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Abstract: This article proposes an analytical method for decomposing a dynamic nonlinear
system into a multiple model form in order to reduce its complexity and to study more
easily identification, stability analysis and controller design problems. The majority of existing
methods are order reduction based techniques, which come with an information loss of the
initial system, whereas the method proposed here avoids this particular loss. The multiple
model constitutes an efficient tool to represent nonlinear systems. These are decomposed into
several linear time invariant systems (LTI) which are weighted and aggregated that allows to
benefit from important analysis tools. This method is applied to a simplified activated sludge
reactor model.
Keywords: dynamic modeling; reduction; weighting functions; subsystems; wastewater treatment

1. INTRODUCTION

The complexity problem of dynamic nonlinear systems
appears in a great number of scientific and engineering do-
mains. Some decomposition and simplification techniques
were developed in the last years, in order to realize a
complexity reduction, according to objectives like identifi-
cation, controller design, stability analysis.
In most studies, the complexity reduction consists in the
reduction of the system order that comes with an infor-
mation loss (Dolgin and Zeheb [2005], Petzold and Zhu
[1999], Sayesel and Barlas [2006]).
Another way to reduce the complexity of dynamic nonlin-
ear systems is to rewrite the nonlinear system in a much
easier way, by decomposing it into much simpler unities,
without loosing information.
The multiple model (MM) representation (Murray-Smith
and Johansen [1997]) constitutes actually a commonly
used tool for nonlinear system modeling. The MM formal-
ism is based on a decomposition of the system dynamic
behavior into several operating zones, each zone being
characterized by a submodel. Depending on the system
evolution in each zone, each submodel contributes more
or less to the approximation of the global system be-
havior. The contribution of each submodel in the global
model, which is a convex combination of submodels, is
defined by a weighting function. In the literature several
equivalent terminologies are used to define this class of
models: the MM (Murray-Smith and Johansen [1997]), the
fuzzy Takagi-Sugeno model (Takagi and Sugeno [1985]),
the polytopic linear model (PLM) (Angelis [2001]).
The convenience of using this type of models is that impor-
tant properties like stability, controllability, observability,
extensively used in the case of linear time-invariant sys-

tems (LTI) can be generalized, at least partially, to MM
if the constitutive submodels are linear and for particular
weighting functions (Akhenak et al. [2004]).
The MM structure is then used here to reduce the complex-
ity of a simplified ASM1 model (Activate Sludge Model
no.1) (Olsson and Newell [1999]) which describes a bio-
logical degradation process of an activate sludge reactor.
Different linearization techniques were proposed, like a
linearization around one or several operating points (Smets
et al. [2006]) in order to obtain a multiple model. The
loss of information constitutes the first drawback of this
technique. Secondly, the choice of premise variables ex-
pressing the nonlinearities of the system, just as the choice
of different operating points, still remain very delicate.
Afterwards, we will present a systematic procedure to
transform a nonlinear system by rewriting it into a MM
form, avoiding the major drawbacks: the transformation is
realized without loss of information, the choice of different
operating points is no longer necessary and the choice of
premise variables is realized in a more precise way. Starting
with a general form of nonlinear system with bounded non-
linearities, a MM state representation is realized. This MM
representation constitutes a quasi linear parameter varying
(quasi-LPV) system because the convex combinations of
constant matrices calculated from the polytope vertices
give use to matrices with variable parameters. The vertices
are obtained using the convex polytopic transformation
(CPT) (Wang et al. [1996]). The constant matrices define
the submodels and the nonlinearities are rejected into the
submodel weighting functions. The MM obtained with this
method is not unique, it depends on the choice of the
scalars defining the CPT and on the quasi-LPV model
structure. This method and its characteristics will be
pointed out by accentuating on biological reactor model.



2. METHODOLOGY

This section is dedicated to a general methodology to
transform a nonlinear system presented in a general form
into a multiple model. The proposed method is totally
analytical and the obtained MM is equivalent to the initial
nonlinear system i.e. the two representations give the same
responses. This will be illustrated on a simplified activated
sludge reactor model.
Considering a nonlinear system with bounded nonlineari-
ties, the MM form is written. In general, for a nonlinear
dynamic system, this representation is not unique, that
is the reason why different criteria of choice for a MM
form have to be defined to match the study objectives. To
each MM form corresponds a premise variable set. Each
premise variable will be partitioned in two parts using the
convex polytopic transformation (Morère [2000]). The two
partitions of each premise variable will contribute to the
construction of the corresponding weighting functions of
the MM. The multiple model will thus be a convex combi-
nation of linear submodels (Murray-Smith and Johansen
[1997]), the nonlinearity being transferred into weighting
functions related to each submodel.

2.1 Analytical method of structure simplification

The activated sludge reactor model, like a large category
of nonlinear dynamic systems, can be represented by:

{

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

(1)

where f (x (·) , u (·)) ∈ R
n and g (x (·) , u (·)) ∈ R

l.
To reduce the complexity of nonlinear dynamic systems
(1), a system decomposition into a multiple model form
is realized. This type of model allows us to represent
nonlinear dynamic systems into a convex combination of
linear submodels:



















ẋ(t) =

r
∑

i=1

µi(x, u) [Aix(t) + Biu(t)]

y(t) =

r
∑

i=1

µi(x, u) [Cix(t) + Diu(t)]

(2)

x ∈ R
n is the state vector, u ∈ R

m is the input
vector and y ∈ R

l the output vector. Ai, Bi, Ci, Di

are constant matrices of appropriate dimensions. The
function µi(x, u) represents the weight of the ith submodel
{(Ai, Bi, Ci,Di}. The weighting functions µi(x, u) have
the following property:

r
∑

i=1

µi(x, u) = 1 and µi(x, u) ≥ 0,∀(x, u) ∈ R
n × R

m

In order to obtain the multiple model form, first the
system will be transformed in a quasi-LPV form. This is
an intermediate form which allows to obtain the multiple
model structure. Under the hypothesis that f(x(t), u(t))
and g(x(t), u(t)) are continuous and bounded in U ⊆ R

n

with f(0, ·) = 0 and g(0, ·) = 0, the system (1) can be
represented in a quasi-LPV form:

{

ẋ(t) = A(x(t), u(t))x(t) + B(x(t), u(t))u(t)
y(t) = C(x(t), u(t))x(t) + D(x(t), u(t))u(t)

(3)

where A (x, u) ∈ R
n×n, B (x, u) ∈ R

n×m, C (x, u) ∈ R
l×n,

D (x, u) ∈ R
l×m.

Let us denote ai,j(x, u) (resp. bi,j(x, u), ci,j(x, u) and
di,j(x, u)) the entry of A(x, u) (respectively B(x, u),
C(x, u) and D(x, u)) lying on the ith row and the jth

column.
The matrix function A(x, u) is in this case given by:

A(x, u) =







a1,1(x, u) · · · a1,n(x, u)
...

an,1(x, u) · · · an,n(x, u)






(4)

B(x, u), C(x, u) and D(x, u) are constructed in the same
way with appropriate dimensions.
Considering the quasi-LPV form resulting from system (1)
and given in an explicit way in (3), we define the premise
variable set Vz in the following way:

Vz =
{

ai,q(x, u)
∣

∣ai,q 6= const, i = 1, n, q = 1, n
}

∪
{

bi,s(x, u)
∣

∣bi,s 6= const, i = 1, n, s = 1,m
}

∪
{

cj,q(x, u)
∣

∣cj,q 6= const, j = 1, l, q = 1, n
}

∪
{

dj,s(x, u)
∣

∣dj,s 6= const, j = 1, l, s = 1,m
}

where 1, n = {1, ..., n} and when a·,· 6= const. means that
a·,· does not reduce to a constant value. In fact every time
varying entry of the matrices A(x, u), B(x, u), C(x, u) and
D(x, u) will be considered as a decision variable, denoted
zi(x, u).
Subsequently, this set (Vz) is noted more simply:

Vz = {z1(x, u), . . . , zp(x, u)}

where p (verifying p ≤ (n+ l)(n+m)) denotes the number
of premise variables and is the number of nonlinearities
identified using the quasi-LPV form of the system (1).
z1(x, u), . . ., zp(x, u) are the premise variables.
Remark 1. (n+l)×(n+m) represents the largest number
of premise variables. However, for practical applications
the number of premise variables is less that this bound.
In general, the quasi-LPV form (3) for a nonlinear system
of the form (1) is not unique; for each quasi-LPV form
exist a particular premise variable set; choosing a quasi-
LPV form is equivalent to choose the premise variable set.
The choice of the premise variable set Vz is important,
because it has an influence on the submodel numbers
and on the global model structure. This is a degree of
freedom that should be used to ease the controllability,
the observability and the stability analysis studies. First
of all, the controllability/observability of each submodel
is necessary to ensure the controllability/observability of
the global system, represented in a multiple model form
(Guerra et al. [2008]). Thus, the quasi-LPV forms pro-
ducing submodels which are not controllable/observable
will not be considered. However it should be pointed out
that this is not a sufficient condition to ensure the con-
trollability/observability of the multiple model (Murphey
and Burdick [2002]). Secondly, in the stability analysis
study of multiple model, different techniques are proposed
to reduce the number of LMI (Linear Matrix Inequality)
conditions, which extend the solution existence (Bergsten
et al. [2002]) and leads to less computational requirement
(Tanaka et al. [2007]). Due to the convexity of the interpo-
lation made between the submodels, the LMI are verified



for all the vertices. As a consequence, the number of LMI
to be satisfied is linear or polynomial in the number of
submodels (Tanaka and Wang [2001]). That is the reason
why it is tried to find a multiple model composed by a
minimal number of submodels. This number is related to
the number of premise variables, so that a quasi-LPV form
which has a set of minimal number of premise variables
will be preferred. Besides that, the complexity of the LMI
conditions increases with the number of state variables
involved. In order to ensure the solution existence, the
dimension of the state vector should be made as small as
possible (Bergsten et al. [2002]). Taking into account the
previous remarks, the following rules can guide the choice
of the quasi-LPV form leading to the simplest model:

• Eliminate all quasi-LPV forms for which the matrices
have null columns (B) and/or rows (C).

• Identify the decompositions that contain common
premise variables for different state and/or output
equations (3), reducing in this way the number of
premise variables.

• Among quasi-LPV forms for which the premise vari-
ables zi(x, u) (i = 1, ..., p) depend on the same num-
ber of state variables, choose the quasi-LPV form that
contains the minimal number of premise variables
zi(x, u) (taking into account the next rule).

• Among quasi-LPV forms that have the same number
of premise variables zi(x, u) (i = 1, ..., p), choose
the quasi-LPV form for which the premise variables
zi(x, u) depend on a minimal number of state vari-
ables.

Let us introduce a notion used here after: the convex
polytopic transformation.
Lemma 1. Let h(x(t),u(t)) be a bounded and continuous
function from [x0, x1] × [u0, u1] to R, with x0, x1 ∈ R

n,
u0, u1 ∈ R

m. Then there exist two functions

Fi : [x0, x1] × [u0, u1] 7−→ [0, 1] (i = 1, 2)

(x(t), u(t)) 7−→ Fi(x(t), u(t))

with F1(x(t), u(t)) + F2(x(t), u(t)) = 1 such as:

h(x(t), u(t)) = F1(x(t), u(t)) · h1 + F2(x(t), u(t)) · h2

for all h1 ≥ max
x,u

{h(x, u)} and h2 ≤ min
x,u

{h(x, u)}

The two functions F1 and F2 are defined as:

F1(x(t), u(t)) =
h(x(t), u(t)) − h2

h1 − h2

F2(x(t), u(t)) =
h1 − h(x(t), u(t))

h1 − h2

Let us note that this decomposition is not unique.
After the choice of a quasi-LPV form and of the premise
variables (using the rules mentioned above), a convex
polytopic transformation for the p premise variables is
performed.

zj(x, u) = Fj,1(zj) · zj,1 + Fj,2(zj) · zj,2 (5)

Fj,1(z1) =
zj(x, u) − zj,2

zj,1 − zj,2

Fj,2(z1) =
zj,1 − zj(x, u)

zj,1 − zj,2

(6)

zj,1 = max
x,u

{zj(x, u)}

zj,2 = min
x,u

{zj(x, u)}
(7)

Using the convex polytopic transformation (Lemma 1), we
generate the 2p submodels of a MM characterized by p
premise variables. Each premise variable is thus described
like in (5) with the partitions (6), and the scalars zj,1 and
zj,2 defined in (7), for all j = 1, ..., p.
To each submodel i corresponds a p-uplet σi which codes
the partitions of the premise variables occuring in the
corresponding weighting function, just like in table 1,
where the case of three premise variables is illustrated.
Considering the ith row, the entries equal to 1 indicate the
partition of each premise variable, intervening in the ith

weighting function.. Multiplying the functions describing
these partitions, we obtain the corresponding weighting
function µi(z):

µi(z) = µi(x, u) =

p
∏

k=1

Fk,σk
i
(zk(x, u)) (8)

where σk
i represents the index in the kth position in the

p-uplet σi. Then
r
∑

i=1

µi(z) = 1 and µi(z) ≥ 0(i = 1, ..., r),

since:

Fj,1(zj(x, u)) + Fj,2(zj(x, u)) = 1,∀j = 1, ..., p

Remark 2.The number of submodels that constitute the
multiple model is r = 2p ≤ 2(n+l)(n+m).

The matrices with variable parameters intervening in the
quasi-LPV form of system (1) are linear combinations of
constant matrices (Aj , Bj , Cj , Dj); for example, the matrix
A(x, u) may be expressed in the following way:

A(x, u) = A0 +
∑

j∈IA

zj(x, u) · Aj (9)

where the set IA contains all the indexes corresponding to
the premise variables which are contained in the entries of
the matrix A(x, u). The matrix A0 contains the constant
entries (ai,j) of the matrix A(x, u). The matrix Aj contains
at the position corresponding to zj the constant term 1,
and zero for all the other positions.
In the matrices A(x, u), B(x, u), C(x, u) and D(x, u),
written like in (9), call upon the premise variables zj for
j = 1, ..., p; in this way, the matrices A, B, C and D
will be evaluated at the vertices of the polytope defined
by the premise variable partitions that intervene in these
matrices for determining the matrices Ai, Bi, Ci and
Di (i = 1, ..., r), that are constant coefficients matrices
relatives to each submodel:

Ai = A0 +
∑

j∈IA

z
j,σ

j

i

· Aj (10)

Bi, Ci and Di can be written in the same way.

We can give the following result:

The multiple model (2) which represents a convex combi-
nation of linear submodels {(Ai, Bi, Ci,Di)} (i = 1, ..., r)
is equivalent to the system (1).

For reasons of space the proof of this theorem can not be



developed here.
We can notice that obtaining a MM with this method
generally needs neither to make some approximation nor
to choose linearization points.
This method is illustrated in the next session with a
biological reactor model.

3. THE ACTIVATED SLUDGE REACTOR
MODELING

3.1 The biological reactor model

In this section, some general considerations are given
concerning an activated sludge reactor model, the reduced
ASM1 model: the carbonated pollution part of ASM1
model will be considered.
The activated sludge wastewater treatment consists in
mixing used waters with a rich mixture of bacteria in order
to degrade the organic matter. In the activated sludge
reactor study, several operating modes can be considered:
reactor with constant volume, regulation from a reference
volume, free flow at the output reactor, controllable input
and output flows. The first situation is reported here.
The elimination process of carbonated pollution is realized
in the bioreactor-clarifier group. The simplified diagram
is given in figure 1. The reactor-clarifier group can be
represented by the following nonlinear system:


















































































dV (t)

dt
= qin(t) + qR(t) − qout(t)

d(V (t) · XBH(t))

dt
= qin(t)XBH,in(t) + qR(t)XBH,R(t)

− qout(t)XBH,out(t) + rH(t)V (t)

d(V (t) · SS(t))

dt
= qin(t)SS,in(t) + qR(t)SS,R(t)

− qout(t)SS,out(t) + rS(t)V (t)

d(V (t) · SO(t))

dt
= qin(t)SO,in(t) + qR(t)SO,R(t)

− qout(t)SO,out(t) + rO(t)V (t)

+ Kqa(t)V (t)(SO,sat − SO(t))

(11)

where the variables involved are: V the reactor volume,
XBH the heterotrophic biomass concentration, XBH,R

the recycled one, SS the fast biodegradable substrate
concentration, SO the dissolved oxygen concentration, q
the flow and qa the air flow. The in and out indexes
correspond respectively to the reactor input and output,
qR, qW are respectively the recycled and the rejected flow.
rH , rS and rO representing the kinetics of heterotrophic
biomass XBH , carbon SS and oxygen SO reactions in a
heterotroph and aerobic environment are modeled by:






































rH = µH

SS

KS + SS

SO

KOH + SO

XBH − bHXBH

rS = −
1

YH

µH

SS

KS + SS

SO

KOH + SO

XBH

+ (1 − f)bHXBH

rO =
YH − 1

YH

µH

SS

KS + SS

SO

KOH + SO

XBH

(12)

The time dependence of different variables will not be
explicitly mentioned in the future equations, in order to

facilitate the writing.
The different coefficients intervening in (11) and (12) are:
SO,sat = 10 [g/m3] (oxygen saturation concentration),
KS = 20 [g/m3] and KOH = 0.2 [g/m3] (half-saturation
constants), YH = 0.6 (g cell COD formed) and f = 0.1
(conversion rate coefficients for the products in differ-
ent reactional processes (increase or mortality)), bH =
0.4 [1/24h] and µH = 3.733 [1/24h] (heterotrophic kinetic
coefficients), K = 2.3 [1/m3] (regulator gain in oxygen).
The clarifier is supposed to be perfect with no internal
dynamic process and no biomass in the effluent. In this
case, we can write:

(qin + qR)XBH = (qR + qW )XBH,R

SS,R = SS
(13)

Under the reactor homogeneity hypothesis, the following
assumptions are made:

{

XBH,out = XBH

SS,out = SS

SO,out = SO

It is supposed that the dissolved oxygen concentration at
the reactor input (SO,in) is null.
In general, qR and qW represent fractions of input flow qin:

qR = fR qin, 1 ≤ fR ≤ 2

qW = fW qin, 0 < fW < 1

The reactor volume is assumed to be constant and thus:
qout = qin + qR. Replacing rH , rS and rO given in
(12) and taking into account the above assumptions (by
eliminating the first equation which corresponds to the
volume variation) then the system (11) becomes:










































































ẊBH =
qin

V
XBH,in −

qW

V

qin + qR

qW + qR

XBH

+µH

SS

KS + SS

SO

KOH + SO

XBH − bHXBH

ṠS =
qin

V
(SS,in − SS) + (1 − f)bHXBH

−
µH

YH

SS

KS + SS

SO

KOH + SO

XBH

ṠO = −
qin

V
SO + Kqa (SO,sat − SO)

+
YH − 1

YH

µH

SS

KS + SS

SO

KOH + SO

XBH

(14)

3.2 The multiple model for the biological reactor

To obtain the multiple model form, in a first step, the
system (14) has to be transformed into a quasi-LPV form,
just as in (3). Taking into account the rules mentioned
in the previous section, the chosen quasi-LPV form is
represented by:

A(z1, z2, z3) =

(

a1,1 0 0
a2,1 a2,2 0
a3,1 0 a3,3

)

x =

(

XBH

SS

SO

)

B(z2) =

(

b1,1 0 0
0 b2,2 0
0 0 b3,3

)

u =

(

XBH,in

SS,in

qa

)

(15)



where

a1,1 = µH · z1 −
fW (1 + fR)

fW + fR

· z2 − bH

a2,1 = −
1

YH

µH · z1 + (1 − f)bH

a2,2 = −z2

a3,1 =
YH − 1

YH

µH · z1

a3,3 = −K · z3 − z2

b1,1 = b2,2 = z2

b3,3 = K · SO,sat

(16)

The system presents three nonlinearities and we have
chosen as premise variables:



















z1(SS , SO) =
SS

KS + SS

·
SO

KOH + SO

z2(qin, V ) =
qin

V
z3(qa) = qa

(17)

Remark. The flow qin is an input for the biological reactor
and is not integrated in the quasi-LPV form (15) because
this will generate a null column in the matrix B, which is
not a desired structure for controllability studies.

In a second step, using the transformation presented in
Lemma 1, the three premise variables z1, z2 and z3

are written like in (5), where each premise variable is
constructed as a convex sum (6) of scalars (7)( j = 1, ..., 3).
The maxima and the minima in (7) are calculated using
the fact that V , SS , SO, qa and qin are bounded.
In table 1, are generated all the submodels of a multiple
model characterized by three premise variables zj(x, u)
(j = 1, ..., 3) which are partitioned into two parts, the
number of submodels being equal to 23.
To each submodel i corresponds a triplet σi which codes

the partitions of the premise variables zj(x, u) (j = 1, ..., 3)
intervening in the corresponding weighting function. In
this way, in the table 1, considering the ith row, the entries
equal to 1 indicate the partition of each premise variable,
intervening in the weighting function µi(x):

µ1(x) = F1,1(z1)F2,1(z2)F3,1(z3)

µ2(x) = F1,1(z1)F2,1(z2)F3,2(z3)

µ3(x) = F1,1(z1)F2,2(z2)F3,1(z3)

µ4(x) = F1,1(z1)F2,2(z2)F3,2(z3)

µ5(x) = F1,2(z1)F2,1(z2)F3,1(z3)

µ6(x) = F1,2(z1)F2,1(z2)F3,2(z3)

µ7(x) = F1,2(z1)F2,2(z2)F3,1(z3)

µ8(x) = F1,2(z1)F2,2(z2)F3,2(z3)

To express the constant coefficient matrices Ai and Bi

of (2), characterizing each submodel i (i = 1, ..., 8) we
use the matrices defined in (15). Let us note that the
premise variables z1, z2 and z3 (resp. z2) are involved
in A(x, u) (resp. B(x, u)). In this way, we will evaluate
the matrices A and B at the vertices of the polytope
defined by the partitions of premise variables which occur
in these matrices. For example, to determine the matrices
A3 and B3, we proceed in the following way. The triplet
corresponding to the third line is retained σ3 = (1, 2, 1),
which has as components σk

3 (k = 1, ..., 3) that can take

the values 1 or 2. Taking into account (15), (16) and (17),
A3 = A(z1,σ1

3

, z2,σ2

3

, z3,σ3

3

) and B3 = B(z2,σ2

3

).

In a more general way Ai and Bi (i = 1, ..., 8) are noted:

Ai = A(z1,σ1

i
, z2,σ2

i
, z3,σ3

i
)

Bi = B(z2,σ2

i
)

The multiple model is obtained by an interpolation of the
eight previous submodels, just as in (2) (r = 8). In figure
2 we can see the evolution of the system (14) (represented
in the form (2)) and the weighting functions of the mul-
tiple model obtained for fR = 1.0, fW = 0.037, with

the initial conditions: (V (0), XBH(0), SS(0), SO(0))
T

=
(1250, 887, 4.1, 1.0)T . The volume is expressed in m3. For
space and clarity reasons only four weighting functions are
presented in the figure (µ5, µ6, µ7, µ8). It has to be pointed
out that the evolution of the weighting functions depends
on the control input evolution.

4. CONCLUSION

This article proposes a general analytical method to sim-
plify the complexity of a nonlinear system. This substitu-
tion consists in finding a set of submodels with a simple
linear structure and a set of appropriated weighting func-
tions in order to combine these submodels to constitute
the global model.
Let us insist to the fact that in order to obtain a multiple
model, different techniques of linearization applied around
different well chosen operating points were proposed in
the literature. The major drawback is that these tech-
niques imply a loss of information. Besides, the difficulty of
choosing these different operating points is the reason why
this article proposes a more general method to rewrite the
nonlinear model into a multiple model form avoiding the
need to choose these operating points and avoiding loss of
information.
From the expression of a nonlinear system, we showed
how to realize a systematic decomposition of a system into
simpler linear systems by constructing a multiple model. It
is important to note that the obtained multiple model has
the same response that those of the initial system. Another
important aspect concerning this decomposition method is
the given possibility to reduce the number of submodels
by an adequate choice of premise variables between several
sets of candidate premise variables.
This method is applied to a simplified activated sludge
reactor model and leads to a multiple model structure
based on eight submodels. Even if in this article we have
treated the case of a reduced ASM1 model, considering
only the carbon pollution, the proposed method can be
expanded to the complete ASM1 model, the difficulties
being similar.
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Fig. 1. The diagram of activated sludge wastewater treat-
ment process

Partitions
Model z1 z2 z3 σi

i F1,1 F1,2 F2,1 F2,2 F3,1 F3,2

1 1 0 1 0 1 0 (1,1,1)

2 1 0 1 0 0 1 (1,1,2)

3 1 0 0 1 1 0 (1,2,1)

4 1 0 0 1 0 1 (1,2,2)

5 0 1 1 0 1 0 (2,1,1)

6 0 1 1 0 0 1 (2,1,2)

7 0 1 0 1 1 0 (2,2,1)

8 0 1 0 1 0 1 (2,2,2)

Table 1. Decomposition table for a multiple
model with three premise variables and two

partitions for each variable
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Fig. 2. The evolution of system (14) presented into a
multiple model form and some weighting functions of
the multiple model


