0.43 0.06		0.06	0.43	0.004	0.029	0.005	0.035	6	164	0.5	4.7	7
6 3.3 0.5 124 5 0.033 0.005 0.026 0.005 0.43 0.06		0.06	0.43	0.005	0.026	0.005	0.033	5	124	0.5	3.3	6
6 4.6 0.7 151 6 0.035 0.005 0.030 0.006 0.42 0.06		0.06	0.42	0.006	0.030	0.005	0.035	6	151	0.7	4.6	6
7 4.9 1.0 154 8 0.060 0.011 0.032 0.008 0.40 0.06		0.06	0.40	0.008	0.032	0.011	0.060	8	154	1.0	4.9	7
5 3.2 0.4 111 4 0.031 0.005 0.029 0.005 0.39 0.06		0.06	0.39	0.005	0.029	0.005	0.031	4	111	0.4	3.2	5
30												30

Fig. 2. Relationship between ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu total soil inventories in Savoie (squares) and Montagne Noire (diamonds).

Fig. 3. ²³⁹⁺²⁴⁰Pu/¹³⁷Cs ratio vs. ¹³⁷Cs in total soil inventories in Montagne Noire (diamonds) and Savoie (squares).

Fig. 4. ²⁴¹Am/²³⁹⁺²⁴⁰Pu vs. ²³⁸Pu/²³⁹⁺²⁴⁰Pu in total soil inventories in Montagne Noire (diamonds) and Savoie (squares). Are also shown 6 samples from South-West France (full circles – unpublished data IRSN).

Fig. 5. a. relationship between ¹³⁷Cs total soil inventories and annual precipitations in Savoie (squares), in Montagne Noire (diamonds). b. relationship between ²³⁹⁺²⁴⁰Pu total soil inventories and annual precipitations in Savoie (squares), in Montagne Noire (diamonds).

Fig. 6. ¹³⁷Cs and ²⁴¹Am distribution (Bq m⁻² per layer) vs. calendar age estimated by ²¹⁰Pb CRS model.

 ^{137}Cs and ^{241}Am is dated between 1963 and 1975 [Fig. 6], which is in good agreement with records in western Europe (Monna et al., 2009 – Fig. 1). ^{137}Cs is subject of mobilization in the peat core because of similar behaviour than K⁺ and plant retention (Turetsky et al., 2004; Rausch et al., 2005), however ^{241}Am , daughter of ^{241}Pu is relatively immobile with only three peat layers where this radionuclide is measurable. Mobility of ^{137}Cs in the peat core can perhaps explain the low ^{137}Cs inventory (2910 Bq m $^{-2}$) in comparison with nearby soils (5200–7000 Bq m $^{-2}$).

inventory, as measured by gamma spectrometry, is 82 Bq m⁻². This is in good agreement with nearby soil inventories for 241 Am (71–77 Bq m⁻²).

4. Conclusions

Our results on deposition of artificial radionuclides in two mountainous areas not impacted by Chernobyl-derived radionuclides, show that deposition over a large spectrum of precipitation rate is mainly explained by mean annual precipitation in good agreement with previous European studies. In high mountainous sites, radionuclide soil inventory in soils can be higher than predicted due to snow accumulation and orographic precipitations. Isotopic ratio of ¹³⁷Cs, ²⁴¹Am and plutonium isotopes confirm their Global Fallout origin. ²⁴¹Am and ¹³⁷Cs peaks found in peat layer agedated from the end of the sixties to beginning of the seventies confirm that radionuclides were deposited following the Nuclear Weapon tests.

Acknowledgements

We would like to thank J. Marquet, G. Salaun and F. Danic for help during the different field trips; B. Besson for help in statistics, X. Cagnat, C. Cossonet and R. Gurrarian for analysis from the LMRE and William Shotyk for use of "the peat preparation room" at Heidelberg. Constructive comments provided by two anonymous reviewers are acknowledged.

Appendix. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jenvrad.2009.10.010.

References

- Almgren, S., Nilsson, E., Erlandsson, B., Isaksson, M., 2006. GIS supported calculations of ¹³⁷Cs deposition in Sweden based on precipitation data. Science of the Total Environment 368 (2–3), 804–813.
- Aoyama, M., Hirose, K., Igarashi, 2006. Re-construction and updating our understanding on the global weapons tests ¹³⁷Cs fallout. Journal of Environmental Monitoring 8 (4), 431–438.
- Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Tracking Environmental Change Using Lake Sediments. Basin Analysis, Coring, and Chronological Techniques. In: Developments in Paleoenvironmental Research, vol. 1, pp. 171–203.
- Bénichou, P., Le Breton, O., 1986. Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques: la méthode AURELHY. Agrométéorologie des régions de moyennes montagnes. INRA 39, 51–68.
- Bénichou, P., Le Breton, O., 1987. Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques. (Taking into account the topography for the cartography of statistical rainfall fields). La Météorologie 7, 23–24.
- Bouisset, P. Calmet, D., 1997. Hyper pure gamma-ray spectrometry applied to lowlevel environmental sample measurement. In: International Workshop on the Status of Measurement Techniques for the Identification of Nuclear Signatures, pp. 73–81.
- ²⁴¹ Bunzl, K., Kracke, W., 1988. Cumulative deposition of ¹³⁷Cs, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu and ²⁴¹Am from global fallout in soils from forest, grassland and arable land in Bavaria (FRG). Journal of Environmental Radioactivity 8 (1), 1–14.
- CRIIRAD, Commission de Recherche et d'Information Indépendante sur la Radioactivité, 2003, Synthèse des mesures de la radioactivité réalisées en Montagne Noire, v. 3, 7 pp.
- Daly, G., Wania, F., 2005. Organic contaminants in mountains. Environmental Science and Technology 39 (2), 385–398.
- Eikenberg, J., Beer, H., Bajo, S., 2004. Anthropogenic radionuclide emissions into the environment. In: The Nuclear Fuel Cycle. Geological Society, London, Special Publications, vol. 236, pp. 143–151. London.
- Froidevaux, P., Dlala, J., Barraud, F., Valley, J.-F., 2004. Mesures de plutonium et d'américium dans l'environnement. In: Radioactivité de l'environnement et dose de rayonnement en Suisse. Federal Office of Public Health, 3003 Bern,

Switzerland. Available from: http://www.bag.admin.ch/themen/strahlung/00043/00065/02239 (in French) chapter 7.3.

- Givelet, N., Le Roux, G., Cheburkin, A., Chen, B., Frank, J., Goodsite, M., Kempter, H., Krachler, M., Noernberg, T., Rausch, N., Rheinberger, S., Roos-Barraclough, F., Sapkota, A., Scholz, C., Shotyk, W., 2004. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. Journal of Environmental Monitoring 6 (5), 481–492.
- Goutelard, F., Morello, M., Calmet, D., 1998. Alpha-spectrometry measurement of Am and Cm at trace levels in environmental samples using extraction chromatography. Journal of Alloys and Compounds 271–273, 25–30.
- Graustein, W.C., Turekian, K.K., 1989. The effects of forests and topography on the deposition of sub-micrometer aerosols measured by lead-210 and cesium-137 in soils. Agricultural & Forest Meteorology 47 (2–4), 199–220.
- Hardy, E.P., Krey, P., Volchok, H.L., 1973. Global inventory and distribution of fallout plutonium. Nature 241, 444–445.
- Hodge, V., Smith, C., Whiting, J., 1996. Radiocesium and plutonium: still together in "background" soils after more than thirty years. Chemosphere 32 (10), 2067–2075.
- Jia, G., Testa, C., Desideri, D., Guerra, F., Meli, M.A., Roselli, C., Belli, M.E., 1999. Soil concentration, vertical distribution and inventory of plutonium, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs in the Marche region of central Italy. Health Physics 77, 52–61.
- Le Roux, G., Pourcelot, L., Masson, O., Duffa, C., Vray, F., Renaud, P., 2008. Aerosol deposition and origin in French mountains estimated with soil inventories of ²¹⁰Pb and artificial radionuclides. Atmospheric Environment 42 (7), 1517–1524.
- Mitchell, P.I., Sanchez-Cabeza, J.A., Ryan, T.P., Mcgarry, A.T., 1990. Preliminary estimates of cumulative caesium and plutonium deposition in the Irish terrestrial environment. Journal of Radioanalytical and Nuclear Chemistry 138 (2), 241–256.
- Monna, F., van Oort, F., Hubert, P., Dominik, J., Bolte, J., Loizeau, J.-L., Labanowski, J., Lamri, J., Petit, C., Le Roux, G., Château, C., 2009. Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments. Journal of Environmental Radioactivity 100 (1), 9–16.
- Pourcelot, L., Louvat, D., Gauthier-Lafaye, F., Stille, P., 2003. Formation of radioactivity enriched soils in mountain areas. Journal of Environmental Radioactivity 68 (3), 215–233.
- Pourcelot, L., Steinmann, P., Froidevaux, P., 2007. Lower variability of radionuclide activities in upland dairy products compared to soils and vegetation: implication for environmental survey. Chemosphere 66 (8), 1571–1579.
- Rausch, N., Nieminen, T., Ukonmaanaho, L., Le Roux, G., Krachler, M., Cheburkin, A.K., Bonani, G., Shotyk, W., 2005. Comparison of atmospheric deposition of copper, nickel, cobalt, zinc, and cadmium recorded by Finnish peat cores with monitoring data and emission records. Environmental Science and Technology 39 (16), 5989–5998.
- Renaud, P., Pourcelot, L., Métivier, J.-M., Morello, M., 2003. Mapping of ¹³⁷Cs deposition over eastern France 16 years after the Chernobyl accident. Science of the Total Environment 309 (1–3), 257–264.
- Renaud, P., Métivier, J.M., Castelier, L., Pourcelot, L., Louvat, D., 2004. Cartographie des dépôts de ¹³⁷Cs en mai 1986 sur l'ensemble du territoire français métropolitain. Radioprotection 39, 23–38.
- Renaud, P., Garcia-Sanchez, L., Métivier, J.M., Pourcelot, L., Champion, D., 2005. Phenomenological and analytical interpretation of the rain-deposit relation used for the reconstitution of the previous 137Cs next term deposits in France after the Chernobyl accident. IRSN Report 2005-03.
- Roe, G.H., 2005. Orographic precipitation. Annual Review of Earth and Planetary Sciences 33, 645–671.
- Roussel-Debet, S., Renaud, P., Métivier, J.M., 2007. ¹³⁷Cs in French soils: deposition patterns and 15-year evolution. Science of The Total Environment 374 (2–3), 388–398.
- Sanchez-Cabeza, J.A., Garcia-Talavera, M., Costa, E., Peña, V., Garcia-Orellana, J., Masqué, P., Nalda, C., 2007. Regional calibration of erosion radiotracers (210Pb and 137Cs): atmospheric fluxes to soils (northern Spain). Environmental Science & Technology 41 (4), 1324–1330.

Sutherland, R.A., 1996. Caesium-137 soil sampling and inventory variability in reference locations: a literature survey. Hydrological Processes 10 (1), 43–53.

Turetsky, M.R., Manning, S.M., Wieder, R.K., 2004. Dating recent peat deposits. Wetlands 24 (2), 324–356.