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Pareto Curves of
Multidimensional Mean-Payoff Games?

Romain Brenguier, Jean-François Raskin

Université Libre de Bruxelles (U.L.B.), Belgium

Abstract In this paper, we study the set of thresholds that the protag-
onist can force in a zero-sum two-player multidimensional mean-payoff
game. The set of maximal elements of such a set is called the Pareto
curve, a classical tool to analyze trade-offs. As thresholds are vectors
of real numbers in multiple dimensions, there exist usually an infinite
number of such maximal elements. Our main results are as follow. First,
we study the geometry of this set and show that it is definable as a
finite union of convex sets given by linear inequations. Second, we pro-
vide a Σ2P algorithm to decide if this set intersects a convex set defined
by linear inequations, and we prove the optimality of our algorithm by
providing a matching complexity lower bound for the problem. Further-
more, we show that, under natural assumptions, i.e. fixed number of
dimensions and polynomially bounded weights in the game, the problem
can be solved in deterministic polynomial time. Finally, we show that the
Pareto curve can be effectively constructed, and under the former natural
assumptions, this construction can be done in deterministic polynomial
time.

1 Introduction

Two-player zero-sum games played on graphs are adequate models for open
reactive systems [14], i.e systems maintaining a continuous interaction with their
environment. In such model, Eve (the protagonist) models the system, Adam

(the antagonist) models the environment, and a winning strategy for Eve in
this game represents a controller that enforces a good property (modeled as the
winning condition in the game) against all possible behaviors of the environment.
Recently, there has been a large effort to study quantitative extensions of those
graph games, see e.g. [6]. Those extensions are useful to model quantitative
aspects of reactive systems such as mean energy or peak energy consumption,
mean response time, etc. In practice, a system is most often exhibiting several
such quantitative aspects, and they may be conflicting, e.g. one may need to
consume more energy in order to ensure of a lower mean response time. This is
why there is a clear need to study multi-dimensional quantitative games.

In [17], the threshold problem for multi-dimensional mean-payoff games is
studied, i.e. given a d-dimensional value vector v ∈ Rd, does Eve have a strategy
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against all strategies of Adam to enforce values larger or equal to v. As weights
in the game are given as vectors in multiple dimensions, there are usually an
infinite number of incomparable thresholds that Eve is able to enforce. The set
of maximal thresholds that Eve can enforce is called the Pareto curve, it is the
classical tool to analyze trade-offs. Another application of the Pareto curve is the
study of multiplayer games. For instance to compute Nash equilibria, a multi-
player game with mean-payoff objectives is transformed into a multidimensional
mean-payoff two-player game [2], and the Pareto curve of this multidimensional
game allows us to compute the equilibria of the original multiplayer game. In
this paper, we study the Pareto curve and the set of thresholds that Eve can
enforce in a multidimensional mean-payoff games.

Contributions To effectively analyze the trade-offs in systems formalized by
multidimensional mean-payoff games, we need algorithms to answer queries
about Pareto curves or to compute an effective representation of them. This
is the subject of this paper. Our main contributions are as follows.

First, we characterize the geometry of the set of thresholds that Eve can
force: we show that this infinite set can be effectively represented as a (finite)
union of convex sets defined by linear inequations. We obtain this result both
for games where the mean-payoff is given dimension by dimension using lim inf
(Theorem 4), and for a mixture of lim inf and lim sup (Theorem 10). Using this
symbolic representation as a finite union of convex sets, it is now possible for
instance to optimize linear functions by calls to linear programming.

Second, we study the computational complexity of natural associated deci-
sion problems. We provide a Σ2P algorithm to decide if this set of thresholds
intersects a convex set defined by linear inequations, and we prove the optimal-
ity of our algorithm by providing a matching complexity lower bound for the
problem (Theorem 6). To obtain this result and several others in our paper,
we extensively use techniques from discrete geometry [10] but we also need to
establish new non-trivial results. In particular, we provide new results on the
complexity of manipulating and querying linear sets defined by sets of linear
inequations (Theorem 3). We believe that those results are of interest on their
own. Equipped with those new results, we show that, even if the Pareto curve is
represented by an exponential number of convex sets, each of them being defined
by an exponential number of linear inequations, they are well behaved. Indeed,
all the inequations that are needed to represent the Pareto curve and its down-
ward closure (the set of thresholds that can be forced by Eve), have encoding
that are bounded by polynomial functions in the size of the game.

Third, we show that it is possible to answer queries on the set thresholds that
Eve can force (Theorem 7) and to construct the Pareto curve (Theorem 8) in
deterministic polynomial time for fixed number of dimensions and polynomially
bounded weights. Those results are of practical relevance as the number of di-
mension while multiple is often quite low in practice, and polynomially bounded
weight is also a reasonable assumption, see [18,3,8] for papers where those two
properties are exploited.



Related works In [1], Alur et al. consider languages of infinite words definable
by Boolean queries over multidimensional mean-payoff automata. They study
the accumulation points of infinite runs as a way to define an acceptance condi-
tion. They do not consider the construction of the Pareto curves associated to
languages. Here, we show how to construct the Pareto curves in the more general
and challenging setting of multidimensional mean-payoff games.

In [13], Papadimitriou et al. define a general procedure to construct approx-
imations of Pareto curves. For models with fixed number of dimensions, they
identify conditions that are sufficient to ensure that this approximation can be
constructed in polynomial time. This technique has been used e.g. to provide
approximate constructions of the Pareto curves for discounted sum Markov de-
cision processes [7]. With the technique of [13], we can obtain approximations of
the Pareto curves of multidimensional mean-payoff games in polynomial time for
fixed number of dimensions. Here we provide a stronger result as we show how
to construct exact representations of the Pareto curves (and not only approx-
imations!) of multidimensional mean-payoff games in deterministic polynomial
time for fixed number of dimensions.

Structure of the paper Section 2 defines the problems that we solve. Section 3
establishes general complexity results on the geometric objects that we use in the
core of our paper. Section 4 solves the lim inf case. We concentrate on this case
first as it exhibits all the difficulties of the general case with simpler notations.
Section 5 deals with the construction of a concrete representation of the Pareto
curve. In Section 6 we solve the general problem in which lim inf and lim sup are
mixed.

2 Preliminaries

Arenas We define arenas for two players that we call Eve and Adam. An arena A
is a tuple 〈States∃,States∀,Edges〉, where:

– States = States∃ ] States∀ is a finite set of states partitioned between the
states of Eve and those of Adam;1

– Edges ⊆ States × States is the set of edges. W.l.o.g. we assume that for all
s ∈ States, there exists s′ ∈ States such that (s, s′) ∈ Edges.

A play proceeds as follows. Whenever we arrive at a state s: if s ∈ States∃,
then Eve selects a state s′ such that (s, s′) ∈ Edges; if s ∈ States∀, then Adam

selects a state s′ such that (s, s′) ∈ Edges. The game then continues from s′

and this is repeated to form an infinite sequence of states. Formally, a play
in the arena A is an infinite sequence of states ρ = ρ0ρ1 · · · such that for all
i ≥ 0, (ρi, ρi+1) ∈ Edges. We write ρ≤n for the prefix ρ0 · · · ρn. A history h
of the arena A is a (finite and non-empty) prefix of a play, i.e. an element of
States∗ · States.
1 We will write |States| for the cardinal of States.



Strategies Let A be an arena, a strategy for Eve maps histories ending in a
state of States∃ to a successor of that state. Formally, it is a function σ∃ : States∗ ·
States∃ → States, such that for all histories h and states s, (s, σ∃(h · s)) ∈ Edges.
Similarly, a strategy for Adam is a function σ∀ : States∗ · States∀ → Actions, such
that for all for all histories h and states s, (s, σ∀(h · s)) ∈ Edges. A strategy σ∀ is
memoryless if for all histories h and h′, and all states s, σ∀(h ·s) = σ∀(h

′ ·s). We
write M for the (finite) set of memoryless strategies of Adam. Let σ∃ be a strategy
for Eve, a play ρ is compatible with the strategy σ∃ if, for all k ≥ 0, if ρk ∈ States∃
then ρk+1 = σ∃(ρ≤k). We write OutcomeA(s, σ∃) for the set of plays in A that
are compatible with strategy σ∃ and have initial state s (i.e. ρ such that ρ0 = s).
These plays are called outcomes of σ∃ from s. We simply write Outcome(s, σ∃)
when A is clear from context. The set of outcomes OutcomeA(s, σ∀) of a strategy
of Adam is defined symmetrically.

Weighted game A weighted game G = 〈A, w, I, J〉 is an arena A equipped
with a weight function w : Edges 7→ Zd, and a partition of the set of dimensions
J1, dK = {1, 2, . . . , d} into I ] J = J1, dK. We call d the dimension of G. Given
a weight function w, we write wi for the projection to the i-th dimension of
the function w. We write WG for the maximal absolute value appearing in the
weights: WG = max{|wi(e)| | i ∈ J1, dK, e ∈ Edges}. The mean-payoff inferior
and mean-payoff superior over dimension i of a play ρ are given by:

MPi(ρ) = lim inf
n→∞

1

n

∑
0≤k<n

wi(ρk, ρk+1),

MPi(ρ) = lim sup
n→∞

1

n

∑
0≤k<n

wi(ρk, ρk+1).

The goal of Eve is to maximize the mean-payoff inferior for the dimensions
in I, and the mean-payoff superior for the dimensions in J . Let G be a weighted
game, s a state of G, and v ∈ Rd, we say that a strategy σ∃ ensures thresholds
v from state s if for all outcomes ρ ∈ OutcomeA(s, σ∃), for all dimensions i ∈ I,
MPi(ρ) ≥ vi, and for all dimensions j ∈ J , MPj(ρ) ≥ vj .

Pareto optimality We are interested in strategies of Eve that ensure thresholds
as high as possible on all dimensions. However, since the weights are multidimen-
sional, there is not a unique maximal threshold in general. We use the concept
of Pareto optimality to identify the most interesting thresholds. To define the
set of Pareto optimal thresholds, we first define the set of thresholds that Eve

can force:

value(G, s) =

{
v ∈ Rd | ∃σ∃ · ∀ρ ∈ Outcome(s, σ∃) ·

∀i ∈ I : MPi(ρ) ≥ vi
∧∀j ∈ J : MPj(ρ) ≥ vj

}
.

A threshold v ∈ Rd is Pareto optimal from s if is maximal in the set value(G, s).
So the set of Pareto optimal thresholds is defined as:

PO(G, s) = {v ∈ value(G, s) | ¬∃v′ ∈ value(G, s) : v′ > v}.



We refer to this set as the Pareto curve of the game. Our goal is to compute a
representation of this curve. Note that the set of thresholds that Eve can force
is exactly equal to the downward closure of the Pareto optimal thresholds, i.e.
value(G, s) =↓ PO(G, s).

Linear inequations Let a ∈ Qd be a vector in d dimensions. The associated
linear function αa : Rd 7→ R is the function αa(x) =

∑
i∈J1,dK ai ·xi that computes

the weighted sum relative to a. A linear inequation is a pair (a, b) where a ∈
Qd\{0} and b ∈ Q. The half-space satisfying (a, b) is the set 1

2space(a, b) = {x ∈
Rd | αa(x) ≥ b}. A linear equation is also given by a pair (a, b) where a ∈ Qd\{0}
and b ∈ Q but we associate to it the hyperplane hplane(a, b) = {x ∈ Rd |
αa(x) = b}. If H = 1

2space(a, b) is a half-space, we sometimes write hplane(H)
for the associated hyperplane hplane(a, b). A system of linear inequations is a
set λ = {(a1, b1), . . . , (al, bl)} of linear inequations. The polyhedron generated by
λ is the set polyhedron(λ) =

⋂
(a,b)∈λ

1
2space(a, b).

A natural problem, is to try to optimize the threshold we can ensure with
respect to a linear function α : Rd 7→ R. We are looking for a strategy σ∃ which
ensures a threshold v ∈ Rd, and such that there is no σ′∃ which ensures a thresh-
old v′ ∈ Rd, with α(v′) > α(v). To make this into a decision problem, we fix a
real b, and ask if it is possible to ensure threshold v such that α(v) ≥ b. We con-
sider a generalization of this problem which considers a set of linear inequations
instead of a single one.

Polyhedron value problem Given a mean-payoff game G, a set of linear
inequations λ over elements of Rd, the polyhedron value problem asks whether
there is a strategy σ∃ and a value v ∈ polyhedron(λ) such that σ∃ ensures v.
Note that this is equivalent to ask whether polyhedron(λ) intersects value(G, s).

Remark 1. Other works ([17,8] for instance) focus on the 0-value problem, which
is a special case of the polyhedron value problem (take as polyhedron the set
Rd+). This special case is simpler: we will show that the polyhedron value problem
is Σ2P-complete while the 0-value problem is coNP-complete [17].

Consider a system with n resources R1, . . . , Rn that are shared among d
agents A1, . . . , Ad. Two agents cannot access the same resource at the same
time and can request one resource at any time. We want to control the access to
the resources in a way that minimizes the time that is spent during the waiting
period by the different agents. This situation can be seen as a d dimensional
game, in which if Ai is waiting then the reward is −1 on the i-th dimension
and 0 otherwise. A situation with two agents and one resource is represented in
Figure 1.

On each dimension, the average corresponds to the opposite of the average
waiting time of each agent. For limit inferior objectives the controller cannot
ensure a payoff of 0 on all dimensions. However, it can ensure thresholds like
(−1, 0), (0,−1), or (− 1

2 ,−
1
2 ), and in fact all the thresholds on the line segment

from point (−1, 0) to (0,−1), or below it (this set is the set of feasible thresholds).



A1 waits R1 A1 waits R1

A2 waits R1 A2 waits R1

A1 and A2 wait R1 A1 and A2 wait R1

0, 0

0, 0

0, 0

−1, 0

0, 0

0,−1

−1, 0

0,−1

−1,−1

Figure 1. A two-dimensional mean-payoff game.
Rounded states belong to Eve and rectangles to Adam.

(0,−1)

(−1, 0)

Figure 2. Pareto curve
of the game of Figure 1.

Figure 2 shows the Pareto curve of the game. To illustrate the polyhedron value
problem, assume we want a strategy which gives at least − 1

3 on the first dimen-
sion, at least − 3

4 on the second one: this corresponds to solution of the problems
with λ = ((1, 0),− 1

3 ), ((0, 1),− 3
4 ). The frontier of this polyhedron is represented

by dotted lines on the figure. This polyhedron has a non-empty intersection with
the set of feasible thresholds, which means the problem has a solution.

3 Geometrical representations

Since our typical reader may not be familiar with all the notions of discrete
geometry that we need, we summarize in this section useful notions and prop-
erties related to convex sets which are useful for our characterization of the sets
PO(G, s) and value(G, s). For an introduction to discrete geometry, we refer the
interested reader to [10]. We also prove new results in Theorem 1, 2 and 3 on
manipulating and querying polytopes and systems of linear inequations. Those
results are necessary to prove the main theorems of our paper, and we believe
that they are of interest on their own.

To allow computational complexity measure, the size of the representations
of geometrical objects is relevant. We give here the number of bits required to
represent the objects that we manipulate. The size of a rational number r = p

q ∈
Q where p ∈ Z, q ∈ N, p and q are relatively prime, is: ||r|| = 1+dlog2(|p|+1)e+
dlog2(q + 1)e. The size of a vector v = (r1, . . . , rd) is ||v|| = d +

∑
i∈J1,dK ||ri||.

The size of an equation (a, b) is ||(a, b)|| = ||a||+ ||b|| and the size of a system of
equations λ is ||λ|| =

∑
(a,b)∈λ ||(a, b)||.

A bounded polyhedron is called a polytope. A face F of P is a subset of P of
the form F = P ∩HF , where HF is a half-space such that P ⊆ HF . In that case,
say that HF defines face F of P . A face of dimension 1 is called a vertex. If P has
dimension d′, then a face of dimension d′ − 1 is called a facet. Given a polytope
P , a complete set of facet-defining half-spaces F contains for each facet F a half-
space HF = 1

2space(aF , bF ) such that P ∩ hplane(aF , bF ) = F and P ⊆ HF .
We will write F(P ) for such a set. The convex hull of a set of points X ⊆ Rd



is the set conv(X) =
{∑

x∈X tx · x | ∀x ∈ X. tx ∈ [0, 1] ∧
∑
x∈X tx = 1

}
. The

downward closure of a set of points X ⊆ Rd, is the set ↓ X = {x | ∃x′ ∈ X. ∀i ∈
J1, dK. xi ≤ x′i}.

If X is a finite set of points, the convex hull P = conv(X) can be written
as a finite intersection of half-spaces [10], it is therefore a polytope. It can be
represented either by its extremal points or as the intersection of its facet-defining
half-spaces.

For our algorithms, it is important to be able to go from the half-space
representation to the extremal point representation and vice-versa. We need
also to bound the complexity of the objects that we obtain, i.e. we want to
ensure that the half-spaces are defined with inequations of polynomial size and
the extremal points to be representable with polynomial encodings. We will show
in Theorem 3 that this is possible.

Small solutions of large systems of equations The following theorem es-
tablishes that if a system of linear equations has a solution, then it also has a
solution with a small encoding.

Theorem 1. There is a polynomial function P1 such that for all system of equa-
tions λ of Rd, if

⋂
(a,b)∈λ hplane(a, b) 6= ∅, then there exists x ∈

⋂
(a,b)∈λ hplane(a, b)

whose representation has size smaller than P1(d)·(1+max{||(a, b)|| | (a, b) ∈ λ}).

The proof given in appendix relies on a result of [12] that we extend to non-
singular, and non-square matrices of rational numbers rather than integers. Note
also that our bound depends on the number of dimension d but not on the
number of equations as in [12].

Figure 3. Illustration of
Lemma 1 in the case of two
dimensions: In this exam-
ple, the possible witnesses
of the property are circled.

Small witnesses of large systems of inequa-
tions To decide the polyhedron value problem,
our algorithm nondeterministically constructs so-
lutions of large systems of inequations. We show
in Theorem 2 that we can restrict the guesses to
points whose representation is of polynomial size.
The proof relies on Lemma 1 that says that if a
system of inequations has a solution, then there is
one at the intersections of at most d of the hyper-
planes defined by the associated equations. This
is illustrated in Figure 3: in two dimensions, if a
collection of half-spaces (i.e. half-planes here) in-
tersect (green shaded area in the picture), then
either there is a point at the intersection of two
boundary lines which is in the intersection (this
is the case in our example for the blue points), or
one of these lines is included in the intersection
(this would be the case for instance if we only took parallel lines).



Lemma 1. Let H1, . . . ,Hn be n inequations of Rd. If
⋂n
i=1

1
2space(Hi) 6= ∅

then there are k ≤ d indexes i1, . . . , id such that:

1.
⋂k
j=1 hplane(Hij ) 6= ∅, and

2.
⋂k
j=1 hplane(Hij ) ⊆

⋂n
i=1

1
2space(Hi).

From Lemma 1, we conclude that small solutions always exists for systems
of linear inequations independently of the number of inequations. Note that the
main difference between the next theorem and Theorem 1 is that we consider
here systems of inequations rather than equations.

Theorem 2. There is a polynomial function P1 such that for all systems of in-
equations λ of Rd, if polyhedron(λ) 6= ∅ then there is a point x ∈ polyhedron(λ)
whose representation has size smaller than P1(d)·(1+max{||(a, b)|| | (a, b) ∈ λ}).

Size obtained when changing the representation of polyhedra As al-
ready recalled, it is well known that we can represent a polytope either as the
intersection of half-spaces (solutions of a system of inequations) or by the finite
set of its vertices (extremal points). Theorem 3 characterizes the complexity of
one representation w.r.t. the other. Point 1 tells us how to bound the size of
the inequations in the half-spaces representation as a function of the size of the
representation of the points in the vertices representation. Point 2 does the same
for the downward closure of the convex hull of the set of points. Point 3 tells us
how to bound the size of the representation of the vertices as a function of the
size of the inequations in the half-space representation. Proofs can be found in
the appendix.

Theorem 3. There are polynomial functions P2 and P3 such that:

1. given a finite set of points V = {v1, . . . , vn}, there are k ≤ nd inequations
(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) ·(2+
log2(max{||v|| | v ∈ V })) and such that

⋂
i∈J1,kK

1
2space(ai, bi) = conv(V ).

2. given a finite set of points V = {v1, . . . , vn}, there are k ∈ N inequations
(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) · (2+
log2(max{||v|| | v ∈ V })) and such that

⋂
1≤i≤k

1
2space(ai, bi) =↓ conv(V ).

3. given a polytope P (i.e a bounded polyhedron) represented by a system of
inequations λ, such that P =

⋂
(a,b)∈λ

1
2space(a, b), there is a finite set V of

points whose representations have size smaller than P3(d)·(2+log2(max{||(a, b)|| |
(a, b) ∈ λ})) and such that conv(V ) = P .

4 The limit inferior case

Let us fix for this section a weighted game G = 〈States∃,States∀,Edges, w, I, J〉
with J = ∅, i.e. the averages for all dimensions are defined using lim inf. In this
case, the set of thresholds that can be ensured by Eve from state s ∈ States is:

value(G, s) =
{
v ∈ Rd | ∃σ∃. ∀ρ ∈ Outcome(s, σ∃). ∀i ∈ J1, dK. MPi(ρ) ≥ vi

}
.



To obtain a geometrical characterization of this set, we first study the set of
thresholds that Eve can ensure when Adam plays according to a fixed memoryless
strategy. Then, we show that the set value(G, s) is the intersection of those sets
for all the memoryless strategies of Adam. With the results of previous section, we
deduce that if there is a solution to the polyhedron value problem, then there is
one of bounded size which allows us to justify the correctness of a Σ2P-algorithm
for this problem. Finally, we show that this algorithm has optimal worst-case
complexity by providing a matching Σ2P-lower bound.

Playing against memoryless strategies of Adam Memoryless strategies for
Adam are important as they are optimal for the threshold problem [17], i.e. if
Adam has a strategy to prevent Eve from ensuring some threshold v then he has
a memoryless one to do so. Our analysis relies on simple cycles. Let S ⊆ States
be a subset of states of the arena of G. A simple cycle within S is a finite
sequence of states s0 · s1 · · · sn ∈ S∗, such that s0 = sn, and for all i and j,
0 ≤ i < j < n, si 6= sj . We write C(S) for the set of simple cycles of A within S.
Let σ∀ ∈ M be a memoryless strategy for Adam, this strategy induces the graph
G(σ∀) = 〈States,Edgesσ∀〉 where Edgesσ∀ = {(s, s′) ∈ Edges | s ∈ States∃ ∨ (s ∈
States∀ ∧ σ∀(s) = s′)} which is a subgraph of the game arena in which Adam

plays according to the memoryless strategy σ∀. We denote by SCC(s, σ∀) the set
of strongly connected components accessible from s in G(σ∀).

Lemma 2. For all σ∀ ∈ M, for all infinite paths ρ = ρ0ρ1 . . . ρn . . . in G(σ∀),
let S ∈ SCC(ρ0, σ∀) be such that Inf(ρ) ⊆ S, then

MP(ρ) ∈↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
.

Proof. An accumulation point of a sequence x0, x1, . . . , xn, . . . of vectors in Rd
is a vector x ∈ Rd such that for every open set containing x, there are in-
finitely many elements in the sequence which belong to the open set. It is proved
in [1] that if a run ρ gets trapped for ever in the SCC S (i.e Inf(ρ) ⊆ S)
the set of accumulation points of the sequence ( 1

n · w(ρ≤n))≤n is included in

conv
({

1
|c| · w(c) | c ∈ C(S)

})
. Now, let us show that MP(ρ) is smaller than any

accumulation point of the infinite sequence of vectors ( 1
n · w(ρ≤n))≤n. Indeed,

if x be an accumulation point of that sequence, then for all dimension i the se-
quence 1

nwi(ρ≤n) comes infinitely often arbitrarily close to xi. This implies that
lim inf 1

nwi(ρ≤n) is smaller than xi for all dimensions i. Therefore MP(ρ) ≤ x

and MP(ρ) ∈↓ {x} ⊆↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})
. ut

s11, 0 0, 1

Figure 4. Example of a game
where MP(ρ) does not belong to

conv
({

1
|c| · w(c) | c ∈ C(S)

})
for all path ρ.

Note that it is not always the case
that MP(ρ) is in the convex hull of{

1
|c| · w(c) | c ∈ C(S)

}
. The example Fig-

ure 4 shows that the downward closure opera-
tor is necessary. In this example, the sequence



of vectors (1, 0)2
1 ·(0, 1)2

2 ·(1, 0)2
3 ·(0, 1)2

4 · · ·
which can be obtained with a path ρ that cy-
cles on state s1 is such that MP(ρ) = (0, 0)
which is not in the convex hull of (1, 0) and
(0, 1) (this convex hull is the set of points
(t, 1− t) with t ∈ J0, 1K).

Lemma 3. For all σ∀ ∈ M, for all s ∈ States, for all S ∈ SCC(s, σ∀), for

all v ∈ conv
({

1
|c| · w(c) | c ∈ C(S)

})
, there exists an infinite path ρ of G(σ∀)

starting from s such that MP(ρ) = v.

Proof. Let {c1, c2, . . . , cn} be a set of simple cycles in S such that v =
∑n
i=1 λi

1
|ci| ·

w(ci), with
∑n
i=1 λi = 1, and λi ∈ [0, 1], i.e. v is a linear combination of the aver-

age weights of the simple cycles. It is proved in [17, Lemma 11], that we can build
a path ρ that starts in s, reaches the SCC S and then cycles within S between
the simple cycles c1, c2, . . . , cn in such a way that the MP on each dimension j,
1 ≤ j ≤ d is equal to vj =

∑n
i=1 λi

1
|ci| · w(ci)j . ut

Characterizing the feasible thresholds As Adam can play optimally with
memoryless strategies, the set of feasible thresholds that Eve can force is obtained
by considering the intersection of all the sets of thresholds that she can enforce
against those memoryless strategies of Adam.

Theorem 4. Let G be a game and s a state of G:

value(G, s) =
⋂
σ∀∈M

⋃
S∈SCC(s,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Proof. For the left to right inclusion. Assume that σ∃ is a winning strategy of Eve
for the threshold v. For all memoryless strategies σ∀ ∈M of Adam, we have that
ρ = Outcome(s, σ∃, σ∀) is such that MP(ρ) ≥ v. By Lemma 2, MP(ρ) belongs to

the set ↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})
, and as this set is downward closed it

contains v.
For the right to left inclusion. Take any v in the set on the right. By Lemma 3,

for all memoryless strategy σ∀ ∈ M of Adam, we know that there exists an in-
finite path ρ starting from s in the graph G(σ∀) and such that MP(ρ) = v.
This is equivalent to say that there exists a strategy σ∃ for Eve such that
MP(Outcome(s, σ∃, σ∀)) = v. So, this means that memoryless strategies of Adam
cannot force from s an outcome with MP which is not at least equal to v. As
memoryless strategies of Adam are optimal, it means that Adam cannot obtain
from s an outcome with MP which is not at least equal to v, no matter the strat-
egy that he plays. As multidimensional mean-payoff games are determined [17],
it means that Eve has a strategy to force outcomes from s with a MP at least
equal to v, which in turn implies that v ∈ value(G, s). ut

Remark 2. As a corollary of Thm. 4, notice that the set value(G, s) is closed.



Small witnesses for polyhedron value problem We now show that if
value(G, s) ∩ polyhedron(λ) 6= ∅, then there is a witness whose representa-
tion is polynomial.

Theorem 5. There is a polynomial function P4 such that, for all weighted
game G, for all states s, and system of linear inequations λ, if value(G, s) ∩
polyhedron(λ) 6= ∅ then there exists x ∈ Qd such that:

1. x ∈ value(G, s) ∩ polyhedron(λ)
2. ||x|| ≤ P4(d) · (2 + max{||(aj , bj)|| | (aj , bj) ∈ λ}+ log2((WG + 1) · (|States|+

1))).

Proof. It follows from Theorem 4 that value(G, s)∩ polyhedron(λ) 6= ∅ if, and
only if, there is a function f : M 7→ 2States, such that f(σ∀) ∈ SCC(s, σ∀) for all

strategy σ∀ and polyhedron(λ) intersects
⋂
σ∀∈M ↓ conv

({
1
|c| · w(c) | c ∈ C(f(σ∀))

})
.

The values 1
|c| ·w(c) such that c ∈ C(S) for some SCC S, are such that their nu-

merator is smaller in absolute value than WG ·(|States|+1) and their denominator
is smaller in absolute value than |States| + 1. Let a = (WG + 1) · (|States| + 1).

We know by Theorem 3.3 that the set ↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})
can be

written as the intersection of half-spaces H1, . . . ,Hk whose representation have
size smaller than P2(d) ·(2+log2(a)). We conclude using Theorem 2 that there is
a value x ∈ value(G, s)∩ polyhedron(λ) whose representation have size smaller
than d · P1(d) · (1 + max{||Hi||, ||(aj , bj)|| | i ∈ J1, kK, (aj , bj) ∈ λ}) which is
smaller than d ·P1(d) · (1 +P2(d) · (2 + log2(a) + max{||(aj , bj)|| | (aj , bj) ∈ λ})).
We obtain the result for P4(d) = d · P1(d) · (1 + P2(d)). ut

Based on this property, we design a non-deterministic algorithm and charac-
terize the complexity of our decision problem.

Theorem 6. The polyhedron value problem is Σ2P-complete for mean-payoff
inferior.

Proof. Easiness Based on Theorem 5, our algorithm is: 1. guess in polynomial
time a value v; 2. check in deterministic polynomial time that it satisfies the set of
linear equations λ (see e.g. [16, Theorem 3.3]); and 3. check in non-deterministic
polynomial time that v belong to value(G, s). This last check is based on the
following result for the threshold problem: it is proved in [17, Theorem 7.2] that
given a weighted game G, a state s, and a threshold v ∈ Qd, the problem of
deciding whether Eve has a winning strategy for the objective {ρ | MP(ρ) ≥ v}
is coNP-complete. Our algorithm is thus in Σ2P= NPNP = NPcoNP.

Hardness We illustrate the reduction on an example. The full proof that the
polyhedron value problem is Σ2P-hard can be found in the appendix.

Consider a QSAT2 formula: φ = ∃x1. · · · ∃xn. ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp
where each Ci is the conjunction of at most three literals Ci = `i,1 ∧ `i,2 ∧ `i,3
and literals are of the form: xj , ¬xj , yj , or ¬yj . The construction of the game
is illustrated in Figure 5. There is one dimension for each literal of the formula.



Eve

C1Adam C2Adam C3Adam

x1

x2

¬y1

x1

¬x2

¬y1

¬x1

¬x2
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(1,0,1,1,0,0)

(1,1,1,0,0,0)

(1,1,1,1,−1,1)

(1,0,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,−1,1)

(0,1,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,1,−1)

Figure 5. Example of the encoding of QSAT2 into the polyhedron value problem,
for formula φ = ∃x1.∃x2.∀y1. (x1∧x2∧¬y1)∨(x1∧¬x2∧¬y1)∨(¬x1∧¬x2∧y1).
In a vector (v1, v2, v3, v4, v5, v6), v1 is associated to x1, v2 to ¬x1, v3 to x2, v4
to ¬x2, v5 to y1, and v6 to ¬y1.

We consider the constraint λ that enforces than on each dimension associated
to a literal yj or ¬yj the mean-payoff should be greater than 0, and the sum on
the dimension associated to xj and ¬xj (for j fixed) should be 1. It is possible
to show that the polyhedron value problem is true if, and only if, the formula φ
is valid.

Intuitively, if φ is valid, there is a partial valuation of the x variables that
makes the remainder of the formula hold. From this partial valuation, we define a
vector v that is 1 on dimensions associated to x literals that are true and 0 on the
other dimensions. Such a vector satisfies the constraints λ. For each memoryless
strategy of Adam, we can construct a counter strategy of Eve that is winning,
and this is enough to show that Eve has a winning strategy. To construct this
strategy, first notice that if the strategy of Adam chooses one literal in some
clause and its negation in another clause, Eve can win by alternating between
the two (this ensures 0 for this literal and 1 for the others). We can now assume
that the strategy of Adam defines a valuation for the literals y, by setting those
that are reachable to true. Then because φ is valid, Eve can choose a clause that
holds under the valuation that we defined. Then Adam will always chose a literal
that is true under this valuation and this ensures a payoff above v. ut

Polynomial time algorithm for fixed number of dimensions We have seen
in the previous paragraphs that the polyhedron value problem is Σ2P-complete.
Now, we show that the problem has a much better worst-case complexity for
fixed number of dimensions and polynomially bounded weights, two hypotheses
which are reasonable in practice.

Theorem 7. The polyhedron value problem is solvable in polynomial time for
mean-payoff inferior with fixed number of dimensions, polynomially bounded



weights and a system a linear constraints with polynomially bounded numera-
tors and denominators.

Proof. Thanks to Theorem 5, the number of candidate witnesses in the polyhe-
dron value problem is smaller than 2P4(d)·(2+max{||(a,b)|||(a,b)∈λ}+log2((WG+1)·(|States|+1))).
Which is equal to (4 · 2max{||(a,b)|||(a,b)∈λ} · ((WG + 1) · (|States|+ 1)))P4(d). Note
that the size of equations in λ are logarithmic in the values of numerators and
denominators that appear in it, so 2max{||(a,b)|||(a,b)∈λ} is polynomial with re-
spect to these values (but exponential with respect to d). The bound on the
number of candidates is polynomial when the number of dimensions d is fixed
and W is polynomially bounded. As the threshold problem for multidimensional
weight mean-payoff games is solvable in polynomial time when the number of
dimensions is fixed and the weights are polynomially bounded [8, Theorem 1],
we obtain a polynomial time algorithm by simply testing all the polynomially
many witnesses. ut

5 Constructing the Pareto curve

Let G be a game of dimension d, we define the set of half-spaces HG and
points VG that are relevant for the representation of value(G, s). HG and VG are
defined as the set of half-spaces and points with representation size bounded by
P2(d) · (2 + log2((WG + 1) · (|States| + 1))). The following lemma explains why
those sets are relevant.
Lemma 4. Let G be a game of dimension d and s a state of G. The set value(G, s)
can be written as a finite union of polyhedra, each of them definable as the inter-
section of half-spaces H1, . . . ,Hk ∈ HG. Moreover if H1, . . . ,Hk are half-spaces
of HG and ∩1≤j≤kHj 6= ∅ then the intersection ∩1≤j≤kHj contains a point of
VG.

Equivalence classes We say that two points x and y are equivalent with
respect to the set of half-spaces H, written x ∼H y, if they satisfy the same set
of equations and inequations defined by H. Formally x ∼H y if for all H ∈ H,
x ∈ H ⇔ y ∈ H and x ∈ hplane(H) ⇔ y ∈ hplane(H). Given a point x, we
write [x]H = {y | x ∼H y} the equivalence class containing x. These equivalence
classes are known in geometry as cells [15]. We write C(H) the set of cells
defined by H. The following lemma, says that cells which intersect value(G, s)
are included in it.

Lemma 5. Let c ∈ C(HG) be a cell, c ∩ value(G, s) 6= ∅ if, and only if, c ⊆
value(G, s).

From this we deduce a method to compute a representation of the set value(G, s)
as a finite union of cells in C(HG). Given a tuple of at most d+ 1 points X ⊆ VG
with |X| ≤ d + 1, we consider the geometrical center b(X) =

∑
x∈X

1
d+1 · x.

We write B(VG) the set of all these point, it contains at most |VG |d+1 points.



The following lemma states that value(G, s) can be represented as the union of
all cells that contain a point in B(VG) which is in value(G, s). Note that the
fact that we do not need many points to cover each cell is coherent with Buck’s
theorem [4,15].

Lemma 6. Let G be a game of dimension d, s a state of G, We have that:

[−WG ,WG ]d ∩ value(G, s) = [−WG ,WG ]d ∩
⋃

x∈B(VG)∩value(G,s)

[x]HG

As a corollary, we obtain an effective procedure to compute a representation
of the set value(G, s). The complexity of this procedure is given in the following
theorem both for the general case, and for fixed number of dimensions and
polynomially bounded weights.

Theorem 8. There is a deterministic exponential time algorithm that given a
game G and a state s, constructs a effective representation of [−WG ,WG ]d ∩
value(G, s) as a union of cells. Moreover, when the dimension d is fixed and
weights are polynomially bounded in the size of G, then the algorithm works in
deterministic polynomial time.

Proof. The algorithm is based on the result of Lemma 6. We enumerate all
subsets of d + 1 points in VG . Because of their size, the number of points in
VG is bounded by 2P4(d)·(2+log2((WG+1)·(|States|+1))) which equals (4 · (WG + 1) ·
(|States| + 1))P4(d). The number of subsets of d + 1 points is thus bounded by
(4 · (WG + 1) · (|States|+ 1))P4(d)·(d+1). Note that it is exponential in general, but
with polynomially bounded weights, WG is polynomial in the sizes of the input,
so that with d fixed this number of subsets is polynomially bounded.

Now for each of these subsets, we compute the geometrical center x, and test
whether it is in value(G, s). Thanks to [8, Theorem 1], there is an algorithm

that works in time O(|States|2 · |Edges| · d ·WG · (d · |States| ·WG)d
2+2·d+1) to

determine whether a point is in value(G, s). This is exponential in general, but
polynomial when the number of dimension is fixed and weights are polynomially
bounded.

Then, to determine the cell corresponding to the geometrical center x, we
test for each H ∈ HG whether x ∈ H: the intersection of the half-spaces that
contain x and the complement of those that do not contain is equal to the cell
containing x. Since the sizes of the half-spaces in H are bounded by P2(d) · (2 +
log2((WG + 1) · (|States| + 1))), we can test that x belongs to one of them in
polynomial time and there are no more than (4 · (WG + 1) · (|States| + 1))P2(d)

such half-spaces. Therefore testing all half-spaces can be done in exponential
time in general, and in polynomial time with fixed dimension and polynomially
bounded weights. ut

Pareto curve The Pareto curve is composed of the maximal points in [−WG ,WG ]d∩
value(G, s). To describe this curve, we need to refine the cells in C(HG): we add
to HG the half-spaces that are necessary to represent the downward closure of
cells in C(HG) (details can be found in the appendix).



Theorem 9. There is a deterministic exponential algorithm, that given a game
G and a state s, computes an effective representation of PO(G, s) as a union of
cells. Moreover, when the dimension d is fixed and the weights are polynomially
bounded then the algorithm works in deterministic polynomial time.

Proof (Sketch). The algorithm works by computing a representation of value(G, s)
as a union of cells. Then, for each of these cells we check that there is no cell
above by using the downward closure operator: this is where refining the cells is
required. The number of those cells is exponential so these checks can be done in
exponential time. Moreover in the case where the dimension is fixed and weights
are polynomially bounded, this number is polynomial so the algorithm works in
polynomial time. ut

6 General case

We now consider the general case in which the average of dimensions in I ⊂ J1, dK
are defined using lim inf and the average of dimensions in J ⊆ J1, dK are defined
using lim sup. We give a characterization of the feasible thresholds as we did
in Theorem 4. While the main ideas are similar, the characterization here is
substantially more complicated and relies on a notion of subgame defined as
follows. A subarena for Eve is a tuple 〈States′∃,States

′
∀,Edges

′〉 with States′ ⊆
States, Edges′ ⊆ Edges and such that ∀s ∈ States′∀. (s, s′) ∈ Edges ⇒ (s, s′) ∈
Edges′ (i.e. it does not restrict actions of Adam). The game 〈A′, w′, I ′, J ′〉 is a
subgame for Eve of 〈A, w, I, J〉 if A′ is a subarena for Eve of A and w′ = w,
I ′ = I, and J ′ = J . We write Sub(G, s) the set of subgames for Eve which contain
the state s.

Theorem 10. Let G be a weighted game and s a state of G, then value(G, s)
equals:

⋃
G′∈Sub(G,s)

⋂
s′∈States′

↑J

 ⋂
σ∀∈M

⋃
S′∈SCC(s′,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

})
where ↑J X = {x ∈ Rd | ∀j ∈ J. ∃x′ ∈ X. ∀i ∈ I ∪ {j}. xi = x′i}.

Example 1. Consider the example of Figure 6. We choose J = {1, 2} and I = {3},
i.e. we consider the limit superior of the weights for the two first coordinate and
the limit inferior for the last one. There is only one strategy of the adversary
and one strongly connected component in this game. There are two simple cycles
and their weight are (2,−2, 0) and (−2, 2, 1). We represented in Figure 7 and
Figure 8 the feasible thresholds we can ensure with z = 0 and z = 1

2 .
For z = 0 the line segment between (−2, 2, 0) and (2,−2, 0) is below the

convex hull of (2,−2, 0) and (−2, 2, 1). The downward closure this segment is
the area that is below and left of this segment. The operator ↑{1,2} gives the
whole area below of (2, 2, 0) which is the Pareto optimum for z = 0. For z = 1



2,−2, 0

−2, 2, 1

Figure 6. A one-state 3-
dimensional mean-payoff
game, controlled by Eve.
We refer to the 3 dimen-
sions by x, y and z respec-
tively.

↑{1,2}

↓

x

y

1
1

(2,−2, 0)

(−2, 2, 0) (2, 2, 0)

Figure 7. Pareto opti-
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Figure 8. Pareto opti-
mum for z = 1

2 .

only (−2, 2, 1) is below the weight of a simple cycle therefore it will be the Pareto
optimum for z = 1. The convex hull of (−2, 2, 1) and (2,−2, 0) is above the plane
z = 1

2 for coordinates of x and y between (0, 0) and (−2, 2). The operator ↑{1,2}
will give the whole area below (0, 2, 12 ) which is the Pareto optimum for z = 0.

Thanks to the characterization of Theorem 10, we can express the value
problem in terms of intersection of convex sets with a small description and
using techniques similar to the ones used in the case of limit inferior we can
show the following:

Theorem 11. The polyhedron value problem is Σ2P-complete.

The algorithm uses Theorem 10 and relies on the same principle as for lim inf.
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A Additional definitions

We write ρ≥n for the suffix of ρ after ρ≤n−1, i.e. ρn · ρn+1 · · · and ρJm,nK for (ρ≤n)≥m.

B Geometrical representations

The size of a matrix A = (aij)1≤i≤d,1≤j≤n is ||A|| = d · n+
∑
i,j∈J1,dK×J1,nK ||aij ||.

A affine subspace is a set of the form x+L with x ∈ Rd and L is a linear subspace of Rd (i.e. a subset closed
under addition of vectors and under multiplication by real numbers). The affine hull of a set X ⊆ Rd is the
intersection of all affine subspaces of Rd containing X, it is written aff(X). It can be described as the set of
affine combinations of points of X [10]: aff(X) = {

∑
x∈X tx · x | ∀x ∈ X. tx ∈ R ∧

∑
x∈X tx = 1}.

B.1 Bounding the sizes of solutions of system of equations

We recall that given a polytope P and F(P ) be complete set of facet-defining half-spaces for P , then P is the
intersection of aff(P ) with all half-spaces in F(P ) [9, Theorem 3.(b)].

Theorem 12 ([9, Theorem 3.(b)]). Let P be a polytope. Let F(P ) be complete set of facet-defining half-spaces
for P , then P is the intersection of aff(P ) with all half-spaces in F(P ).

B.2 Small solutions of large systems of equations

Our results is based on the following basic property from [12] which is said to be easily proved from Cramer’s
rule and states that systems of equations given by non-singular matrices have solutions of polynomial size.

Lemma 7 ([12, Lemma 1]). Let A be a non-singular m×m integer matrix. The components of the solution
of Ax = b are all rationals with numerator and denominator bounded by (m · a)m where a = maxi,j{|Ai,j |, |bj |}.

We can prove a corollary that generalizes the result to non-singular matrices. Note in particular that we are
not restricted to square matrices and that the bound depends on the number of columns d (that is the dimension
of the space we consider) but not on the number of rows n (the number of equations in the system).

Corollary 1. Let A =
(
pi,j
qi,j

)
i,j∈J1,nK×J1,dK

with pi,j ∈ Z and qi,j ∈ N be a n × d rational matrix and b =(
ri
si

)
i∈J1,nK

with ri ∈ Z and qi ∈ N be a n rational vector. If Ax = b has a solution, then it has one

where all components are rationals with numerator and denominator bounded by d2·d+2d2·d
2+5·d+2 where a =

maxi,j{|pi,j |, |qi,j |, |ri|, |si|}.

Proof. We consider the matrix A′ and the vector b′ obtained by multiplying each line i of A and b by si ·∏
j∈{1,...,n} qi,j . We have that A′ is an integer matrix and b′ an integer vector, moreover the solutions of Ax = b

are the same than A′x = b′. The absolute value of the components of A′ are smaller than max{|pi,j |} ·max{|si|} ·
(max{qi,j})d, which we can bound by ad+2. Similarly the absolute value of the components of b′ are smaller than
max{|ri|} ·max{|si|} · (max{qi,j})d, which we can also bound by ad+2.

Let k = rank(A′) ≤ d, there are k linearly independent rows A′i1 , . . . , A
′
ik

of A′, such that each row of A′

is a linear combination of A′i1 , . . . , A
′
ik

(see for instance [11, Theorem 5.2.2]). We prove that if A′x = b′ has a
solution then the equation: A′i1

...
A′ik

x =

 b′i1
...
b′i,k

 (1)

has the same set of solutions. Assume A′x = b′ has a solution and let X be a solution of A′x = b′. We
obviously have that X is a solution of (1). Let A′i be a row of A′, there are coefficient λ1, . . . , λk ∈ R such that
A′i =

∑
1≤k′≤k λk′A

′
ik′

. Since X is a solution, A′iX = b′i, hence b′i =
∑

1≤k′≤k λk′A
′
ik′
X =

∑
1≤k′≤k λk′b

′
k′ . Let



X ′ be a solution of (1), we have that A′iX
′ =

∑
1≤k′≤k λk′A

′
ik′
X ′ =

∑
1≤k′≤k λk′b

′
k′ = b′i. This being true for all

row i, X ′ is also a solution of A′x = b′.
The rowsA′i1 , . . . , A

′
ik

are linearly independent and can be completed in a base of Rn by some rows rk+1, . . . , rm,

whose coefficients are all 0 or 1. The new matrix A′′ =



A′i1
...
A′ik
rk+1

...
rm


is singular. Therefore the system A′′x =



b′i1
...
b′i,k
0
...
0


has a solution and by Lemma 7, there is a solution where components are rationals with numerator and denom-
inator bounded by d · (dad+2)2·d+1. ut

With the help of the preceding result, we can also bound the size of the solutions.

Theorem 13. There is a polynomial function P0 such that if A =
(
pi,j
qi,j

)
i,j∈J1,mK×J1,nK

with pi,j ∈ Z and qi,j ∈ N

is a m × n rational matrix and b =
(
ri
si

)
i∈J1,mK

with ri ∈ Z and qi ∈ N is a m rational vector. and the system

Ax = b has a solution, then it has one where all components have size bounded by P0(n) · (2 + log2(a)) where
a = maxi,j{|pi,j |, |qi,j |, |ri|, |si|} and whose size is bounded by n · P0(n) · (1 + max{||Ai,j ||, ||bi|| | i ∈ J1,mK, j ∈
J1, nK}).

Proof. By the previous corollary 1, we can find a solution X such that for each i ∈ J1,mK, Xi = pi
qi

with |pi| ≤M
and 0 < qi ≤M where M = n2·n+2 · an2+5·n+2.

Consider an index i. If Xi = 0 then ||Xi|| = 2. Otherwise we have:

||Xi|| = 1 + dlog2(|pi|+ 1)e+ dlog2(qi + 1)e
≤ 1 + dlog2(|pi|) + 1e+ dlog2(qi) + 1e
≤ 1 + dlog2(M) + 1e+ dlog2(M) + 1e
≤ 1 + 2 · d(2 · n+ 2) · log2(n) + (n2 + 5 · n+ 2) log2(a) + 1e
≤ 1 + 2 · ((2 · n+ 2) · log2(n) + (n2 + 5 · n+ 2) · log2(a) + 2)

One can check that for n > 0, (2 · n+ 2) · log2(n) ≤ n2 + 5 · n, hence

||Xi|| ≤ 1 + 2 · (n2 + 5 · n+ 2) · (1 + log2(a))

Therefore the size of X is bounded by n · (1 + 2 · (n2 + 5 · n + 2) · (1 + log2(a)). As max{||Ai,j ||, ||bi|| | i ∈
J1,mK, j ∈ J1, nK} ≥ log2(maxi,j{|pi,j |, |qi,j |, |ri|, |si|}, the property holds with P0(n) = 2 · n2 + 10 · n+ 5. ut

Then, Theorem 1 is an obvious consequence of the preceding theorem with P1(n) = n · P0(n).

Lemma 8. (Lemma 1 in the paper) Let H1, . . . ,Hn be n inequations of Rd. If
⋂n
i=1

1
2space(Hi) 6= ∅ then there

are k ≤ d indexes i1, . . . , id such that:

1.
⋂k
j=1 hplane(Hij ) 6= ∅, and

2.
⋂k
j=1 hplane(Hij ) ⊆

⋂n
i=1

1
2space(Hi).

Proof. We will prove by induction a slightly stronger version of the lemma as follows: let S be an affine subspace
of Rd of dimension k, with 1 ≤ k ≤ d. If S ∩

⋂n
i=1

1
2space(Hi) 6= ∅ then there are k′ ≤ k indexes i1, . . . , ik′ such

that:

S ∩
k′⋂
j=1

hplane(Hij ) 6= ∅ and S ∩
k⋂
j=1

hplane(Hij ) ⊆ S ∩
n⋂
i=1

1

2
space(Hi).

The lemma correspond to the case where S = Rd.



We show this property by induction other k. If k = 0, then if S∩
⋂n
i=1

1
2space(Hi) 6= ∅ then every 1

2space(Hi)

contains S since it is reduced to one point. Therefore S ∩
⋂0
i=1

1
2space(Hi) = S = S ∩

⋂n
i=1

1
2space(Hi).

Assume now k > 0 and that the property holds for all affine subspace of dimension k′ < k. We show the
property for k by induction over n. If n = 0 the property obviously holds.

We now assume that the property holds for n ≥ 0 and prove it for n+ 1. We consider a half-space Hn+1.

– If S ⊆ hplane(Hn+1) then we use the induction hypothesis for n: there are k′ ≤ k indexes i1, · · · , ik′ such

that
⋂k′
j=1

(
hplane(Hij ) ∩ S

)
6= ∅ and:

k′⋂
j=1

(
hplane(Hij ) ∩ S

)
⊆ S ∩

n⋂
i=1

1

2
space(Hi)

⊆ S ∩ hplane(Hn+1) ∩
n⋂
i=1

1

2
space(Hi)

⊆ S ∩
n+1⋂
i=1

1

2
space(Hi).

Thus the property holds for n+ 1 in that case.
– Otherwise hplane(Hn+1)∩S forms a affine subspace of dimension k−1, to which we can apply the induction

hypothesis.

• If S ∩ hplane(Hn+1) ∩
⋂n
i=1

1
2space(Hi) 6= ∅ then there are k′ ≤ k − 1 indexes i1, . . . , ik′ such that

(hplane(Hn+1) ∩ S) ∩
⋂k′
j=1 hplane(Hij ) 6= ∅ and :

(hplane(Hn+1) ∩ S) ∩
k′⋂
j=1

hplane(Hij ) ⊆ S ∩ hplane(Hn+1) ∩
n⋂
i=1

1

2
space(Hi)

S ∩
k′⋂
j=1

hplane(Hij ) ∩ hplane(Hn+1) ⊆ S ∩
n+1⋂
i=1

1

2
space(Hi)

Which shows the property.
• Otherwise

(⋂n
i=1

1
2space(Hi) ∩ S

)
∩ hplane(Hn+1) = ∅. Let S′ =

⋂n
i=1

1
2space(Hi) ∩ S, we show that

it is either included in 1
2space(Hn+1) or it does not intersect it: assume there is one point x ∈ S′ inside

1
2space(Hn+1) and one point x′ ∈ S′ outside of it, then αa(x) ≥ b and αa(x′) < b. By continuity of linear
functions, there would be x′′ ∈ [x, x′] such that αa(x′′) = b. Since S′ is convex x′′ ∈ S′, and therefore
x′′ ∈ S′ ∩ hplane(Hn+1) which contradicts the hypothesis.

If S′ is outside 1
2space(Hn+1) then the intersection S ∩

⋂n+1
i=1

1
2space(Hi) is empty, so we have nothing

to prove.
Otherwise,

⋂n
i=1

1
2space(Hi)∩ S ⊆ 1

2space(Hn+1). We apply the induction hypothesis over n: there are

k′ ≤ k indexes i1, . . . , ik′ such that
⋂k′
j=1 hplane(Hij ) ∩ S 6= ∅ and :

k′⋂
j=1

hplane(Hij ) ∩ S ⊆
n⋂
i=1

1

2
space(Hi) ∩ S ⊆ S ∩

n+1⋂
i=1

1

2
space(Hi)

Which proves the result. ut

Theorem 14. (Theorem 2 in the paper) There is a polynomial function P1 such that for all systems of inequa-
tions λ of Rd, if polyhedron(λ) 6= ∅ then there is a point x ∈ polyhedron(λ) whose representation has size
smaller than P1(d) · (1 + max{||(a, b)|| | (a, b) ∈ λ}).

Proof. We prove in fact that a bound of P1(d) · (1 + max{||ai,j ||, ||bi|| | i ∈ J1, nK, j ∈ J1, dK})) is sufficient, and
it implies the result.



The polynomial function P1 comes from Theorem 1. Let λ = {(a1, b1), . . . , (an, bn)} be a system of inequations
defining a non empty polyhedron. By Lemma 1, there is a set H1, . . . ,Hk subset of { 12space(ai, bi) | i ∈
J1, nK} with k ≤ d and such that:

⋂k
j=1 hplane(Hij ) 6= ∅ and

⋂k
j=1 hplane(Hij ) ⊆

⋂n
i=1

1
2space(Hi). Since⋂k

j=1 hplane(Hij ) 6= ∅ the system of equation ((ai1 , bi1) . . . (aik , bik)) has a solution. Using Theorem 1 there is
a solution x where all components are bounded by P1(d) · (1 + max{||Ai,j ||, ||bi|| | i ∈ J1, nK, j ∈ J1,mK})). Since⋂k
j=1 hplane(Hij ) ⊆

⋂n
i=1

1
2space(Hi), the solution x is also inside the intersection of

⋂n
i=1

1
2space(Hi), and

thus x ∈ polyhedron(λ). ut

B.3 Size obtained when changing the representation of polyhedra

We will decompose the proof of Theorem 3 in three parts.

From the point representation to the half-space representation

Theorem 15 (Theorem 3.1 in the paper).

There is a polynomial function P2 (of degree 3) such that given a finite set of points V = {v1, . . . , vn}, with

vi =
(
pi,j
qi,j

)
i,j∈J1,nK×J1,dK

, there are k ≤ nd half-spaces H1, . . . ,Hk whose inequations have size smaller than

P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})) and such that ∩i∈J1,kKHi = conv(V ).

Proof. Facets of conv(V ) are given by d′ linearly independent vertices of V where d′ is the dimension of conv(V ).

We first prove the case d′ = d. Let f be a facet of conv(V ) given by v1, . . . , vd which are d linearly independent
points. We show how to obtain an equation of the half-space Hf defining this facet. The equation2vT1

...
vTd

A =

1
...
1


has a solution and Theorem 1 guarantees that we can find a solution whose components have all size bounded
by P1(d) · (2 + log2(max{|pi,j |, |qi,j |})). The equation (AT , 1) defines an hyperplane h. Moreover, for all vj with
1 ≤ j ≤ k, AT vj = (vTj A)T = 1. This means that h contains all vj and therefore either 1

2space(AT , 1) or
1
2space(−AT ,−1) is defining the facet given by v1, . . . , vd. This gives us a description of Hf of size bounded
by d+ P1(d) · (2 + log2(max{|pi,j |, |qi,j |})). Since a polytope is the intersection of its facet-defining half-spaces,
conv(V ) is the intersection of the Hf with f facet of conv(V ).

We now assume that d′ < d and that the property holds in a space of dimension d−1. We look for half-spaces
defining the affine subspace A = aff(conv(V )) of dimension d′ containing conv(V ). We take d′ + 1 linearly
independent points in V , which we write v1, . . . , vd′+1. Since they are linearly independent the equation: vT1

...
vTd′+1

B =

1
...
1


has a solution, and using Theorem 1, there is a solution B whose components all have size bounded by P1(d) ·(2+
log2(max{|pi,j |, |qi,j |})). The equation (BT , 1) defines an affine subspace of dimension d−1 containing conv(Vi),
so we can apply the induction hypothesis inside it. We obtain H ′1, . . . H

′
k′ half-spaces of A whose equations

have size smaller than d + P1(d) · (2 + log2(max{|pi,j |, |qi,j |})) and such that A ∩
⋂
i∈J1,k′KH

′
i = conv(V ). The

equation defining H ′1, . . . ,H
′
k′ also define half-spaces of Rd. The convex hull of Vi is then the intersection of

H ′1, · · · , H ′k′ and the half-spaces given by (BT , 1) and (−BT ,−1). The sizes of all the corresponding equations
are bounded by d+P1(d)·(2+log2(max{|pi,j |, |qi,j |})). The desired property is obtained for P2(d) = d+d·P1(d) =
2 · d3 + 10 · d2 + 11 · d. ut
2 When A is a matrix, AT represent the transpose of A



From the half-space representation to the point representation

Theorem 16 (Theorem 3.3 in the paper). There is a polynomial function P3 (of degree 3) such that a poly-
tope (i.e a bounded polyhedron) given by its set of facet-defining half-spaces F = 1

2space(a1, b1), . . . , 12space(ak, bk),

with ai =
(
pi,j
qi,j

)
j∈J1,dK

with pi,j ∈ Z, qi,j ∈ N and bi = ri
qi

with ri ∈ Z, si ∈ N, can be written as the convex

hull conv(V ) of a finite set V of points whose representation have size smaller than P3(d)·(2+log2(max{|pi,j |, |qi,j |, |ri|, |si| |
1 ≤ i ≤ k, 1 ≤ j ≤ d})).

We first prove that equations of aff(P ) can be obtained from a subset of the equations (a1, b1), . . . , (ak, bk).

Lemma 9. If P = 1
2space(a1, b1)∩· · ·∩ 1

2space(ak, bk), then there exists i1, . . . , ik′ ∈ J1, kK such that aff(P ) =
1
2space(ai1 , bi1) ∩ · · · ∩ 1

2space(aik′ , bik′ ).

Proof. We first prove that given (ai, bi), if aff(P ) 6⊆ hplane(ai, bi) then there exists x ∈ P such that ai · x < bi.
Assume toward a contradiction that there is no such x ∈ P , then for all point x of P , ai · x ≥ bi. Since
P ⊆ 1

2space(ai, bi), we also have ai · x ≤ bi, and therefore ai · x = bi. Therefore the affine space hplane(ai, bi)
contains P . Since aff(P ) is the smallest affine space that contains P , it is included in hplane(ai, bi). This
contradicts the fact that aff(P ) 6⊆ hplane(ai, bi).

We now prove that if P = Q ∩ 1
2space(ai, bi) and aff(P ) 6⊆ hplane(ai, bi) then aff(Q) = aff(P ). What

since P ⊆ Q, what we have to show is that Q ⊆ aff(P ). Let y ∈ Q, we will prove that y ∈ aff(P ). If
y ∈ P then y ∈ aff(P ). Assume now y ∈ Q \ P , we have y 6∈ 1

2space(ai, bi) and therefore ai · y > bi. If
aff(P ) 6⊆ hplane(ai, bi), then we proved there exists x ∈ P , such that ai · x < bi. Consider the line segment
[x, y]. Since ai · x < bi and ai · y > bi, there is z ∈ [x, y] such that z ∈ hplane(ai, bi). Since both x and y are
in Q, z also is, and as z ∈ 1

2space(ai, bi), z ∈ P . We have x 6= z, [x, z] ⊆ P , therefore aff(P ) must contain
the line passing through x and z, and therefore contains y. This proves y ∈ aff(P ). Hence Q ⊆ aff(P ) and
aff(Q) = aff(P ).

From this we can deduce that aff(P ) =
⋂

(ai,bi)|aff(P )⊆hplane(ai,bi)
1
2space(ai, bi). Consider the set Q given

by
⋂

(ai,bi)|aff(P )⊆hplane(ai,bi)
1
2space(ai, bi), by the property we proved, for each (ai, bi) such that aff(P ) 6⊆

hplane(ai, bi), aff(Q ∩ 1
2space(ai, bi)) = aff(Q). By a simple induction we can deduce

aff

Q ∩ ⋂
(ai,bi)|aff(P )6⊆hplane(ai,bi)

1

2
space(ai, bi)

 = aff(Q).

Therefore Q ⊆ aff(P ), moreover since for all (ai, bi) such that aff(P ) ⊆ hplane(ai, bi) we have aff(P ) ⊆
1
2space(ai, bi), this means that aff(P ) ⊆ Q. Hence Q = aff(P ). ut
Proof (of Theorem 3). Let P be the polytope

⋂
1≤i≤k

1
2space(ai, bi) and d′ be the dimension of aff(P ). By [10,

Proposition 5.3.2 (i)], a polytope is the convex hull of its vertices (its faces of dimension 0). Vertices are obtained
by the intersection of aff(P ) with d′ hyperplane corresponding to facet-defining half-spaces. Lemma 9 proves that
equations of aff(P ) can be obtained from a subset of the equations (a1, b1), . . . , (ak, bk). Therefore, for each vertex
v, there is system of equations given by a subset of the (ai, bi)1≤i≤k, such that v is the unique solution. Thanks
to Theorem 1, the representation of this solution has size smaller than P1(d) · (2 + log2(max{|pi,j |, |qi,j |, |ri|, |si| |
i ∈ J1, kK, j ∈ J1, dK}). This shows the result. ut

Downward closure We now show that the representation in term of half-spaces of the downward closure of a
convex hull is of polynomial size.

Lemma 10. Operator ↓ is monotonic, i.e. for any set X and Y such that X ⊆ Y , we have that ↓ X ⊆↓ Y .

Proof. Assume X ⊆ Y . Let x ∈↓ X, there is x′ ∈ X such that for all i, x′i ≥ xi. As X ⊆ Y , x′ ∈ Y , and therefore
x ∈↓ Y .

Lemma 11. Operator ↓ is compatible with union, i.e. for any set X and Y : (↓ X) ∪ (↓ Y ) =↓ (X ∪ Y ).

Proof. To show (↓ X) ∪ (↓ Y ) ⊆↓ (X ∪ Y ) We use the monotonicity property (Lemma 10): since X ⊆ X ∪ Y ,
↓ X ⊆↓ (X ∪ Y ).

In the other direction, let x ∈↓ (X ∪ Y ), there exists x′ ∈ X ∪ Y such that x ≤ x′. If x′ ∈ X then x ∈↓ X
and otherwise x ∈↓ Y .



Equations of the downward closure of a polyhedron Our goal is from the representation in term of
half-spaces of a polyhedron, to obtain a representation of its downward closure. We will show that the downward
closure of convex hull can also be represented by relatively small (i.e. polynomial) equations. We will prove
several lemmas to obtain the full characterization of Corollary 2. But we first introduce some notations.

Let X be a set of points and J ⊆ J1, dK, we write:

– πJ(X) for the set {x′ | ∃x ∈ X. ∀i ∈ J1, dK \ J. x′i = xi and ∀j ∈ J. x′j = 0},
– ↓J (X) for the set {x′ | ∃x ∈ X.∀i ∈ J1, dK \ J. x′i = xi and ∀j ∈ J. x′i ≤ xi},
– lJ (X) for the set {x′ | ∃x ∈ X.∀i ∈ J1, dK \ J. x′i = xi and ∀j ∈ J. x′i ∈ R};

We also write 1i for the point that has coordinate 1 on dimension i and 0 on the other dimensions. We write CJ
for the cone

∑
j∈J R+ ·1j . If P is a polyhedron and F(P ) a set of facet-defining half-spaces of P in the subspace

aff(P ), we write FJ−(P ) ⊆ F(P ) the half-spaces H of F(P ) that contain the direction −CJ , i.e. H − CJ = H.

Lemma 12. Let P be a polyhedron, J ⊆ J1, dK, and F(πJ(P )) be a set of half-spaces of aff(πJ(P )). We have
that:

lJ P =
⋂

H∈F(πJ (P ))

H + RJ

where RJ denotes the subspace
∑
j∈J R · 1j.

Proof.

x ∈lJ P ⇔ ∃x′ ∈ P. πJ(x) = πJ(x′)

⇔ πJ(x) ∈
⋂

H∈F(πJ (P ))

H

⇔ πJ(x) +
∑
j∈J

R · 1j ⊆
⋂

H∈F(πJ (P ))

H +
∑
j∈J

R · 1j

⇔ x ∈
⋂

H∈F(πJ (P ))

H + RJ

ut

We show how to obtain facet-defining half-spaces of the downward closure of P with respect to one dimension.

Lemma 13. Let P be a polyhedron, F(P ) be a set of facet-defining half-spaces of P and j ∈ J1, dK. We have:

↓j P =lj P ∩
⋂

H∈Fj
−(P )

H

Proof. ⊆ Let x ∈↓j P . We have that x ∈lj P . There is x′ ∈ P such that x = x′−λ ·1j with λ ≥ 0. Let f ∈ Fj−,

since x′ ∈ Hf we have that x ∈ Hf − R+ · 1j = Hf . Therefore x ∈lj P ∩
⋂
f∈Fj

−
Hf .

⊇ Let x ∈lj P ∩
⋂
f∈Fj

−
Hf . There exists x′ ∈ P such that π{j}(x) = π{j}(x

′). Consider the line segment

[x, x′], it does not intersect any hplane(Hf ) with f ∈ Fj− since both x and x′ are inside these half-spaces.
If [x, x′] does not intersect any hplane(Hf ) where f is a facet of P then x is in the intersection of these

half-spaces, and using Theorem 12, this means that x ∈ P .
Otherwise [x, x′] intersects some hplane(Hf ) with f facet of P which is not in F j−. Since Hf contains x′ but

not x, and these two only differs by their j coordinates, this means that xj ≤ x′j and therefore x ∈↓j P . ut

We now generalize the previous lemma to the downward closure with respect to several dimensions.

Lemma 14.
↓K P =

⋂
J⊆K

⋂
H∈FK\J

− (πJ (P ))

H + RJ

with the convention that π∅(P ) = P , F∅
− (P ) = F(P ) and B∅ = 0.



Proof. We prove the result by induction over the size of K. The case where |K| = 1 is a direct consequence of
Lemma 12 and 13.

Assume the equality holds for some set K. Consider a dimension j 6∈ K.

π{j}(↓K P ) =↓K π{j}(P ) =
⋂
J⊆K

⋂
H∈FK\J

− (πJ∪{j}(P ))

H +BJ

So we can chose:
F(π{j}(↓K P )) =

⋃
J⊆K

{H + RJ | H ∈ FK\J− (πJ∪{j}(P ))} (2)

We also have by induction hypothesis:

F(↓K P ) =
⋃
J⊆K

{H + RJ | H ∈ FK\J− (π{j}(P ))}

F j−(↓K P ) =
⋃
J⊆K

{H + RJ | H ∈ FK∪{j}\J− (π{j}(P ))} (3)

Using Lemma 12 and 13:

↓K∪{j} P =
⋂

H∈F(π{j}(↓KP ))

H +Bj ∩
⋂

H∈Fj
−(↓KP )

H

=
⋂
J⊆K

⋂
H∈FK\J

− (πJ∪{j}(P ))

H + RJ +Bj ∩
⋂

H∈Fj
−(↓KP )

H By (2)

=
⋂
J⊆K

⋂
H∈FK\J

− (πJ∪{j}(P ))

H +BJ∪{j} ∩
⋂
J⊆K

⋂
H∈FK∪{j}\J

− (π{j}(P ))

H + RJ By (3)

=
⋂

J⊆K∪{j}

⋂
H∈FK∪{j}\J

− (πJ (P ))

H +BJ

Which proves the property for K ∪ {j} and concludes the induction. ut

From this lemma we deduce a representation of the downward closure of a polyhedron in term of half-spaces.

Corollary 2. If P is a polyhedron, then:

↓ P =
⋂

J⊆J1,dK

⋂
H∈FJ1,dK\J

− (πJ (P ))

H + RJ

Theorem 17 (Theorem 3.2 in the paper). There is a polynomial function P2 such that given a finite set

of points V = {v1, . . . , vn}, with vi =
(
pi,j
qi,j

)
i,j∈J1,nK×J1,dK

, there is a finite collection of half-spaces H1, . . . ,Hk

which are described by equations of size smaller than P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK}))
and such that ∩i∈J1,kKHi =↓ conv(V ).

Proof. We will in fact use the same polynomial function P2 than for Theorem 3.1.
We use Corollary 2, the collection H1, . . . ,Hk is given by the half-spaces of the form H +RJ with J ⊆ J1, dK,

and H ∈ FJ1,dK\J
− (πJ(conv(V ))). We show that these half-spaces are described by small equations.

We fix such J and H ∈ FJ1,dK\J
− (πJ(conv(V ))). The polytope πJ(conv(V )) can be obtained as the convex

hull of πJ(V ). The set πJ(V ) is a finite set of points whose components can be written with numerator and
denominator smaller in absolute value than a = max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK}. Using Theorem 3.2,
(Theorem 1 in the appendix), half-spaces of F(πJ(conv(V ))) can be described with size smaller than P2(d) ·
(2 + log2(a)). The set of facet FJ1,dK\J

− (πJ(conv(V ))) is include in F(πJ(conv(V ))) and therefore the size of the
equation of H is also bounded by P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})).



Now let (A, b) be such an equation of H, it also defines a half-space H ′ of Rd which obviously contains H.
We define A′ to be such that for all i ∈ J1, dK \ J , A′i = Ai and for all j ∈ J , A′j = 0. Note that the size of A′ is
bounded by that of A and therefore the size of the equation is bounded by P2(d) · (2 + log2(a)). If A′ = (0, . . . , 0)
this contradicts the fact that H is defining a facet of aff(πJ(conv(V ))). Otherwise the equation (A′, b) defines
a half-space which we write H ′ = 1

2space(A′, b). We have that H ′ ∩ πJ(Rd) = H since all points of πJ have
coordinate on J equal to 0 and only coefficient on these dimensions differ between A and A′. Moreover it contains
the direction RJ since for all j ∈ J , A′ ·1j = 0. Therefore H ′ is equal to H+RJ . This shows that conv(V ) can be
described by equation that have size smaller than P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})). ut

C The limit inferior case

We recall the characterization given in Section 4.

Theorem 18. (Theorem 4 in the paper) Let G be a game and s a state of G:

value(G, s) =
⋂
σ∀∈M

⋃
S∈SCC(s,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Theorem 19. The polyhedron value problem is Σ2P-hard for mean-payoff inferior.

Proof. Consider a QSAT2 formula, that is a formula of the form

φ = ∃x1. · · · ∃xn. ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp

where each Ci is the conjunction of at most three literals Ci = `i,1 ∧ `i,2 ∧ `i,3 and literals are of the form: xj ,
¬xj , yj , or ¬yj .

We consider the game where Eve starts by choosing a clause then Adam chooses a literal that appears in that
clause. Then if the literal is a yj or ¬yj then the game starts again from the initial state, and if the literals is a xj
or ¬xj then the game loops in the same state (Adam is forced to chose the same literal forever). The construction
of the game is illustrated in Figure 5.

We consider weights in dimension 2(m + n), that is there are as many dimensions as possible literals, the
literal xj corresponds to dimension 2 · j − 1, ¬xj to dimension 2 · j, yj to dimension 2 · n+ 2 · j − 1 and ¬yj to
2 · n+ 2 · j. The weights are given by the choice of Adam:

– if Adam chooses a literal ` of the form xj or ¬xj then the weight is 0 in the dimension associated to the
negation of `, 0 on all dimensions associated to yj′ literals, and 1 on all dimensions xj′ or ¬xj′ different from
the negation of `;

– if Adam chooses a literal ` of the form yj or ¬yj then the weight is 1 on the dimension associated to `, −1
on its negation, 0 on all yj′ and ¬yj′ with j′ 6= j, and 1 on all dimensions associated to xj or ¬xj for all
j ∈ J1, nK.

We consider the constraints λ that says that on all dimension k associated with a yj or a ¬yj , vk ≥ 0, and for
all j ∈ J1, nK, v2·j−1 + v2·j ≥ 1 (that is, the sum on dimensions associated to xj and ¬xj is greater to 1).

We now prove that the answer to the polyhedron value problem is true if, and only if, the formula φ is valid.

⇐ Assume that there is a (partial) valuation v of x1, . . . , xn that makes the formula ∀y1. · · · ∀ym. C1∨· · ·∨Cp
true. We consider the associated vector u that is 0 on coordinates associated to literals yj and ¬yj and such
that:

– if v(xi) is true, then the coordinate of u associated to xi is 1, and that associated to ¬xi is 0;
– if v(xi) is false, then the coordinate of u associated to xi is 0, and that associated to ¬xi is 1.

Obviously u satisfies the constraint λ. We now prove that Eve can ensure u. According to [17, Theorem 8], it is
enough to show it for all memoryless strategy σ∀ of Adam.

Will we consider all memoryless strategies of Adam, but distinguish between those that can be associated to
correct valuations of the variables and those that cannot, that is they chose yj in some state and ¬yj in some
other.



If the strategy of Adam chooses a literal yj for some clause and ¬yj for another clause, then by alternating
between these two clauses Eve ensures a payoff that is 0 on yj and ¬yj and also all dimensions yj′ and y¬j′ , and
that is 1 on all dimensions associated with xi or ¬xi. Hence, u is ensured in that case.

Now assume that Adam never chooses a literal yj for some clause and ¬yj for another one. Then the memoryless
strategy of Adam corresponds to a valid assignment of the truth value of the variables y1, . . . , ym. This valuation
is the following: we extend the valuation v to the variables y1, . . . , ym such that v(yj) is false if there is some
clause where yj is chosen by Adam and v(yj) is true otherwise. Since ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp is true for the
partial valuation v of x1, . . . , xn, it means that the full valuation v makes C1∨· · ·∨Cp true. Hence Eve can chose
a Ci that is true for valuation v. Then Adam does not chose a literal yj or ¬yj for that clause (if he chooses yj
then v(yj) is false by definition of v and this contradicts that Ci is true; and similarly if he chooses ¬yj). Hence
in that state, he chooses a literal xi or ¬xi and by definition of the valuation v, we have that this ensure a payoff
greater than u.

⇒ Assume now that there is u satisfying the constraints, that can be ensured by a strategy σ∃ of Eve. We
define the (partial) valuation v of the variables x1, . . . , xn:

a. if the coordinate of u associated to xi is strictly greater than 0, then v(xi) is true;
b. if the coordinate of u associated to xi is smaller or equal to 0, then v(xi) is false.

We will show that for all valuations of the yi, the global valuation obtained makes some clause true.
Let v′ be a valuation of x1, . . . , xn, y1, . . . , ym compatible with v for variables x1, . . . , xn. Assume toward a

contradiction that the valuation v′ does not make any of the clauses true. Then in each Ci Adam can chose a
literal of the clause for which the valuation is false. Consider a strategy σ∀ that in each Ci chose a literal for
which the valuation is false. Consider the outcome of the strategies (σ∃, σ∀), either: (1) it will reach a literal xi
or ¬xi and stay there, or (2) it never reaches such a state and comes back infinitely often to the initial state.
We distinguish between these two cases:

(1) If the run ends in a literal ` of the form xi or ¬xi then by the way we defined σ∀, v(`) is false which means
that:
• if ` = xi then v(xi) is false and by (b) of the definition of v the coordinate of u associated to xi is smaller

or equal 0. By constraint λ the coordinate associated to ¬xi has to be at least 1. However, by the way
we defined the weight in the game, the weight of the run on the dimension associated to ¬xi will be 0 .
This is strictly smaller than 1 and contradicts that Eve ensures vector u.

• if ` = ¬xi then v(xi) is true and by (a) of the definition of v the coordinate of u associated to xi is
strictly greater than 0. However, by the way we defined the weight in the game, the weight of the run
on the dimension associated to xi will be equal to 0 which contradicts that Eve ensures vector u.

(2) In the other case the run never reaches such a state, it comes back infinitely often to the initial state, and
only visits literals of the form yj or ¬yj .
Note that since σ∀ only chooses literals that evaluate to false according to v, if yj is chosen at some point then
¬yj is never chosen and reciprocally. We show that some the average weight on some dimension associated
to one of these yj , or ¬yj is strictly smaller than 0, which will show that Eve does not ensure u.
Let ρ be the outcome of (σ∃, σ∀), and wi(ρ≤k) denote the total weight of the prefix of ρ of size k + 1 on the

dimension i. Assume towards a contradiction that lim inf
w+i(ρ≤k)

k ≥ 0 for each dimension i ∈ J2 ·n+1, 2 ·(n+
m)K (these are dimensions associated to literals of the form yj or ¬yj). Then there is an index k, such that

for all k′ ≥ k and for all dimension i ∈ J2 ·n+1, 2 · (n+m)K, wi(ρ≤k′ )

k′ > − 1
8·m . This means that for all k′ ≥ k,∑

i∈J1,2·mK
w2·n+i(ρ≤k′ )

k′ > − 1
4 . On the other hand, since one yj or ¬yj is chosen at each turn of Adam and the

negation of the one that are chosen are never chosen, we have that for all k′,
∑
i∈J1,2·mK w2·n+i(ρ≤k′) ≤ 1− k′

3

(the factor 1
3 comes from the fact that we have three steps to come back to the initial state). This means

that
∑
i∈J1,2·mK

w2·n+i(ρ≥k′ )

k′ ≤ 1
k′ −

1
3 . And this contradicts the fact that

wi(ρ≥k′ )

k′ > − 1
8·m for all k′ > k and

all dimension i ∈ J2 · n+ 1, 2 · (n+m)K.
Hence Eve cannot ensure 0 on all dimensions i ∈ J2 · n+ 1, 2 · (n+m)K, thus she cannot ensure vector u.

This contradiction means that valuation v′ makes at least one clause true. This being true for all valuation
v′ compatible with the partial valuation v, we can conclude that φ is valid. ut



D Constructing the Pareto curve

Lemma 15. Let G be a game of dimension d and s a state of G. The set value(G, s) can be written as a
finite union of polyhedra, each of them definable as the intersection of half-spaces H1, . . . ,Hk ∈ HG. Moreover if
H1, . . . ,Hk are half-spaces of HG and ∩1≤j≤kHj 6= ∅ then the intersection ∩1≤j≤kHj contains a point of VG.

Proof. We can rewrite the expression of value to:⋃
f : M7→2States|f(σ∀)∈SCC(s,σ∀)

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ C(f(σ∀))

})
.

When f is fixed, the set Cf =
⋂
σ∀∈M ↓ conv

({
1
|c| · w(c) | c ∈ C(f(σ∀))

})
is a polyhedron. As stated in the

proof or Theorem 5, the set ↓ conv
({

1
|c| · w(c) | c ∈ C(f(σ∀))

})
can be written as the intersection of half-spaces

H1, . . . ,Hk whose inequations have size smaller than P2(d) · (2 + log2((WG + 1) · (|States| + 1))). Because of
their size, these half-spaces are in HG . Moreover the intersection for each σ∀ of these sets is also described by
half-spaces with the same property. Therefore each polyhedra Cf can be written as the intersection of some
half-spaces H1, . . . ,Hk ∈ HG . This prove the first point of the lemma.

Now, using Theorem 2, if there is a point at the intersection of a subset of these half-spaces, then there is
such a point x which has size bounded by P1(d) · (1 + P2(d) · (2 + log2((WG + 1) · (|States|+ 1)))) ≤ P4(d) · (2 +
log2((WG + 1) · (|States|+ 1))). Because of its size, x belongs to VG , which proves the last point of the lemma. ut

Lemma 16. Let c ∈ C(HG) be a cell, c ∩ value(G, s) 6= ∅ if, and only if, c ⊆ value(G, s).

Proof. Let c ∈ C(HG) and assume c ∩ value(G, s) 6= ∅. Then let x ∈ c ∩ value(G, s). As a consequence of
Lemma 15, x belongs to a polyhedron P that can be written as the intersection of a subset of half-spaces in HG
and P is included in value(G, s).

Let now y be a point in c, we will show that y belongs to value(G, s). Since x ∼HG y, they satisfy the same
set of inequations corresponding to half-spaces of HG , and in particular y belongs to P . As P is included in
value(G, s) we have that y ∈ value(G, s). ut

Lemma 17. (Theorem 6 in the paper) Let G be a game of dimension d, s a state of G, We have that:

[−WG ,WG ]d ∩ value(G, s) = [−WG ,WG ]d ∩
⋃

x∈B(VG)∩value(G,s)

[x]HG

Proof. We show that the set B(VG) contains at least one point in each cell, the result then follows from Lemma 16.
Let c be a cell and k its dimension. Since [−WG ,WG ]d is bounded, the intersection of the cell with [−WG ,WG ]d

correspond to the inside of a polytope P of dimension k defined by some half-spaces of H. The vertices of this
polytope are at the intersection of facet defining half-spaces which are half-spaces of H. The intersection of these
half-spaces and therefore vertices of P are points of VG .

Let x be a point in the cell c. We write I = {h ∈ H | x ∈ h} and J = {h ∈ H | x 6∈ h}. We have that
c = [x]H =

⋂
h∈I h \

⋃
h∈J h. Given an half-space h = 1

2space(a, b), we write h− the half-space 1
2space(−a,−b),

we have that h− = (Rd \ h) ∪ hplane(h) and h− ∈ H. Consider the polytope P =
⋂
h∈I h ∩

⋂
h∈J h

−, we have
that c ⊆ P and therefore x ∈ P . The vertices of P are points of VG and x is in the convex hull of this vertices.
By Carathéodory’s theorem [5,10], x is in the convex hull of at most k+ 1 vertices x1, . . . , xk+1 of P . The point
b(x1, . . . , xk+1) is in the convex hull of these vertices and therefore also in the same polytope as x.

We will show that y = b(x1, . . . , xk+1) is not in any h ∈ J . Assume towards a contradiction that y ∈ h ∈ J . Let
(a, b) be the inequation of h, as y ∈ h, αa(y) ≥ b. Since the vertices of P are in h−, for all i ∈ J1, k+1K, αa(xi) ≤ b.
If there is xi such that αa(xi) < b then, as y = 1

k ·
∑

1≤i≤k+1 xi, we would also have αa(y) < b which contradicts
y ∈ h. We can therefore conclude that for all i ∈ J1, k + 1K, xi ∈ hplane(h) and as y ∈ conv({x1, . . . , xk+1}) we
also have y ∈ hplane(h). Since x is in the convex hull of x1, . . . , xk+1, we also have x ∈ hplane(h) and therefore
x ∈ h which contradicts h ∈ J .

Therefore b(x1, . . . , xk+1) is in the same cell c as x. This proves that B(VG) contains at least one point in
each cell. ut



We consider the half-spaces F i−(c) (as defined in Section B.3) for i ∈ J1, dK and c ∈ C(HG) such that
c ⊆ [−W,W ]d. We take H+

G = HG ∪
⋃
i∈J1,dK,c∈C(HG) F

i
−(c). We show that the cells defined by H+

G are compatible
with downward closure.

Lemma 18. Let x, y be two points of Rd. If x ∈↓ y, then [x]H+
G
⊆↓ [y]HG (notice that the second equivalence

class considers HG and not HG).

Proof. Let y ∈ Rd and c = [y]HG . There is a subset of half-spaces {H1, . . . ,Hk} ⊆ H+
G , that describes ↓ c. If

z ∈ [x]HG , then it satisfies the same equations and inequations from H+
G as x, and in particular H1, . . . ,Hk,

therefore z ∈↓ [y]HG . ut

The following lemma identifies cells that contain only maximal values.

Lemma 19. Let c be a cell in C(H+
G ). If c ⊆ value(G, s) and for all x ∈ value(G, s) \ c we have that c∩ ↓

[x]H+
G

= ∅, then c ⊆ PO(G, s).

Proof. Let c be a cell in C(H+
G ) that satisfies that c ⊆ value(G, s) and for all x ∈ value(G, s)\c, c∩ ↓ [x]H+

G
= ∅.

Towards a contradiction assume that there is y ∈ c that is not Pareto optimal. Then there is x ∈ value(G, s)
such that y < x. We have that y ∈ c∩ ↓ [x]H+

G
, by hypothesis, this means that x ∈ c.

We consider the half-line L = {y + t · (x − y) | t ∈ R+}. All points on this half-line are greater than y.
Let t1 = inf{t | y + t · (x − y) 6∈ c}. There is h ∈ H+

G such that {y + t · (x − y) | t < t1} ∩ h = ∅ and
{y+ t · (x− y) | t > t1}∩h = ∅. Let z = t1 · (x− y), since value(G, s) is a closed set, z is also in value(G, s). We
have that z ∈ hplane(h) but y 6∈ hplane(h). We have z ∈ value(G, s) \ c, and y ∈↓ [z]. This contradicts that for
all z ∈ value(G, s) \ c, c∩ ↓ [z]H+

G
= ∅. ut

We now establish the other direction.

Lemma 20. Let c be a cell in C(H+
G ). If c ⊆ PO(G, s) then c ⊆ value(G, s) and for all x ∈ value(G, s) \ c,

c∩ ↓ [x]H+
G

= ∅.

Proof. If c ⊆ PO(G, s) then by definition of Pareto optimality c ⊆ value(G, s). Let x ∈ value(G, s) \ c. Since
c ⊆ PO(G, s), for all y ∈ c, if x ∈ value(G, s) then y 6< x. Therefore c∩ ↓ x = ∅ and by Lemma 18, c∩ ↓ [x]HG =
∅. ut

We deduce from this, a way to represent the Pareto curve as a union of cells in C(H+
G ).

Corollary 3. The Pareto curve is the union of cells c in C(H+
G ) such that c ⊆ value(G, s) and for all c′ ∈

C(H+
G ) \ {c′} if c′ ⊆ value(G, s) then c∩ ↓ c′ = ∅.

Then, the correctness of Theorem 9 follows from the characterization of Corollary 3.

E General case

Theorem 20. (Theorem 10 in the paper) Let G be a weighted game and s a state of G, then value(G, s) equals:

⋃
G′∈Sub(G,s)

⋂
s′∈States′

↑J

 ⋂
σ∀∈M

⋃
S′∈SCC(s′,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

})
where ↑J X = {x ∈ Rd | ∀j ∈ J. ∃x′ ∈ X. ∀i ∈ I ∪ {j}. xi = x′i}.

Before proceeding to the poof, we recall here some properties of multi-mean-payoff games which were proved
in [17].

Lemma 21 ([17, Lemma 17]).

∀s ∈ States. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Outcome(s, σ∃, σ∀)) ≥ vi and ∀j ∈ J. MPj(Outcome(s, σ∃, σ∀)) ≥ vj
⇔ ∀s ∈ States. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Outcome(s, σ∃, σ∀)) ≥ vi and MPj(Outcome(s, σ∃, σ∀)) ≥ vj .



Lemma 22 ([17, Lemma 14]). Let j ∈ J and s ∈ States.

∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Outcome(s, σ∃, σ∀)) ≥ vi and MPj(Outcome(s, σ∃, σ∀)) ≥ vj
⇔ ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Outcome(s, σ∃, σ∀)) ≥ vi and MPj(Outcome(s, σ∃, σ∀)) ≥ vj .

The proof of the theorem relies on the following lemma which is illustrated by Example 1. From this lemma,
we prove inclusion in Theorem 10 by taking for G′ the restriction of G to states accessible when Eve plays a
strategy that ensures the given value. We prove the inclusion in the other direction by noticing that it is easier
to win in G than in a subgame G′ and conclude using Lemma 23.

Lemma 23. Let G be a weighted game with J 6= ∅, and s a state of G, then
⋂
s∈States value(G, s) is equal to:

⋂
s∈States

↑J

 ⋂
σ∀∈M

⋃
S∈SCC(s,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Proof. Let v be a point in value(G, s) for all state s, then by definition: ∀i ∈ I, MPi(ρ) ≥ vi and ∀j ∈ J ,
MPj(ρ) ≥ vj . Thanks to [17, Lemma 17], this is equivalent to ∀s ∈ States. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥
vi and MPj(ρ) ≥ vj . Then by [17, Lemma 14], this is also equivalent to ∀s ∈ States. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈
I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj . This means that ∀s ∈ States, v ∈↑J value(G′, s), where game G′ is obtained
from G by setting I ′ = I ∪J and J ′ = ∅. We then obtain the result using the characterization of Theorem 4. ut

Proof (of Theorem 10). We first prove inclusion. Let v ∈ value(G, s), and σ∃ a strategy which ensures it. Let
S be the set of states that is reachable from s by following σ∃. We have {s} ⊆ S ⊆ States. We also have
v ∈ ∩s′∈Svalue(s′), since otherwise v would not be ensured by σ∃. Restricting the game to vertices of S defines
a subgame G′, since only edges of Eve have been removed, it is a subgame for Eve. In a subgame for Eve the
values can only be lower than in the original game. Using Lemma 23 on this game, we obtain that v belongs to⋂
s∈S ↑J

⋂
σ∀∈M

⋃
S∈SCC(s,σ∀) ↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
, which shows the inclusion.

Now, in the other direction, let v be an element of:

⋃
{s}⊆S⊆States

⋂
s′∈S
↑J

 ⋂
σ∀∈M

⋃
S′∈SCC(s,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

}) .

Let G′ be a subgame for Eve such that v ∈
⋂
s∈States′ ↑J

⋂
σ∀∈M

⋃
S′∈SCC(s,G′(σ∀)) ↓ conv

({
1
|c| · w(c) | c ∈ C(S′)

})
.

We use Lemma 23 on this subgame G′, to obtain:

⋂
s∈S

value(s,G′) =
⋂
s∈S
↑J

 ⋂
σ∀∈M

⋃
S∈SCC(s,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Since the actions of Adam have not been restricted, it is harder to ensure a given threshold in G′ than in G.
Therefore as v is ensured in G′ from all states of S, it can also be ensured in G from all states of States′, which
shows the reverse inclusion. ut

E.1 Expressing thresholds as a union of convex sets

We first prove the following lemma that we will use to reorder union and ↑ operators in the equation of
Theorem 10.

Lemma 24. Operator l (defined in appendix B.3) is compatible with union, i.e. for all J ⊆ J1, dK and all set X
and Y : (lJ X) ∪ (lJ Y ) =lJ (X ∪ Y ).

Proof. Let x ∈ (lJ X)∪ (lJ Y ). If x ∈lJ X, there is x′ ∈ X such that πJ(x′) = πJ(x). We also have x′ ∈ X ∪Y ,
which proves x ∈lJ (X ∪ Y ). The case where x ∈lJ Y is similar.

In the other direction, let x ∈lJ (X ∪ Y ), there exists x′ ∈ X ∪ Y such that πJ(x) = πJ(x′). If x′ ∈ X then
x ∈lJ X and otherwise x ∈lJ Y . Therefore x ∈ (lJ X) ∪ (lJ Y ).



We use the following to restrict our study to bounded polygon, so that we can easily represent them by their
extremal points.

Lemma 25.
value(G, s) =↓ ([−WG ,WG ]d ∩ value(G, s))

Proof. Let v ∈ value(G, s), there is a strategy σ∃ whose outcome all have weight greater than v. Since all
outcome ρ of the game on all coordinate i, a weight wi(ρ) greater than −WG , we can replace all vi that are
smaller than −WG by −WG and we obtain a v′ ≥ v such that v′ ∈ value(s). Similarly, all weights are smaller
than WG so for all coordinate i, vi cannot be greater than W . Therefore v′ ∈ [−W,W ]d ∩ value(G, s) and
v ↓ ([−W,W ]d ∩ value(G, s)).

For the other inclusion, this is simply because value(G, s) is downward closed and [−W,W ]d ∩value(G, s) ⊆
value(G, s).

We will also use the following lemma, to apply the l operator only on bounded polytopes.

Lemma 26. Given a set X ⊆ Rd, a bound W and J ⊆ J1, dK, we have that:

[−W,W ]d ∩ (lJ [−W,W ]d ∩ (↓ [−W,W ]d ∩X)) = [−W,W ]d ∩ (lJ↓ ([−W,W ]d ∩X))

Proof. The inclusion holds because [−W,W ]d ∩ (↓ [−W,W ]d ∩X) ⊆↓ [−W,W ]d ∩X and lJ is monotonic with
respect to inclusion.

In the other direction, let x ∈ [−W,W ]d ∩ (lJ↓ ([−W,W ]d ∩X)). There is x′ ∈↓ ([−W,W ]d ∩X) such that
πJ(x′) = πJ(x). There is x′′ ∈ [−W,W ]d ∩ X such that x′′ ≥ x′. Let y be such that yj = x′′j if j ∈ J and

yj = xj = x′j ≤ x′′j otherwise. We have πJ(y) = x and y ∈ [−W,W ]d because both x′′ and x do. We also have

y ∈↓ [−W,W ]d ∩X because it is smaller than x′′. This shows that x ∈lJ {y} ⊆ [−W,W ]d ∩ (lJ [−W,W ]d ∩ (↓
[−W,W ]d ∩X)). ut

Theorem 21. There are polynomial functions P5 and P6 such that for all weighted games G and states s of G,
value(G, s) is a finite union of convex set which can be given as the intersection of a finite set of half-spaces
Hg

1 , . . . ,H
g
kg

whose associated inequations have size bounded by P5(d)+P6(d) · (2+log2((WG+1) · (|States|+1))).

Proof. By Theorem 10 value(G, s) is equal to:⋃
{s}⊆S⊆States

⋂
s′∈S

⋂
j∈J
lJ\{j}

⋂
σ∀∈M

⋃
S′∈SCC(s′,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

})

We can then reorder intersection and union operators using the fact that l operators are compatible with
union (Lemma 24). We do this by considering functions that selects for a tuple (s′, j, σ∀) a strongly connected
component of SCC(s′, σ∀), i.e. functions of F , where F = {f : States× J ×M 7→ 2States | ∀s′ ∈ States, j ∈ J, σ∀ ∈
M. f(s′, j, σ∀) ∈ SCC(s′, σ∀)}. Note that the set F can be huge, but is always finite. We then have that value(G, s)
is equal to: ⋃

{s}⊆S⊆States

⋃
f∈F

⋂
s′∈S

⋂
j∈J
lJ\{j}

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

We use Lemma 25 to restrict the difficult operations (↓ and l) to bounded polytopes. This is because their
results are easier to express using the vertex representation, which requires bounded polytopes. We express
value(G, s) as:

↓ [−W,W ]d ∩
⋃

{s}⊆S⊆States

⋃
f∈F

⋂
s′∈S

⋂
j∈J
lJ\{j}

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

Note that we can also use Lemma 25 to show:

↓ [−W,W ]d ∩
⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
=
⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})



since this set is the value set for the game where J would be empty (see 4). We therefore write value(G, s) as:

↓ [−W,W ]d ∩
⋃

{s}⊆S⊆States

⋃
f∈F

⋂
s′∈S

⋂
j∈J
lJ\{j}↓ [−W,W ]d ∩

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

We now use Lemma 26 to introduce a cube [−W,W ]d between the l and ↓ operators. Then value(G, s) can be
written as: ⋃

{s}⊆S⊆States

⋃
f∈F

↓ [−W,W ]d ∩
⋂
s′∈S

⋂
j∈J
lJ\{j} [−W,W ]d

∩ ↓ [−W,W ]d ∩
⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

We obtain therefore a finite union of convex intersections. We now use geometrical arguments to show that
the inequations defining these polyhedra are of polynomial size which will conclude the proof.

Thanks to Theorem 3.2, the set
⋂
σ∀∈M ↓ conv

({
1
|c| · w(c) | c ∈ f(s′, j, σ∀)

})
can be given by the intersection

of half-spaces whose inequations have size bounded by P2(d) · (2 + log2((W + 1)(|States|+ 1))). The intersection
with the cube [−W,W ]d is obtained by adding inequations of size d + ||W || which is smaller than the previous
bound. To apply ↓ we go back to the point representation, using Theorem 3.3, sizes of the vertices are bounded
by P3(d)·(2+P2(d)·(2+log2((WG+1)(|States|+1)))). Then using Theorem 3.2 once again, the downward closure
gives us half-spaces which have size bounded by P2(d) ·(2+P3(d) ·(2+(P2(d) ·(2+log2((WG+1)(|States|+1)))))).
Taking the intersection with the cube [−W,W ]d again adds inequation that are within these bounds. We go back
to a point representation in order to apply ↑J\{j}, which gives, thanks to Theorem 3.3, points of size bounded
by P3(d) · (2 + P2(d) · (2 + P3(d) · (2 + (P2(d) · (2 + log2((WG + 1)(|States|+ 1))))))).

We show that the operator ↑J\{j} gives half-spaces whose size is polynomially bounded. We have seen in
Lemma 12 that given a polyhedron P :

lJ P =
⋂

H∈F(πJ (P ))

H +BJ

When P is given by its vertices, the projection πJ is obtained by projecting points one by one, which means
replacing coordinates of J by 0 and therefore does not increase the size of the points. The equations to describe
half-spaces of F(πJ(P )), can be of size bounded by P2(d) times 2 plus the size of the vertices, thanks to
Theorem 3.1. The same system of inequations, gives the sets H + RJ when lifted to Rd. Therefore the size the
inequations we obtain after applying ↑J\{j} is bounded by P5(d) + P6(d) · (2 + log2((WG + 1) · (|States|+ 1))) =
P2(d) · (2+P3(d) · (2+P2(d) · (2+P3(d) · (2+(P2(d) · (2+log2((WG+1)(|States|+1)))))))). Then, the intersection
with the cube [−W,W ]d does not add any complexity and thus the previous bound also bounds the size of the
half-spaces that describes the convex set of the expression of value(G, s). ut

Theorem 22. There is a polynomial function P such that if S is a set of states and λ a system of linear
equations, then

⋂
s∈S value(G, s) ∩ [−W,W ]d ∩ polyhedron(λ) is of the form

⋃
f∈F conv(Ef ) where F is finite

and for each f ∈ F , Ef is a set of vertices which all have size bounded by P (|States|, d, ||λ||, ||W ||).

Proof. By Theorem 21 we have a finite union of polyhedra whose equations have size bounded by a polynomial
function. Let λ = (a1, b1) . . . (ak, bk). We use Theorem 2 to say that if polyhedron(λ) intersects this union of
polyhedra, then there is a solution of size bounded by d · P1(max{||ai, bi|| | 1 ≤ i ≤ k}, P6(||W ||, ||States||, d), d).

ut
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