
HAL Id: hal-00977352
https://hal.science/hal-00977352v5

Submitted on 8 Feb 2015 (v5), last revised 22 May 2015 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Values of Multidimensional Mean-Payoff Games
Romain Brenguier, Jean-François Raskin

To cite this version:
Romain Brenguier, Jean-François Raskin. Optimal Values of Multidimensional Mean-Payoff Games.
[Research Report] Université Libre de Bruxelles (U.L.B.), Belgium. 2014. �hal-00977352v5�

https://hal.science/hal-00977352v5
https://hal.archives-ouvertes.fr

Pareto Curves of
Multidimensional Mean-Payoff Games?

Romain Brenguier, Jean-François Raskin

Université Libre de Bruxelles (U.L.B.), Belgium

Abstract In this paper, we study the set of thresholds that the protagonist can force in a zero-sum two-player
multidimensional mean-payoff game. The set of maximal elements of such a set is called the Pareto curve, a
classical tool to analyze trade-offs. As thresholds are vectors of real numbers in multiple dimensions, there exist
usually an infinite number of such maximal elements. Our main results are as follow. First, we study the geometry
of this set and show that it is definable as a finite union of convex sets given by linear inequations. Second, we
provide a Σ2P algorithm to decide if this set intersects a convex set defined by linear inequations, and we prove
the optimality of our algorithm by providing a matching complexity lower bound for the problem. Furthermore, we
show that, under natural assumptions, i.e. fixed number of dimensions and polynomially bounded weights in the
game, the problem can be solved in deterministic polynomial time. Finally, we show that the Pareto curve can be
effectively constructed, and under the former natural assumptions, this construction can be done in deterministic
polynomial time.

1 Introduction

Two-player zero-sum games played on graphs are adequate models for open reactive systems [14], i.e systems main-
taining a continuous interaction with their environment. In such model, Eve (the protagonist) models the system,
Adam (the antagonist) models the environment, and a winning strategy for Eve in this game represents a controller
that enforces a good property (modeled as the winning condition in the game) against all possible behaviors of the
environment. Recently, there has been a large effort to study quantitative extensions of those graph games, see e.g. [6].
Those extensions are useful to model quantitative aspects of reactive systems such as mean energy or peak energy
consumption, mean response time, etc. In practice, a system is most often exhibiting several such quantitative aspects,
and they may be conflicting, e.g. one may need to consume more energy in order to ensure of a lower mean response
time. This is why there is a clear need to study multi-dimensional quantitative games.

In [17], the threshold problem for multi-dimensional mean-payoff games is studied, i.e. given a d-dimensional
value vector v ∈ Rd, does Eve have a strategy against all strategies of Adam to enforce values larger or equal to v. As
weights in the game are given as vectors in multiple dimensions, there are usually an infinite number of incomparable
thresholds that Eve is able to enforce. The set of maximal thresholds that Eve can enforce is called the Pareto
curve, it is the classical tool to analyze trade-offs. Another application of the Pareto curve is the study of multiplayer
games. For instance to compute Nash equilibria, a multiplayer game with mean-payoff objectives is transformed into
a multidimensional mean-payoff two-player game [2], and the Pareto curve of this multidimensional game allows us
to compute the equilibria of the original multiplayer game. In this paper, we study the Pareto curve and the set of
thresholds that Eve can enforce in a multidimensional mean-payoff games.

Contributions To effectively analyze the trade-offs in systems formalized by multidimensional mean-payoff games,
we need algorithms to answer queries about Pareto curves or to compute an effective representation of them. This is
the subject of this paper. Our main contributions are as follows.

First, we characterize the geometry of the set of thresholds that Eve can force: we show that this infinite set can
be effectively represented as a (finite) union of convex sets defined by linear inequations. We obtain this result both
for games where the mean-payoff is given dimension by dimension using lim inf (Theorem 9), and for a mixture of
lim inf and lim sup (Theorem 16). Using this symbolic representation, it is now possible for instance to optimize linear
functions by calls to linear programming.
? Work supported by ERC Starting Grant inVEST (279499).

Second, we study the computational complexity of natural associated decision problems. We provide a Σ2P al-
gorithm to decide if this set of thresholds intersects a convex set defined by linear inequations, and we prove the
optimality of our algorithm by providing a matching complexity lower bound for the problem (Theorem 11). To obtain
this result and several others in our paper, we extensively use techniques from discrete geometry [10] but we also
need to establish new non-trivial results. In particular, we provide new results on the complexity of manipulating and
querying linear sets defined by sets of linear inequations (Theorem 5). We believe that those results are of interest on
their own. Equipped with those new results, we show that, even if the Pareto curve is represented by an exponential
number of convex sets, each of them being defined by an exponential number of linear inequations, they are well
behaved. Indeed, all the inequations that are needed to represent the Pareto curve and its downward closure (the set
of thresholds that can be forced by Eve), have encoding that are bounded by polynomial functions in the size of the
game.

Third, we show that it is possible to answer queries on the set thresholds that Eve can force (Theorem 13) and
to construct the Pareto curve (Theorem 14) in deterministic polynomial time for fixed number of dimensions and
polynomially bounded weights. Those results are of practical relevance as the number of dimension while multiple is
often quite low in practice, and polynomially bounded weight is also a reasonable assumption, see [18,3,8] for papers
where those two properties are exploited.

Related works In [1], Alur et al. consider languages of infinite words definable by Boolean queries over multidimen-
sional mean-payoff automata. They study the accumulation points of infinite runs as a way to define an acceptance
condition. They do not consider the construction of the Pareto curves associated to languages. Here, we show how to
construct the Pareto curves in the more general and challenging setting of multidimensional mean-payoff games.

In [13], Papadimitriou et al. define a general procedure to construct approximations of Pareto curves. For models
with fixed number of dimensions, they identify conditions that are sufficient to ensure that this approximation can be
constructed in polynomial time. This technique has been used e.g. to provide approximate constructions of the Pareto
curves for discounted sum Markov decision processes [7]. With the technique of [13], we can obtain approximations
of the Pareto curves of multidimensional mean-payoff games in polynomial time for fixed number of dimensions.
Here we provide a stronger result as we show how to construct exact representations of the Pareto curves (and not
only approximations!) of multidimensional mean-payoff games in deterministic polynomial time for fixed number of
dimensions.

Structure of the paper Section 2 defines the problems that we solve. Section 3 establishes general complexity results
on the geometric objects that we use in the core of our paper. Section 4 solves the lim inf case. We concentrate on
this case first as it exhibits all the difficulties of the general case with simpler notations. Section 5 deals with the
construction of a concrete representation of the Pareto curve. In Section 6 we solve the general problem in which
lim inf and lim sup are mixed.

2 Preliminaries

Arenas We define arenas for two players that we call Eve and Adam. An arenaA is a tuple 〈States∃,States∀,Edges〉,
where:

– States = States∃] States∀ is a finite set of states partitioned between the states of Eve and those of Adam;1

– Edges ⊆ States × States is the set of edges. W.l.o.g. we assume that for all s ∈ States, there exists s′ ∈ States
such that (s, s′) ∈ Edges.

A play proceeds as follows. Whenever we arrive at a state s: if s ∈ States∃, then Eve selects a state s′ such that
(s, s′) ∈ Edges; if s ∈ States∀, then Adam selects a state s′ such that (s, s′) ∈ Edges. The game then continues from
s′ and this is repeated to form an infinite sequence of states. Formally, a play in the arena A is an infinite sequence of
states ρ = ρ0ρ1 · · · such that for all i ≥ 0, (ρi, ρi+1) ∈ Edges. We write ρ≤n for the prefix ρ0 · · · ρn. We write ρ≥n
for the suffix of ρ after ρ≤n−1, i.e. ρn · ρn+1 · · · and ρJm,nK for (ρ≤n)≥m.

A history h of the arena A is a (finite and non-empty) prefix of a play, i.e. an element of States∗ · States.
1 We will write |States| for the cardinal of States.

2

Strategies LetA be an arena, a strategy for Evemaps histories ending in a state of States∃ to a successor of that state.
Formally, it is a function σ∃ : States∗·States∃ → States, such that for all histories h and states s, (s, σ∃(h·s)) ∈ Edges.
Similarly, a strategy for Adam is a function σ∀ : States∗ · States∀ → Actions, such that for all for all histories h
and states s, (s, σ∀(h · s)) ∈ Edges. A strategy σ∀ is memoryless if for all histories h and h′, and all states s,
σ∀(h · s) = σ∀(h

′ · s). We write M for the (finite) set of memoryless strategies of Adam. Let σ∃ be a strategy
for Eve, a play ρ is compatible with the strategy σ∃ if, for all k ≥ 0, if ρk ∈ States∃ then ρk+1 = σ∃(ρ≤k).
We write OutcomeA(s, σ∃) for the set of plays in A that are compatible with strategy σ∃ and have initial state s (i.e.
ρ such that ρ0 = s). These plays are called outcomes of σ∃ from s. We simply write Outcome(s, σ∃) when A is clear
from context. The set of outcomes OutcomeA(s, σ∀) of a strategy of Adam is defined symmetrically.

Weighted game A weighted game G = 〈A, w, I, J〉 is an arena A equipped with a weight function w : Edges 7→ Zd,
and a partition of the set of dimensions J1, dK = {1, 2, . . . , d} into I] J = J1, dK. We call d the dimension of G.
Given a weight function w, we write wi for the projection to the i-th dimension of the function w. We write WG for
the maximal absolute value appearing in the weights: WG = max{|wi(e)| | i ∈ J1, dK, e ∈ Edges}. The mean-payoff
inferior and mean-payoff superior over dimension i of a play ρ are given by:

MPi(ρ) = lim inf
n→∞

1

n

∑
0≤k<n

wi(ρk, ρk+1),

MPi(ρ) = lim sup
n→∞

1

n

∑
0≤k<n

wi(ρk, ρk+1).

The goal of Eve is to maximize the mean-payoff inferior for the dimensions in I , and the mean-payoff superior
for the dimensions in J . Let G be a weighted game, s a state of G, and v ∈ Rd, we say that a strategy σ∃ ensures
thresholds v from state s if for all outcomes ρ ∈ OutcomeA(s, σ∃), for all dimensions i ∈ I , MPi(ρ) ≥ vi, and for all
dimensions j ∈ J , MPj(ρ) ≥ vj .

Pareto optimality We are interested in strategies of Eve that ensure thresholds as high as possible on all dimensions.
However, since the weights are multidimensional, there is not a unique maximal threshold in general. We use the
concept of Pareto optimality to identify the most interesting thresholds. To define the set of Pareto optimal thresholds,
we first define the set of thresholds that Eve can force:

value(G, s) =
{
v ∈ Rd | ∃σ∃ · ∀ρ ∈ Outcome(s, σ∃) ·

∀i ∈ I : MPi(ρ) ≥ vi
∧∀j ∈ J : MPj(ρ) ≥ vj

}
.

A threshold v ∈ Rd is Pareto optimal from s if is maximal in the set value(G, s). So the set of Pareto optimal
thresholds is defined as:

PO(G, s) = {v ∈ value(G, s) | ¬∃v′ ∈ value(G, s) : v′ > v}.

We refer to this set as the Pareto curve of the game. Our goal is to compute a representation of this curve. Note that
the set of thresholds that Eve can force is exactly equal to the downward closure of the Pareto optimal thresholds, i.e.
value(G, s) =↓ PO(G, s).

Linear inequations Let a ∈ Qd be a vector in d dimensions. The associated linear function αa : Rd 7→ R is the
function αa(x) =

∑
i∈J1,dK ai · xi that computes the weighted sum relative to a. A linear inequation is a pair (a, b)

where a ∈ Qd \ {0} and b ∈ Q. The half-space satisfying (a, b) is the set 1
2space(a, b) = {x ∈ Rd | αa(x) ≥ b}.

A linear equation is also given by a pair (a, b) where a ∈ Qd \ {0} and b ∈ Q but we associate to it the hyperplane
hplane(a, b) = {x ∈ Rd | αa(x) = b}. If H = 1

2space(a, b) is a half-space, we sometimes write hplane(H) for
the associated hyperplane hplane(a, b). A system of linear inequations is a set λ = {(a1, b1), . . . , (al, bl)} of linear
inequations. The polyhedron generated by λ is the set polyhedron(λ) =

⋂
(a,b)∈λ

1
2space(a, b).

A natural problem, is to try to optimize the threshold we can ensure with respect to a linear function α : Rd 7→ R.
We are looking for a strategy σ∃ which ensures a threshold v ∈ Rd, and such that there is no σ′∃ which ensures a

3

threshold v′ ∈ Rd, with α(v′) > α(v). To make this into a decision problem, we fix a real b, and ask if it is possible
to ensure threshold v such that α(v) ≥ b. We consider a generalization of this problem which considers a set of linear
inequations instead of a single one.

Polyhedron value problem Given a mean-payoff game G, a set of linear inequations λ over elements of Rd, the
polyhedron value problem asks whether there is a strategy σ∃ and a value v ∈ polyhedron(λ) such that σ∃ ensures
v. Note that this is equivalent to ask whether polyhedron(λ) intersects value(G, s).

Remark 1. Other works ([17,8] for instance) focus on the 0-value problem, which is a special case of the polyhedron
value problem (take as polyhedron the set Rd+). This special case is simpler: we will show that the polyhedron value
problem is Σ2P-complete while the 0-value problem is coNP-complete [17].

A1 waits R1 A1 waits R1

A2 waits R1 A2 waits R1

A1 and A2 wait R1 A1 and A2 wait R1

0, 0

0, 0

0, 0

−1, 0

0, 0

0,−1

−1, 0

0,−1

−1,−1

Figure 1. A two-dimensional mean-payoff game. Rounded states belong to Eve
and rectangles to Adam.

(0,−1)

(−1, 0)

Figure 2. Pareto curve of the
game of Figure 1.

Consider a system with n resources R1, . . . , Rn that are shared among d agents A1, . . . , Ad. Two agents cannot
access the same resource at the same time and can request one resource at any time. We want to control the access
to the resources in a way that minimizes the time that is spent during the waiting period by the different agents. This
situation can be seen as a d dimensional game, in which if Ai is waiting then the reward is −1 on the i-th dimension
and 0 otherwise. A situation with two agents and one resource is represented in Figure 1.

On each dimension, the average corresponds to the opposite of the average waiting time of each agent. For limit
inferior objectives the controller cannot ensure a payoff of 0 on all dimensions. However, it can ensure thresholds
like (−1, 0), (0,−1), or (− 1

2 ,−
1
2), and in fact all the thresholds on the line segment from point (−1, 0) to (0,−1),

or below it (this set is the set of feasible thresholds). Figure 2 shows the Pareto curve of the game. To illustrate the
polyhedron value problem, assume we want a strategy which gives at least − 1

3 on the first dimension, at least − 3
4 on

the second one: this corresponds to solution of the problems with λ = ((1, 0),− 1
3), ((0, 1),−

3
4). The frontier of this

polyhedron is represented by dotted lines on the figure. This polyhedron has a non-empty intersection with the set of
feasible thresholds, which means the problem has a solution.

3 Geometrical representations

Since our typical reader may not be familiar with all the notions of discrete geometry that we need, we summarize in
this section useful notions and properties related to convex sets which are useful for our characterization of the sets
PO(G, s) and value(G, s). For an introduction to discrete geometry, we refer the interested reader to [10]. We also
prove new results in Theorem 2, 4 and 5 on manipulating and querying polytopes and systems of linear inequations.
Those results are necessary to prove the main theorems of our paper, and we believe that they are of interest on their
own.

To allow computational complexity measure, the size of the representations of geometrical objects is relevant.
We give here the number of bits required to represent the objects that we manipulate. The size of a rational number

4

r = p
q ∈ Q where p ∈ Z, q ∈ N, p and q are relatively prime, is: ||r|| = 1 + dlog2(|p| + 1)e + dlog2(q + 1)e.

The size of a vector v = (r1, . . . , rd) is ||v|| = d +
∑
i∈J1,dK ||ri||. The size of a matrix A = (aij)1≤i≤d,1≤j≤n is

||A|| = d ·n+
∑
i,j∈J1,dK×J1,nK ||aij ||. The size of an equation (a, b) is ||(a, b)|| = ||a||+ ||b|| and the size of a system

of equations λ is ||λ|| =
∑

(a,b)∈λ ||(a, b)||.
A bounded polyhedron is called a polytope. A face F of P is a subset of P of the form F = P ∩ HF , where

HF is a half-space such that P ⊆ HF . In that case, say that HF defines face F of P . A face of dimension 1 is
called a vertex. If P has dimension d′, then a face of dimension d′ − 1 is called a facet. Given a polytope P , a
complete set of facet-defining half-spaces F contains for each facet F a half-space HF = 1

2space(aF , bF) such
that P ∩ hplane(aF , bF) = F and P ⊆ HF . We will write F(P) for such a set. A affine subspace is a set of
the form x + L with x ∈ Rd and L is a linear subspace of Rd (i.e. a subset closed under addition of vectors and
under multiplication by real numbers). The affine hull of a set X ⊆ Rd is the intersection of all affine subspaces of
Rd containing X , it is written aff(X). It can be described as the set of affine combinations of points of X [10]:
aff(X) = {

∑
x∈X tx · x | ∀x ∈ X. tx ∈ R ∧

∑
x∈X tx = 1}. The convex hull of a set of points X ⊆ Rd is

the set conv(X) =
{∑

x∈X tx · x | ∀x ∈ X. tx ∈ [0, 1] ∧
∑
x∈X tx = 1

}
. The downward closure of a set of points

X ⊆ Rd, is the set ↓ X = {x | ∃x′ ∈ X. ∀i ∈ J1, dK. xi ≤ x′i}.

3.1 Bounding the sizes of solutions of system of equations

If X is a finite set of points, the convex hull P = conv(X) can be written as a finite intersection of half-
spaces [10], it is therefore a polytope. It can be represented either by its extremal points or as the intersection of its
facet-defining half-spaces.

We recall that given a polytope P and F(P) be complete set of facet-defining half-spaces for P , then P is the
intersection of aff(P) with all half-spaces in F(P) [9, Theorem 3.(b)].
Theorem 1 ([9, Theorem 3.(b)]). Let P be a polytope. Let F(P) be complete set of facet-defining half-spaces for P ,
then P is the intersection of aff(P) with all half-spaces in F(P).

For our algorithms, it is important to be able to go from the half-space representation to the extremal point repre-
sentation and vice-versa. We need also to bound the complexity of the objects that we obtain, i.e. we want to ensure
that the half-spaces are defined with inequations of polynomial size and the extremal points to be representable with
polynomial encodings. We will show in Theorem 5 that this is possible.

3.2 Small solutions of large systems of equations

Small solutions of large systems of equations The following theorem establishes that if a system of linear equations
has a solution, then it also has a solution with a small encoding.

Theorem 2. There is a polynomial functionP1 such that for all system of equations λ of Rd, if
⋂

(a,b)∈λ hplane(a, b) 6=
∅, then there exists x ∈

⋂
(a,b)∈λ hplane(a, b) whose representation has size smaller than P1(d)·(1+max{||(a, b)|| |

(a, b) ∈ λK}).

The proof given in appendix relies on a result of [12] that we extend to non-singular, and non-square matrices of
rational numbers rather than integers. Note also that our bound depends on the number of dimension d but not on the
number of equations as in [12].

Our results is based on the following basic property from [12] which is said to be easily proved from Cramer’s rule
and states that systems of equations given by non-singular matrices have solutions of polynomial size.

Lemma 1 ([12, Lemma 1]). LetA be a non-singularm×m integer matrix. The components of the solution ofAx = b
are all rationals with numerator and denominator bounded by (m · a)m where a = maxi,j{|Ai,j |, |bj |}.

We can prove a corollary that generalizes the result to non-singular matrices. Note in particular that we are not
restricted to square matrices and that the bound depends on the number of columns d (that is the dimension of the
space we consider) but not on the number of rows n (the number of equations in the system).

5

Corollary 1. LetA =
(
pi,j
qi,j

)
i,j∈J1,nK×J1,dK

with pi,j ∈ Z and qi,j ∈ N be a n×d rational matrix and b =
(
ri
si

)
i∈J1,nK

with ri ∈ Z and qi ∈ N be a n rational vector. If Ax = b has a solution, then it has one where all components are
rationals with numerator and denominator bounded by d2·d+2d2·d

2+5·d+2 where a = maxi,j{|pi,j |, |qi,j |, |ri|, |si|}.

Proof. We consider the matrixA′ and the vector b′ obtained by multiplying each line i ofA and b by si·
∏
j∈{1,...,n} qi,j .

We have that A′ is an integer matrix and b′ an integer vector, moreover the solutions of Ax = b are the same than
A′x = b′. The absolute value of the components of A′ are smaller than max{|pi,j |} ·max{|si|} · (max{qi,j})d, which
we can bound by ad+2. Similarly the absolute value of the components of b′ are smaller than max{|ri|} ·max{|si|} ·
(max{qi,j})d, which we can also bound by ad+2.

Let k = rank(A′) ≤ d, there are k linearly independent rows A′i1 , . . . , A
′
ik

of A′, such that each row of A′ is a
linear combination of A′i1 , . . . , A

′
ik

(see for instance [11, Theorem 5.2.2]). We prove that if A′x = b′ has a solution
then the equation: A′i1

...
A′ik

x =

 b′i1
...
b′i,k

 (1)

has the same set of solutions. Assume A′x = b′ has a solution and let X be a solution of A′x = b′. We obvi-
ously have that X is a solution of (1). Let A′i be a row of A′, there are coefficient λ1, . . . , λk ∈ R such that
A′i =

∑
1≤k′≤k λk′A

′
ik′

. Since X is a solution, A′iX = b′i, hence b′i =
∑

1≤k′≤k λk′A
′
ik′
X =

∑
1≤k′≤k λk′b

′
k′ .

Let X ′ be a solution of (1), we have that A′iX
′ =

∑
1≤k′≤k λk′A

′
ik′
X ′ =

∑
1≤k′≤k λk′b

′
k′ = b′i. This being true for

all row i, X ′ is also a solution of A′x = b′.
The rowsA′i1 , . . . , A

′
ik

are linearly independent and can be completed in a base of Rn by some rows rk+1, . . . , rm,

whose coefficients are all 0 or 1. The new matrix A′′ =

A′i1
...
A′ik
rk+1

...
rm

is singular. Therefore the system A′′x =

b′i1
...
b′i,k
0
...
0

has a solution and by Lemma 1, there is a solution where components are rationals with numerator and denominator
bounded by d · (dad+2)2·d+1. ut

With the help of the preceding result, we can also bound the size of the solutions.

Theorem 3. There is a polynomial function P0 such that if A =
(
pi,j
qi,j

)
i,j∈J1,mK×J1,nK

with pi,j ∈ Z and qi,j ∈ N

is a m × n rational matrix and b =
(
ri
si

)
i∈J1,mK

with ri ∈ Z and qi ∈ N is a m rational vector. and the system

Ax = b has a solution, then it has one where all components have size bounded by P0(n) · (2 + log2(a)) where
a = maxi,j{|pi,j |, |qi,j |, |ri|, |si|} and whose size is bounded by n · P0(n) · (1 + max{||Ai,j ||, ||bi|| | i ∈ J1,mK, j ∈
J1, nK}).

Proof. By the previous corollary 1, we can find a solution X such that for each i ∈ J1,mK, Xi =
pi
qi

with |pi| ≤ M

and 0 < qi ≤M where M = n2·n+2 · an2+5·n+2.
Consider an index i. If Xi = 0 then ||Xi|| = 2. Otherwise we have:

||Xi|| = 1 + dlog2(|pi|+ 1)e+ dlog2(qi + 1)e
≤ 1 + dlog2(|pi|) + 1e+ dlog2(qi) + 1e
≤ 1 + dlog2(M) + 1e+ dlog2(M) + 1e
≤ 1 + 2 · d(2 · n+ 2) · log2(n) + (n2 + 5 · n+ 2) log2(a) + 1e
≤ 1 + 2 · ((2 · n+ 2) · log2(n) + (n2 + 5 · n+ 2) · log2(a) + 2)

6

One can check that for n > 0, (2 · n+ 2) · log2(n) ≤ n2 + 5 · n, hence

||Xi|| ≤ 1 + 2 · (n2 + 5 · n+ 2) · (1 + log2(a))

Therefore the size of X is bounded by n · (1 + 2 · (n2 + 5 · n + 2) · (1 + log2(a)). As max{||Ai,j ||, ||bi|| | i ∈
J1,mK, j ∈ J1, nK} ≥ log2(maxi,j{|pi,j |, |qi,j |, |ri|, |si|}, the property holds with P0(n) = 2 · n2 + 10 · n+ 5. ut

Then, Theorem 2 is an obvious consequence of the preceding theorem with P1(n) = n · P0(n).

Figure 3. Illustration of Lemma 2 in the
case of two dimensions: In this example,
the possible witnesses of the property are
circled.

Small witnesses of large systems of inequations To decide the polyhe-
dron value problem, our algorithm nondeterministically constructs solu-
tions of large systems of inequations. We show in Theorem 4 that we can
restrict the guesses to points whose representation is of polynomial size.
The proof relies on Lemma 2 that says that if a system of inequations has
a solution, then there is one at the intersections of at most d of the hyper-
planes defined by the associated equations. This is illustrated in Figure 3:
in two dimensions, if a collection of half-spaces (i.e. half-planes here) in-
tersect (green shaded area in the picture), then either there is a point at the
intersection of two boundary lines which is in the intersection (this is the
case in our example for the blue points), or one of these lines is included in
the intersection (this would be the case for instance if we only took parallel
lines).

Lemma 2. LetH1, . . . ,Hn be n inequations of Rd. If
⋂n
i=1

1
2space(Hi) 6=

∅ then there are k ≤ d indexes i1, . . . , id such that:

1.
⋂k
j=1 hplane(Hij) 6= ∅, and

2.
⋂k
j=1 hplane(Hij) ⊆

⋂n
i=1

1
2space(Hi).

Proof. We will prove by induction a slightly stronger version of the lemma as follows: let S be an affine subspace of
Rd of dimension k, with 1 ≤ k ≤ d. If S ∩

⋂n
i=1

1
2space(Hi) 6= ∅ then there are k′ ≤ k indexes i1, . . . , ik′ such

that:

S ∩
k′⋂
j=1

hplane(Hij) 6= ∅ and S ∩
k⋂
j=1

hplane(Hij) ⊆ S ∩
n⋂
i=1

1

2
space(Hi).

The lemma correspond to the case where S = Rd.
We show this property by induction other k. If k = 0, then if S∩

⋂n
i=1

1
2space(Hi) 6= ∅ then every 1

2space(Hi)

contains S since it is reduced to one point. Therefore S ∩
⋂0
i=1

1
2space(Hi) = S = S ∩

⋂n
i=1

1
2space(Hi).

Assume now k > 0 and that the property holds for all affine subspace of dimension k′ < k. We show the property
for k by induction over n. If n = 0 the property obviously holds.

We now assume that the property holds for n ≥ 0 and prove it for n+ 1. We consider a half-space Hn+1.

– If S ⊆ hplane(Hn+1) then we use the induction hypothesis for n: there are k′ ≤ k indexes i1, · · · , ik′ such that⋂k′
j=1

(
hplane(Hij) ∩ S

)
6= ∅ and:

k′⋂
j=1

(
hplane(Hij) ∩ S

)
⊆ S ∩

n⋂
i=1

1

2
space(Hi)

⊆ S ∩ hplane(Hn+1) ∩
n⋂
i=1

1

2
space(Hi)

⊆ S ∩
n+1⋂
i=1

1

2
space(Hi).

Thus the property holds for n+ 1 in that case.

7

– Otherwise hplane(Hn+1)∩ S forms a affine subspace of dimension k− 1, to which we can apply the induction
hypothesis.
• If S ∩ hplane(Hn+1) ∩

⋂n
i=1

1
2space(Hi) 6= ∅ then there are k′ ≤ k − 1 indexes i1, . . . , ik′ such that

(hplane(Hn+1) ∩ S) ∩
⋂k′
j=1 hplane(Hij) 6= ∅ and :

(hplane(Hn+1) ∩ S) ∩
k′⋂
j=1

hplane(Hij) ⊆ S ∩ hplane(Hn+1) ∩
n⋂
i=1

1

2
space(Hi)

S ∩
k′⋂
j=1

hplane(Hij) ∩ hplane(Hn+1) ⊆ S ∩
n+1⋂
i=1

1

2
space(Hi)

Which shows the property.
• Otherwise

(⋂n
i=1

1
2space(Hi) ∩ S

)
∩ hplane(Hn+1) = ∅. Let S′ =

⋂n
i=1

1
2space(Hi) ∩ S, we show

that it is either included in 1
2space(Hn+1) or it does not intersect it: assume there is one point x ∈ S′ inside

1
2space(Hn+1) and one point x′ ∈ S′ outside of it, then αa(x) ≥ b and αa(x′) < b. By continuity of linear
functions, there would be x′′ ∈ [x, x′] such that αa(x′′) = b. Since S′ is convex x′′ ∈ S′, and therefore
x′′ ∈ S′ ∩ hplane(Hn+1) which contradicts the hypothesis.
If S′ is outside 1

2space(Hn+1) then the intersection S ∩
⋂n+1
i=1

1
2space(Hi) is empty, so we have nothing

to prove.
Otherwise,

⋂n
i=1

1
2space(Hi) ∩ S ⊆ 1

2space(Hn+1). We apply the induction hypothesis over n: there are

k′ ≤ k indexes i1, . . . , ik′ such that
⋂k′
j=1 hplane(Hij) ∩ S 6= ∅ and :

k′⋂
j=1

hplane(Hij) ∩ S ⊆
n⋂
i=1

1

2
space(Hi) ∩ S ⊆ S ∩

n+1⋂
i=1

1

2
space(Hi)

Which proves the result. ut

From Lemma 2, we conclude that small solutions always exists for systems of linear inequations independently of
the number of inequations. Note that the main difference between the next theorem and Theorem 2 is that we consider
here systems of inequations rather than equations.

Theorem 4. There is a polynomial function P1 such that for all system of inequations λ of Rd, if polyhedron(λ) 6=
∅ then there is a point x ∈ polyhedron(λ) whose representation has size smaller than P1(d) · (1+max{||(a, b)|| |
(a, b) ∈ λ}).

Proof. We prove in fact that a bound of P1(d) · (1 + max{||ai,j ||, ||bi|| | i ∈ J1, nK, j ∈ J1, dK})) is sufficient, and it
implies the result.

The polynomial function P1 comes from Theorem 2. Let λ = {(a1, b1), . . . , (an, bn)} be a system of inequa-
tions defining a non empty polyhedron. By Lemma 2, there is a set H1, . . . ,Hk subset of { 12space(ai, bi) | i ∈
J1, nK} with k ≤ d and such that:

⋂k
j=1 hplane(Hij) 6= ∅ and

⋂k
j=1 hplane(Hij) ⊆

⋂n
i=1

1
2space(Hi). Since⋂k

j=1 hplane(Hij) 6= ∅ the system of equation ((ai1 , bi1) . . . (aik , bik)) has a solution. Using Theorem 2 there is a
solution x where all components are bounded by P1(d) · (1 + max{||Ai,j ||, ||bi|| | i ∈ J1, nK, j ∈ J1,mK})). Since⋂k
j=1 hplane(Hij) ⊆

⋂n
i=1

1
2space(Hi), the solution x is also inside the intersection of

⋂n
i=1

1
2space(Hi), and

thus x ∈ polyhedron(λ). ut

3.3 Size obtained when changing the representation of polyhedra

Size obtained when changing the representation of polyhedra As already recalled, it is well known that we can
represent a polytope either as the intersection of half-spaces (solutions of a system of inequations) or by the finite
set of its vertices (extremal points). Theorem 5 characterizes the complexity of one representation w.r.t. the other.

8

Point 1 tells us how to bound the size of the inequations in the half-spaces representation as a function of the size of
the representation of the points in the vertices representation. Point 2 does the same for the downward closure of the
convex hull of the set of points. Point 3 tells us how to bound the size of the representation of the vertices as a function
of the size of the inequations in the half-space representation.

Theorem 5. There are polynomial function P2 and P3 such that:

1. given a finite set of points V = {v1, . . . , vn}, there are k ≤ nd inequations (a1, b1), . . . , (ak, bk) whose represen-
tations have size smaller than P2(d) · (2 + log2(max{||v|| | v ∈ V })) and such that

⋂
i∈J1,kK

1
2space(ai, bi) =

conv(V).
2. given a finite set of points V = {v1, . . . , vn}, there are k ∈ N inequations

(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) · (2+ log2(max{||(ai, bi)|| | i ∈
J1, nK})) and such that

⋂
1≤i≤k

1
2space(ai, bi) =↓ conv(V).

3. given a polytopeP (i.e a bounded polyhedron) represented by a system of inequation λ, such thatP =
⋂

(a,b)∈λ
1
2space(a, b),

there is a finite set V of points whose representations have size smaller than P3(d) · (2 + log2(max{||(a, b)|| |
(a, b) ∈ λ})) and such that conv(V) = P .

We will decompose the proof of Theorem 5 in three parts.

From the point representation to the half-space representation

Theorem 6 ().
There is a polynomial function P2 (of degree 3) such that given a finite set of points V = {v1, . . . , vn}, with

vi =
(
pi,j
qi,j

)
i,j∈J1,nK×J1,dK

, there are k ≤ nd half-spaces H1, . . . ,Hk whose inequations have size smaller than

P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})) and such that ∩i∈J1,kKHi = conv(V).

Proof. Facets of conv(V) are given by d′ linearly independent vertices of V where d′ is the dimension of conv(V).
We first prove the case d′ = d. Let f be a facet of conv(V) given by v1, . . . , vd which are d linearly independent

points. We show how to obtain an equation of the half-space Hf defining this facet. The equation2vT1
...
vTd

A =

1
...
1

has a solution and Theorem 2 guarantees that we can find a solution whose components have all size bounded by
P1(d) · (2 + log2(max{|pi,j |, |qi,j |})). The equation (AT , 1) defines an hyperplane h. Moreover, for all vj with
1 ≤ j ≤ k, AT vj = (vTj A)

T = 1. This means that h contains all vj and therefore either 1
2space(A

T , 1) or
1
2space(−A

T ,−1) is defining the facet given by v1, . . . , vd. This gives us a description of Hf of size bounded
by d + P1(d) · (2 + log2(max{|pi,j |, |qi,j |})). Since a polytope is the intersection of its facet-defining half-spaces,
conv(V) is the intersection of the Hf with f facet of conv(V).

We now assume that d′ < d and that the property holds in a space of dimension d − 1. We look for half-spaces
defining the affine subspace A = aff(conv(V)) of dimension d′ containing conv(V). We take d′ + 1 linearly
independent points in V , which we write v1, . . . , vd′+1. Since they are linearly independent the equation: vT1

...
vTd′+1

B =

1
...
1

has a solution, and using Theorem 2, there is a solution B whose components all have size bounded by P1(d) · (2 +
log2(max{|pi,j |, |qi,j |})). The equation (BT , 1) defines an affine subspace of dimension d− 1 containing conv(Vi),

2 When A is a matrix, AT represent the transpose of A

9

so we can apply the induction hypothesis inside it. We obtain H ′1, . . . H
′
k′ half-spaces of A whose equations have size

smaller than d + P1(d) · (2 + log2(max{|pi,j |, |qi,j |})) and such that A ∩
⋂
i∈J1,k′KH

′
i = conv(V). The equation

defining H ′1, . . . ,H
′
k′ also define half-spaces of Rd. The convex hull of Vi is then the intersection of H ′1, · · · , H ′k′

and the half-spaces given by (BT , 1) and (−BT ,−1). The sizes of all the corresponding equations are bounded by
d+P1(d) · (2 + log2(max{|pi,j |, |qi,j |})). The desired property is obtained for P2(d) = d+ d ·P1(d) = 2 · d3 +10 ·
d2 + 11 · d. ut

Theorem 7 (). There is a polynomial function P3 (of degree 3) such that a polytope (i.e a bounded polyhedron) given
by its set of facet-defining half-spaces F = 1

2space(a1, b1), . . . ,
1
2space(ak, bk), with ai =

(
pi,j
qi,j

)
j∈J1,dK

with

pi,j ∈ Z, qi,j ∈ N and bi = ri
qi

with ri ∈ Z, si ∈ N, can be written as the convex hull conv(V) of a finite set V of
points whose representation have size smaller than P3(d) · (2 + log2(max{|pi,j |, |qi,j |, |ri|, |si| | 1 ≤ i ≤ k, 1 ≤ j ≤
d})).

We first prove that equations of aff(P) can be obtained from a subset of the equations (a1, b1), . . . , (ak, bk).

Lemma 3. If P = 1
2space(a1, b1)∩· · ·∩

1
2space(ak, bk), then there exists i1, . . . , ik′ ∈ J1, kK such that aff(P) =

1
2space(ai1 , bi1) ∩ · · · ∩

1
2space(aik′ , bik′).

Proof. We first prove that given (ai, bi), if aff(P) 6⊆ hplane(ai, bi) then there exists x ∈ P such that ai · x < bi.
Assume toward a contradiction that there is no such x ∈ P , then for all point x of P , ai · x ≥ bi. Since P ⊆
1
2space(ai, bi), we also have ai ·x ≤ bi, and therefore ai ·x = bi. Therefore the affine space hplane(ai, bi) contains
P . Since aff(P) is the smallest affine space that contains P , it is included in hplane(ai, bi). This contradicts the
fact that aff(P) 6⊆ hplane(ai, bi).

We now prove that if P = Q ∩ 1
2space(ai, bi) and aff(P) 6⊆ hplane(ai, bi) then aff(Q) = aff(P).

What since P ⊆ Q, what we have to show is that Q ⊆ aff(P). Let y ∈ Q, we will prove that y ∈ aff(P). If
y ∈ P then y ∈ aff(P). Assume now y ∈ Q \ P , we have y 6∈ 1

2space(ai, bi) and therefore ai · y > bi. If
aff(P) 6⊆ hplane(ai, bi), then we proved there exists x ∈ P , such that ai ·x < bi. Consider the line segment [x, y].
Since ai · x < bi and ai · y > bi, there is z ∈ [x, y] such that z ∈ hplane(ai, bi). Since both x and y are in Q, z also
is, and as z ∈ 1

2space(ai, bi), z ∈ P . We have x 6= z, [x, z] ⊆ P , therefore aff(P) must contain the line passing
through x and z, and therefore contains y. This proves y ∈ aff(P). Hence Q ⊆ aff(P) and aff(Q) = aff(P).

From this we can deduce that aff(P) =
⋂

(ai,bi)|aff(P)⊆hplane(ai,bi)
1
2space(ai, bi). Consider the set Q given

by
⋂

(ai,bi)|aff(P)⊆hplane(ai,bi)
1
2space(ai, bi), by the property we proved, for each (ai, bi) such that aff(P) 6⊆

hplane(ai, bi), aff(Q ∩ 1
2space(ai, bi)) = aff(Q). By a simple induction we can deduce

aff

Q ∩ ⋂
(ai,bi)|aff(P) 6⊆hplane(ai,bi)

1

2
space(ai, bi)

 = aff(Q).

Therefore Q ⊆ aff(P), moreover since for all (ai, bi) such that aff(P) ⊆ hplane(ai, bi) we have aff(P) ⊆
1
2space(ai, bi), this means that aff(P) ⊆ Q. Hence Q = aff(P). ut

Proof (of Theorem 3). Let P be the polytope
⋂

1≤i≤k
1
2space(ai, bi) and d′ be the dimension of aff(P). By [10,

Proposition 5.3.2 (i)], a polytope is the convex hull of its vertices (its faces of dimension 0). Vertices are obtained
by the intersection of aff(P) with d′ hyperplane corresponding to facet-defining half-spaces. Lemma 3 proves that
equations of aff(P) can be obtained from a subset of the equations (a1, b1), . . . , (ak, bk). Therefore, for each vertex
v, there is system of equations given by a subset of the (ai, bi)1≤i≤k, such that v is the unique solution. Thanks to
Theorem 2, the representation of this solution has size smaller than P1(d) · (2 + log2(max{|pi,j |, |qi,j |, |ri|, |si| | i ∈
J1, kK, j ∈ J1, dK}). This shows the result. ut

10

Downward closure We now show that the representation in term of half-spaces of the downward closure of a convex
hull is of polynomial size.

Lemma 4. Operator ↓ is monotonic, i.e. for any set X and Y such that X ⊆ Y , we have that ↓ X ⊆↓ Y .

Proof. Assume X ⊆ Y . Let x ∈↓ X , there is x′ ∈ X such that for all i, x′i ≥ xi. As X ⊆ Y , x′ ∈ Y , and therefore
x ∈↓ Y .

Lemma 5. Operator ↓ is compatible with union, i.e. for any set X and Y : (↓ X) ∪ (↓ Y) =↓ (X ∪ Y).

Proof. To show (↓ X) ∪ (↓ Y) ⊆↓ (X ∪ Y) We use the monotonicity property (Lemma 4): since X ⊆ X ∪ Y ,
↓ X ⊆↓ (X ∪ Y).

In the other direction, let x ∈↓ (X ∪ Y), there exists x′ ∈ X ∪ Y such that x ≤ x′. If x′ ∈ X then x ∈↓ X and
otherwise x ∈↓ Y .

Equations of the downward closure of a polyhedron Our goal is from the representation in term of half-spaces of
a polyhedron, to obtain a representation of its downward closure. We will show that the downward closure of convex
hull can also be represented by relatively small (i.e. polynomial) equations. We will prove several lemmas to obtain
the full characterization of Corollary 2. But we first introduce some notations.

Let X be a set of points and J ⊆ J1, dK, we write:

– πJ(X) for the set {x′ | ∃x ∈ X. ∀i ∈ J1, dK \ J. x′i = xi and ∀j ∈ J. x′j = 0},
– ↓J (X) for the set {x′ | ∃x ∈ X.∀i ∈ J1, dK \ J. x′i = xi and ∀j ∈ J. x′i ≤ xi},
– lJ (X) for the set {x′ | ∃x ∈ X.∀i ∈ J1, dK \ J. x′i = xi and ∀j ∈ J. x′i ∈ R};

We also write 1i for the point that has coordinate 1 on dimension i and 0 on the other dimensions. We write CJ for the
cone

∑
j∈J R+ · 1j . If P is a polyhedron and F(P) a set of facet-defining half-spaces of P in the subspace aff(P),

we write FJ−(P) ⊆ F(P) the half-spaces H of F(P) that contain the direction −CJ , i.e. H − CJ = H .

Lemma 6. Let P be a polyhedron, J ⊆ J1, dK, and F(πJ(P)) be a set of half-spaces of aff(πJ(P)). We have that:

lJ P =
⋂

H∈F(πJ (P))

H + RJ

where RJ denotes the subspace
∑
j∈J R · 1j .

Proof.

x ∈lJ P ⇔ ∃x′ ∈ P. πJ(x) = πJ(x
′)

⇔ πJ(x) ∈
⋂

H∈F(πJ (P))

H

⇔ πJ(x) +
∑
j∈J

R · 1j ⊆
⋂

H∈F(πJ (P))

H +
∑
j∈J

R · 1j

⇔ x ∈
⋂

H∈F(πJ (P))

H + RJ

ut

We show how to obtain facet-defining half-spaces of the downward closure of P with respect to one dimension.

Lemma 7. Let P be a polyhedron, F(P) be a set of facet-defining half-spaces of P and j ∈ J1, dK. We have:

↓j P =lj P ∩
⋂

H∈Fj
−(P)

H

11

Proof. ⊆ Let x ∈↓j P . We have that x ∈lj P . There is x′ ∈ P such that x = x′ − λ · 1j with λ ≥ 0. Let f ∈ Fj−,
since x′ ∈ Hf we have that x ∈ Hf − R+ · 1j = Hf . Therefore x ∈lj P ∩

⋂
f∈Fj

−
Hf .

⊇ Let x ∈lj P ∩
⋂
f∈Fj

−
Hf . There exists x′ ∈ P such that π{j}(x) = π{j}(x

′). Consider the line segment

[x, x′], it does not intersect any hplane(Hf) with f ∈ Fj− since both x and x′ are inside these half-spaces.
If [x, x′] does not intersect any hplane(Hf) where f is a facet of P then x is in the intersection of these half-

spaces, and using Theorem 1, this means that x ∈ P .
Otherwise [x, x′] intersects some hplane(Hf) with f facet of P which is not in F j−. Since Hf contains x′ but

not x, and these two only differs by their j coordinates, this means that xj ≤ x′j and therefore x ∈↓j P . ut

We now generalize the previous lemma to the downward closure with respect to several dimensions.

Lemma 8.
↓K P =

⋂
J⊆K

⋂
H∈FK\J

− (πJ (P))

H + RJ

with the convention that π∅(P) = P , F∅
− (P) = F(P) and B∅ = 0.

Proof. We prove the result by induction over the size of K. The case where |K| = 1 is a direct consequence of
Lemma 6 and 7.

Assume the equality holds for some set K. Consider a dimension j 6∈ K.

π{j}(↓K P) =↓K π{j}(P) =
⋂
J⊆K

⋂
H∈FK\J

− (πJ∪{j}(P))

H +BJ

So we can chose:
F(π{j}(↓K P)) =

⋃
J⊆K

{H + RJ | H ∈ FK\J− (πJ∪{j}(P))} (2)

We also have by induction hypothesis:

F(↓K P) =
⋃
J⊆K

{H + RJ | H ∈ FK\J− (π{j}(P))}

F j−(↓K P) =
⋃
J⊆K

{H + RJ | H ∈ FK∪{j}\J− (π{j}(P))} (3)

Using Lemma 6 and 7:

↓K∪{j} P =
⋂

H∈F(π{j}(↓KP))

H +Bj ∩
⋂

H∈Fj
−(↓KP)

H

=
⋂
J⊆K

⋂
H∈FK\J

− (πJ∪{j}(P))

H + RJ +Bj ∩
⋂

H∈Fj
−(↓KP)

H By (2)

=
⋂
J⊆K

⋂
H∈FK\J

− (πJ∪{j}(P))

H +BJ∪{j} ∩
⋂
J⊆K

⋂
H∈FK∪{j}\J

− (π{j}(P))

H + RJ By (3)

=
⋂

J⊆K∪{j}

⋂
H∈FK∪{j}\J

− (πJ (P))

H +BJ

Which proves the property for K ∪ {j} and concludes the induction. ut

From this lemma we deduce a representation of the downward closure of a polyhedron in term of half-spaces.

12

Corollary 2. If P is a polyhedron, then:

↓ P =
⋂

J⊆J1,dK

⋂
H∈FJ1,dK\J

− (πJ (P))

H + RJ

Theorem 8 (). There is a polynomial function P2 such that given a finite set of points V = {v1, . . . , vn}, with

vi =
(
pi,j
qi,j

)
i,j∈J1,nK×J1,dK

, there is a finite collection of half-spaces H1, . . . ,Hk which are described by equations of

size smaller than P2(d)·(2+log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})) and such that ∩i∈J1,kKHi =↓ conv(V).

Proof. We will in fact use the same polynomial function P2 than for Theorem 5.1.
We use Corollary 2, the collection H1, . . . ,Hk is given by the half-spaces of the form H + RJ with J ⊆ J1, dK,

and H ∈ FJ1,dK\J
− (πJ(conv(V))). We show that these half-spaces are described by small equations.

We fix such J and H ∈ FJ1,dK\J
− (πJ(conv(V))). The polytope πJ(conv(V)) can be obtained as the con-

vex hull of πJ(V). The set πJ(V) is a finite set of points whose components can be written with numerator and
denominator smaller in absolute value than a = max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK}. Using Theorem 5.2,
half-spaces of F(πJ(conv(V))) can be described with size smaller than P2(d) · (2 + log2(a)). The set of facet
FJ1,dK\J
− (πJ(conv(V))) is include in F(πJ(conv(V))) and therefore the size of the equation of H is also bounded

by P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})).
Now let (A, b) be such an equation of H , it also defines a half-space H ′ of Rd which obviously contains H . We

defineA′ to be such that for all i ∈ J1, dK\J ,A′i = Ai and for all j ∈ J ,A′j = 0. Note that the size ofA′ is bounded by
that of A and therefore the size of the equation is bounded by P2(d) · (2+ log2(a)). If A′ = (0, . . . , 0) this contradicts
the fact that H is defining a facet of aff(πJ(conv(V))). Otherwise the equation (A′, b) defines a half-space which
we write H ′ = 1

2space(A
′, b). We have that H ′ ∩ πJ(Rd) = H since all points of πJ have coordinate on J equal to

0 and only coefficient on these dimensions differ between A and A′. Moreover it contains the direction RJ since for
all j ∈ J , A′ · 1j = 0. Therefore H ′ is equal to H +RJ . This shows that conv(V) can be described by equation that
have size smaller than P2(d) · (2 + log2(max{|pi,j |, |qi,j | | i ∈ J1, nK, j ∈ J1, dK})). ut

4 The limit inferior case

Let us fix for this section a weighted game G = 〈States∃,States∀,Edges, w, I, J〉 with J = ∅, i.e. the averages for
all dimensions are defined using lim inf . In this case, the set of thresholds that can be ensured by Eve from state
s ∈ States is:

value(G, s) =
{
v ∈ Rd | ∃σ∃. ∀ρ ∈ Outcome(s, σ∃). ∀i ∈ J1, dK.MPi(ρ) ≥ vi

}
.

To obtain a geometrical characterization of this set, we first study the set of thresholds that Eve can ensure when Adam
plays according to a fixed memoryless strategy. Then, we show that the set value(G, s) is the intersection of those
sets for all the memoryless strategies of Adam. With the results of previous section, we deduce that if there is a solution
to the polyhedron value problem, then there is one of bounded size which allows us to justify the correctness of aΣ2P-
algorithm for this problem. Finally, we show that this algorithm has optimal worst-case complexity by providing a
matching Σ2P-lower bound.

Playing against memoryless strategies of Adam Memoryless strategies for Adam are important as they are optimal
for the threshold problem [17], i.e. if Adam has strategy to prevent Eve from ensuring some threshold v then he has
a memoryless one to do so. Our analysis relies on simple cycles. Let S ⊆ States be a subset of states of the arena of
G. A simple cycle within S is a finite sequence of states s0 · s1 · · · sn ∈ S∗, such that s0 = sn, and for all i and j,
0 ≤ i < j < n, si 6= sj . We write C(S) for the set of simple cycles of A within S. Let σ∀ ∈ M be a memoryless
strategy for Adam, this strategy induces the graph G(σ∀) = 〈States,Edgesσ∀〉 where Edgesσ∀ = {(s, s′) ∈ Edges |
s ∈ States∃ ∨ (s ∈ States∀ ∧ σ∀(s) = s′)} which is a subgraph of the game arena in which Adam plays according to
the memoryless strategy σ∀. We denote by SCC(s, σ∀) the set of strongly connected components accessible from s in
G(σ∀).

13

Lemma 9. For all σ∀ ∈ M, for all infinite paths ρ = ρ0ρ1 . . . ρn . . . in G(σ∀), let S ∈ SCC(ρ0, σ∀) be such that
Inf(ρ) ⊆ S, then

MP(ρ) ∈↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
.

Proof. An accumulation point of a sequence x0, x1, . . . , xn, . . . of vectors in Rd is a vector x ∈ Rd such that for
every open set containing x, there are infinitely many elements in the sequence which belong to the open set. It is
proved in [1] that if a run ρ gets trapped for ever in the SCC S (i.e Inf(ρ) ⊆ S) the set of accumulation points of the
sequence (1n · w(ρ≤n))≤n is included in conv

({
1
|c| · w(c) | c ∈ C(S)

})
. Now, let us show that MP(ρ) is smaller

than any accumulation point of the infinite sequence of vectors (1n ·w(ρ≤n))≤n. Indeed, if x be an accumulation point
of that sequence, then for all dimension i the sequence 1

nwi(ρ≤n) comes infinitely often arbitrarily close to xi. This
implies that lim inf 1

nwi(ρ≤n) is smaller than xi for all dimensions i. Therefore MP(ρ) ≤ x and MP(ρ) ∈↓ {x} ⊆↓
conv

({
1
|c| · w(c) | c ∈ C(S)

})
. ut

s11, 0 0, 1

Figure 4. Example of a game where MP(ρ) does
not belong to conv

({
1
|c| · w(c) | c ∈ C(S)

})
for all path ρ.

Note that it is not always the case that MP(ρ) is in the convex
hull of

{
1
|c| · w(c) | c ∈ C(S)

}
. The example Figure 4 shows that

the downward closure operator is necessary. In this example, the
sequence of vectors (1, 0)2

1 · (0, 1)22 · (1, 0)23 · (0, 1)24 · · · which
can be obtained with a path ρ that cycles on state s1 is such that
MP(ρ) = (0, 0) which is not in the convex hull of (1, 0) and (0, 1)
(this convex hull is the set of points (t, 1− t) with t ∈ J0, 1K).

Lemma 10. For all σ∀ ∈ M, for all s ∈ States, for all S ∈
SCC(s, σ∀), for all v ∈ conv

({
1
|c| · w(c) | c ∈ C(S)

})
, there ex-

ists an infinite path ρ of G(σ∀) starting from s such that MP(ρ) = v.

Proof. Let {c1, c2, . . . , cn} be a set of simple cycles in S such that v =
∑n
i=1 λi

1
|ci| · w(ci), with

∑n
i=1 λi = 1, and

λi ∈ [0, 1], i.e. v is a linear combination of the average weights of the simple cycles. It is proved in [17, Lemma 11],
that we can build a path ρ that starts in s, reaches the SCC S and then cycles within S between the simple cycles
c1, c2, . . . , cn in such a way that the MP on each dimension j, 1 ≤ j ≤ d is equal to vj =

∑n
i=1 λi

1
|ci| · w(ci)j . ut

Characterizing the feasible thresholds As Adam can play optimally with memoryless strategies, the set of feasible
thresholds that Eve can force is obtained by considering the intersection of all the sets of thresholds that she can
enforce against those memoryless strategies of Adam.

We recall the characterization given in Section 4.

Theorem 9. Let G be a game and s a state of G:

value(G, s) =
⋂
σ∀∈M

⋃
S∈SCC(s,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Proof. For the left to right inclusion. Assume that σ∃ is a winning strategy of Eve for the threshold v. For all memo-
ryless strategy σ∀ ∈M of Adam, we have that ρ = Outcome(s, σ∃, σ∀) is such that MP(ρ) ≥ v. By Lemma 9, MP(ρ)

belongs to the set ↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})
, and as this set is downward closed it contains v.

For the right to left inclusion. Take any v in the set on the right. By Lemma 10, for all memoryless strategy σ∀ ∈M
of Adam, we know that there exists an infinite path ρ starting from s in the graph G(σ∀) and such that MP(ρ) = v.
This is equivalent to say that there exists a strategy σ∃ for Eve such that MP(Outcome(s, σ∃, σ∀)) = v. So, this
means that memoryless strategies of Adam cannot force from s an outcome with MP which is not at least equal to v.
As memoryless strategies of Adam are optimal, it means that Adam cannot obtain from s an outcome with MP which
is not at least equal to v, no matter the strategy that he plays. As multidimensional mean-payoff games are determined,
it means that Eve has a strategy to force outcomes from s with a MP at least equal to v, which in turn implies that
v ∈ value(G, s). ut

14

Small witnesses for polyhedron value problem We now show that if value(G, s) ∩ polyhedron(λ) 6= ∅, then
there is a witness whose representation is polynomial.

Theorem 10. There is a polynomial function P4 such that, for all weighted game G, for all states s, and system of
linear inequations λ, if value(G, s) ∩ polyhedron(λ) 6= ∅ then there exists x ∈ Qd such that:

1. x ∈ value(G, s) ∩ polyhedron(λ)
2. ||x|| ≤ P4(d) · (2 + max{||(aj , bj)|| | (aj , bj) ∈ λ}+ log2((WG + 1) · (|States|+ 1))).

Proof. It follows from Theorem 9 that value(G, s) ∩ polyhedron(λ) 6= ∅ if, and only if, there is a function
f : M 7→ 2States, such that f(σ∀) ∈ SCC(s, σ∀) for all strategy σ∀ and polyhedron(λ) intersects

⋂
σ∀∈M ↓

conv
({

1
|c| · w(c) | c ∈ C(f(σ∀))

})
. The values 1

|c| · w(c) such that c ∈ C(S) for some SCC S, are such that their
numerator is smaller in absolute value than WG · (|States|+1) and their denominator is smaller in absolute value than
|States|+1. Let a = (WG+1)·(|States|+1). We know by Theorem 5.3 that the set ↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
can be written as the intersection of half-spaces H1, . . . ,Hk whose representation have size smaller than P2(d) · (2 +
log2(a)). We conclude using Theorem 4 that there is a value x ∈ value(G, s) ∩ polyhedron(λ) whose rep-
resentation have size smaller than d · P1(d) · (1 + max{||Hi||, ||(aj , bj)|| | i ∈ J1, kK, (aj , bj) ∈ λ}) which is
smaller than d · P1(d) · (1 + P2(d) · (2 + log2(a) + max{||(aj , bj)|| | (aj , bj) ∈ λ})). We obtain the result for
P4(d) = d · P1(d) · (1 + P2(d)). ut

Based on this property, we design a non-deterministic algorithm and characterize the complexity of our decision
problem.

Theorem 11. The polyhedron value problem is Σ2P-complete for mean-payoff inferior.

Proof. Easiness Based on Theorem 10, our algorithm is: 1) guess in polynomial time a value v, and 2) check in
deterministic polynomial time that it satisfies the set of linear equations λ (see e.g. [16, Theorem 3.3]), and 3) check
in non-deterministic polynomial time that v belong to value(G, s). This last check is based on the following result
for the threshold problem: it is proved in [17, Theorem 7.2] that given a weighted game G, a state s, and a threshold
v ∈ Qd, the problem of deciding whether Eve has a winning strategy for the objective {ρ | MP(ρ) ≥ v} is coNP-
complete. Our algorithm is thus in Σ2P= NPNP = NPcoNP.

Hardness We illustrate the reduction on an example. The full proof that the polyhedron value problem is Σ2P-hard
can be found in the appendix.

Consider a QSAT2 formula: φ = ∃x1. · · · ∃xn. ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp where each Ci is the conjunction of
at most three literals Ci = `i,1 ∧ `i,2 ∧ `i,3 and literals are of the form: xj , ¬xj , yj , or ¬yj . The construction of the
game is illustrated in Figure 6. There is one dimension for each literal of the formula. We consider the constraint λ
that enforce than on each dimension associated to a literal yj or ¬yj the mean-payoff should be greater than 0, and the
sum on the dimension associated to xj and ¬xj (for j fixed) should be 1. It is possible to show that the polyhedron
value problem is true if, and only if, the formula φ is valid.

Intuitively, if φ is valid, there is a partial valuation of the x variables that makes the remainder of the formula
hold. From this partial valuation, we define a vector v that is 1 on dimensions associated to x literals that are true and
0 on the other dimensions. Such a vector satisfies the constraints λ. For each memoryless strategy of Adam, we can
construct a counter strategy of Eve that is winning, and this is enough to show that Eve has a winning strategy. To
construct this strategy, first notice that if the strategy of Adam chooses one literal in some clause and its negation in
another clause, Eve can win by alternating between the two (this ensures 0 for this literal and 1 for the others). We
can now assume that the strategy of Adam defines a valuation for the literals y, by setting those that are reachable to
true. Then because φ is valid, Eve can choose a clause that holds under the valuation that we defined. Then Adam will
always chose a literal that is true under this valuation and this ensures a payoff above v. ut

Theorem 12. The polyhedron value problem is Σ2P-hard for mean-payoff inferior.

15

Eve

C1Adam C2Adam C3Adam

x1

x2

¬y1

x1

¬x2

¬y1

¬x1

¬x2

y1

(1,0,1,1,0,0)

(1,1,1,0,0,0)

(1,1,1,1,−1,1)

(1,0,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,−1,1)

(0,1,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,1,−1)

Figure 5. Example of the encoding of QSAT2 into the polyhedron value problem, for formula φ = ∃x1.∃x2.∀y1. (x1∧
x2 ∧ ¬y1) ∨ (x1 ∧ ¬x2 ∧ ¬y1) ∨ (¬x1 ∧ ¬x2 ∧ y1). In a vector (v1, v2, v3, v4, v5, v6), v1 is associated to x1, v2 to
¬x1, v3 to x2, v4 to ¬x2, v5 to y1, and v6 to ¬y1.

Proof. Consider a QSAT2 formula, that is a formula of the form

φ = ∃x1. · · · ∃xn. ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp

where each Ci is the conjunction of at most three literals Ci = `i,1 ∧ `i,2 ∧ `i,3 and literals are of the form: xj , ¬xj ,
yj , or ¬yj .

We consider the game where Eve starts by choosing a clause then Adam chooses a literal that appears in that
clause. Then if the literal is a yj or ¬yj then the game starts again from the initial state, and if the literals is a xj or ¬xj
then the game loops in the same state (Adam is forced to chose the same literal forever). The construction of the game
is illustrated in Figure 6. We consider weights in dimension 2(m+n), that is there are as many dimensions as possible

Eve

C1Adam C2Adam C3Adam

x1

x2

¬y1

x1

¬x2

¬y1

¬x1

¬x2

y1

(1,0,1,1,0,0)

(1,1,1,0,0,0)

(1,1,1,1,−1,1)

(1,0,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,−1,1)

(0,1,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,1,−1)

Figure 6. Example of the encoding of QSAT2 into the polyhedron value problem, for formula φ = ∃x1.∃x2.∀y1. (x1∧
x2 ∧ ¬y1) ∨ (x1 ∧ ¬x2 ∧ ¬y1) ∨ (¬x1 ∧ ¬x2 ∧ y1). In a vector (v1, v2, v3, v4, v5, v6), v1 is associated to x1, v2 to
¬x1, v3 to x2, v4 to ¬x2, v5 to y1, and v6 to ¬y1.

literals, the literal xj corresponds to dimension 2 · j − 1, ¬xj to dimension 2 · j, yj to dimension 2 · n+ 2 · j − 1 and
¬yj to 2 · n+ 2 · j. The weights are given by the choice of Adam:

– if Adam chooses a literal ` of the form xj or ¬xj then the weight is 0 in the dimension associated to the negation
of `, 0 on all dimensions associated to yj′ literals, and 1 on all dimensions xj′ or ¬xj′ different from the negation
of `;

16

– if Adam chooses a literal ` of the form yj or ¬yj then the weight is 1 on the dimension associated to `, −1 on its
negation, 0 on all yj′ and ¬yj′ with j′ 6= j, and 1 on all dimensions associated to xj or ¬xj for all j ∈ J1, nK.

We consider the constraints λ that says that on all dimension k associated with a yj or a ¬yj , vk ≥ 0, and for all
j ∈ J1, nK, v2·j−1 + v2·j ≥ 1 (that is, the sum on dimensions associated to xj and ¬xj is greater to 1).

We now prove that the answer to the polyhedron value problem is true if, and only if, the formula φ is valid.

⇐ Assume that there is a (partial) valuation v of x1, . . . , xn that makes the formula ∀y1. · · · ∀ym. C1 ∨ · · · ∨Cp
true. We consider the associated vector u that is 0 on coordinates associated to literals yj and ¬yj and such that:

– if v(xi) is true, then the coordinate of u associated to xi is 1, and that associated to ¬xi is 0;
– if v(xi) is false, then the coordinate of u associated to xi is 0, and that associated to ¬xi is 1.

Obviously u satisfies the constraint λ. We now prove that Eve can ensure u. According to [17, Theorem 8], it is
enough to show it for all memoryless strategy σ∀ of Adam.

Will we consider all memoryless strategies of Adam, but distinguish between those that can be associated to correct
valuations of the variables and those that cannot, that is they chose yj in some state and ¬yj in some other.

If the strategy of Adam chooses a literal yj for some clause and ¬yj for another clause, then by alternating between
these two clauses Eve ensures a payoff that is 0 on yj and ¬yj and also all dimensions yj′ and y¬j′ , and that is 1 on
all dimensions associated with xi or ¬xi. Hence, u is ensured in that case.

Now assume that Adam never chooses a literal yj for some clause and ¬yj for another one. Then the memoryless
strategy of Adam corresponds to a valid assignment of the truth value of the variables y1, . . . , ym. This valuation is the
following: we extend the valuation v to the variables y1, . . . , ym such that v(yj) is false if there is some clause where
yj is chosen by Adam and v(yj) is true otherwise. Since ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp is true for the partial valuation
v of x1, . . . , xn, it means that the full valuation v makes C1 ∨ · · · ∨ Cp true. Hence Eve can chose a Ci that is true
for valuation v. Then Adam does not chose a literal yj or ¬yj for that clause (if he chooses yj then v(yj) is false by
definition of v and this contradicts that Ci is true; and similarly if he chooses ¬yj). Hence in that state, he chooses a
literal xi or ¬xi and by definition of the valuation v, we have that this ensure a payoff greater than u.

⇒ Assume now that there is u satisfying the constraints, that can be ensured by a strategy σ∃ of Eve. We define
the (partial) valuation v of the variables x1, . . . , xn:

a. if the coordinate of u associated to xi is strictly greater than 0, then v(xi) is true;
b. if the coordinate of u associated to xi is smaller or equal to 0, then v(xi) is false.

We will show that for all valuations of the yi, the global valuation obtained makes some clause true.
Let v′ be a valuation of x1, . . . , xn, y1, . . . , ym compatible with v for variables x1, . . . , xn. Assume toward a

contradiction that the valuation v′ does not make any of the clauses true. Then in each Ci Adam can chose a literal of
the clause for which the valuation is false. Consider a strategy σ∀ that in each Ci chose a literal for which the valuation
is false. Consider the outcome of the strategies (σ∃, σ∀), either: (1) it will reach a literal xi or ¬xi and stay there, or
(2) it never reaches such a state and comes back infinitely often to the initial state. We distinguish between these two
cases:

(1) If the run ends in a literal ` of the form xi or ¬xi then by the way we defined σ∀, v(`) is false which means that:
• if ` = xi then v(xi) is false and by (b) of the definition of v the coordinate of u associated to xi is smaller or

equal 0. By constraint λ the coordinate associated to ¬xi has to be at least 1. However, by the way we defined
the weight in the game, the weight of the run on the dimension associated to ¬xi will be 0 . This is strictly
smaller than 1 and contradicts that Eve ensures vector u.

• if ` = ¬xi then v(xi) is true and by (a) of the definition of v the coordinate of u associated to xi is strictly
greater than 0. However, by the way we defined the weight in the game, the weight of the run on the dimension
associated to xi will be equal to 0 which contradicts that Eve ensures vector u.

(2) In the other case the run never reaches such a state, it comes back infinitely often to the initial state, and only visits
literals of the form yj or ¬yj .
Note that since σ∀ only chooses literals that evaluate to false according to v, if yj is chosen at some point then ¬yj
is never chosen and reciprocally. We show that some the average weight on some dimension associated to one of
these yj , or ¬yj is strictly smaller than 0, which will show that Eve does not ensure u.

17

Let ρ be the outcome of (σ∃, σ∀), and wi(ρ≤k) denote the total weight of the prefix of ρ of size k + 1 on the
dimension i. Assume towards a contradiction that lim inf

w+i(ρ≤k)

k ≥ 0 for each dimension i ∈ J2 ·n+1, 2 · (n+
m)K (these are dimensions associated to literals of the form yj or ¬yj). Then there is an index k, such that for all

k′ ≥ k and for all dimension i ∈ J2 · n + 1, 2 · (n + m)K,
wi(ρ≤k′)

k′ > − 1
8·m . This means that for all k′ ≥ k,∑

i∈J1,2·mK
w2·n+i(ρ≤k′)

k′ > − 1
4 . On the other hand, since one yj or ¬yj is chosen at each turn of Adam and the

negation of the one that are chosen are never chosen, we have that for all k′,
∑
i∈J1,2·mK w2·n+i(ρ≤k′) ≤ 1 − k′

3

(the factor 1
3 comes from the fact that we have three steps to come back to the initial state). This means that∑

i∈J1,2·mK
w2·n+i(ρ≥k′)

k′ ≤ 1
k′ −

1
3 . And this contradicts the fact that

wi(ρ≥k′)

k′ > − 1
8·m for all k′ > k and all

dimension i ∈ J2 · n+ 1, 2 · (n+m)K.
Hence Eve cannot ensure 0 on all dimensions i ∈ J2 · n+ 1, 2 · (n+m)K, thus she cannot ensure vector u.

This contradiction means that valuation v′ makes at least one clause true. This being true for all valuation v′

compatible with the partial valuation v, we can conclude that φ is valid. ut

Polynomial time algorithm for fixed number of dimensions We have seen in the previous paragraphs that the
polyhedron value problem is Σ2P-complete. Now, we show that the problem has a much better worst-case complexity
for fixed number of dimensions and polynomially bounded weights, two hypotheses which are reasonable in practice.

Theorem 13. The polyhedron value problem is solvable in polynomial time for mean-payoff inferior with fixed number
of dimensions, polynomially bounded weights and a system a linear constraints with polynomially bounded numerators
and denominators.

Proof. Thanks to Theorem 10, the number of candidate witnesses in the polyhedron value problem is smaller than
2P4(d)·(2+max{||(a,b)|||(a,b)∈λ}+log2((WG+1)·(|States|+1))). Which is equal to (4 · 2max{||(a,b)|||(a,b)∈λ} · ((WG + 1) ·
(|States| + 1)))P4(d). Note that the size of equations in λ are logarithmic in the values of numerators and denom-
inators that appear in it, so 2max{||(a,b)|||(a,b)∈λ} is polynomial with respect to these values (but exponential with
respect to d). The bound on the number of candidates is polynomial when the number of dimensions d is fixed and
W is polynomially bounded. As the threshold problem for multidimensional weight mean-payoff games is solvable in
polynomial time when the number of dimensions is fixed and the weights are polynomially bounded [8, Theorem 1],
we obtain a polynomial time algorithm by simply testing all the polynomially many witnesses. ut

5 Constructing the Pareto curve

Let G be a game of dimension d, we define the set of half-spaces HG and points VG that are relevant for the
representation of value(G, s). HG and VG are defined as the set of half-spaces and points with representation size
bounded by P2(d) · (2+ log2((WG +1) · (|States|+1))). The following lemma explains why those sets are relevant.
Lemma 11. Let G be a game of dimension d and s a state of G. The set value(G, s) can be written as a finite union
of polyhedra, each of them definable as the intersection of half-spaces H1, . . . ,Hk ∈ HG . Moreover if H1, . . . ,Hk

are half-spaces ofHG and ∩1≤j≤kHj 6= ∅ then the intersection ∩1≤j≤kHj contains a point of VG .

Proof. We can rewrite the expression of value to:

⋃
f : M 7→2States|f(σ∀)∈SCC(s,σ∀)

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ C(f(σ∀))

})
.

When f is fixed, the set Cf =
⋂
σ∀∈M ↓ conv

({
1
|c| · w(c) | c ∈ C(f(σ∀))

})
is a polyhedron. As stated in the

proof or Theorem 10, the set ↓ conv
({

1
|c| · w(c) | c ∈ C(f(σ∀))

})
can be written as the intersection of half-spaces

H1, . . . ,Hk whose inequations have size smaller than P2(d) · (2 + log2((WG + 1) · (|States| + 1))). Because of

18

their size, these half-spaces are in HG . Moreover the intersection for each σ∀ of these sets is also described by half-
spaces with the same property. Therefore each polyhedra Cf can be written as the intersection of some half-spaces
H1, . . . ,Hk ∈ HG . This prove the first point of the lemma.

Now, using Theorem 4, if there is a point at the intersection of a subset of these half-spaces, then there is such
a point x which has size bounded by P1(d) · (1 + P2(d) · (2 + log2((WG + 1) · (|States| + 1)))) ≤ P4(d) · (2 +
log2((WG + 1) · (|States|+ 1))). Because of its size, x belongs to VG , which proves the last point of the lemma. ut

Equivalence classes We say that two points x and y are equivalent with respect to the set of half-spaces H, written
x ∼H y, if they satisfy the same set of equations and inequations defined by H. Formally x ∼H y if for all H ∈ H,
x ∈ H ⇔ y ∈ H and x ∈ hplane(H) ⇔ y ∈ hplane(H). Given a point x, we write [x]H = {y | x ∼H y} the
equivalence class containing x. These equivalence classes are known in geometry as cells [15]. We write C(H) the set
of cells defined byH. The following lemma, says that cells which intersect value(G, s) are included in it.

Lemma 12. Let c ∈ C(HG) be a cell, c ∩ value(G, s) 6= ∅ if, and only if, c ⊆ value(G, s).

Proof. Let c ∈ C(HG) and assume c ∩ value(G, s) 6= ∅. Then let x ∈ c ∩ value(G, s). As a consequence of
Lemma 11, x belongs to a polyhedron P that can be written as the intersection of a subset of half-spaces inHG and P
is included in value(G, s).

Let now y be a point in c, we will show that y belongs to value(G, s). Since x ∼HG y, they satisfy the same set
of inequations corresponding to half-spaces ofHG , and in particular y belongs to P . As P is included in value(G, s)
we have that y ∈ value(G, s). ut

From this we deduce a method to compute a representation of the set value(G, s) as a finite union of cells in
C(HG). Given a tuple of at most d + 1 points X ⊆ VG with |X| ≤ d + 1, we consider the geometrical center
b(X) =

∑
x∈X

1
d+1 · x. We write B(VG) the set of all these point, it contains at most |VG |d+1 points. The following

lemma states that value(G, s) can be represented as the union of all cells that contain a point in B(VG) which
is in value(G, s). Note that the fact that we do not need many points to cover each cell is coherent with Buck’s
theorem [4,15].

Lemma 13. Let G be a game of dimension d, s a state of G, We have that:

[−WG ,WG]d ∩ value(G, s) = [−WG ,WG]d ∩
⋃

x∈B(VG)∩value(G,s)

[x]HG

Proof. We show that the set B(VG) contains at least one point in each cell, the result then follows from Lemma 12.
Let c be a cell and k its dimension. Since [−WG ,WG]d is bounded, the intersection of the cell with [−WG ,WG]d

correspond to the inside of a polytope P of dimension k defined by some half-spaces ofH. The vertices of this polytope
are at the intersection of facet defining half-spaces which are half-spaces of H. The intersection of these half-spaces
and therefore vertices of P are points of VG .

Let x be a point in the cell c. We write I = {h ∈ H | x ∈ h} and J = {h ∈ H | x 6∈ h}. We have that
c = [x]H =

⋂
h∈I h\

⋃
h∈J h. Given an half-space h = 1

2space(a, b), we write h− the half-space 1
2space(−a,−b),

we have that h− = (Rd \ h) ∪ hplane(h) and h− ∈ H. Consider the polytope P =
⋂
h∈I h ∩

⋂
h∈J h

−, we have
that c ⊆ P and therefore x ∈ P . The vertices of P are points of VG and x is in the convex hull of this vertices.
By Carathéodory’s theorem [5,10], x is in the convex hull of at most k + 1 vertices x1, . . . , xk+1 of P . The point
b(x1, . . . , xk+1) is in the convex hull of these vertices and therefore also in the same polytope as x.

We will show that y = b(x1, . . . , xk+1) is not in any h ∈ J . Assume towards a contradiction that y ∈ h ∈ J . Let
(a, b) be the inequation of h, as y ∈ h, αa(y) ≥ b. Since the vertices of P are in h−, for all i ∈ J1, k+1K, αa(xi) ≤ b.
If there is xi such that αa(xi) < b then, as y = 1

k ·
∑

1≤i≤k+1 xi, we would also have αa(y) < b which contradicts
y ∈ h. We can therefore conclude that for all i ∈ J1, k + 1K, xi ∈ hplane(h) and as y ∈ conv({x1, . . . , xk+1}) we
also have y ∈ hplane(h). Since x is in the convex hull of x1, . . . , xk+1, we also have x ∈ hplane(h) and therefore
x ∈ h which contradicts h ∈ J .

Therefore b(x1, . . . , xk+1) is in the same cell c as x. This proves that B(VG) contains at least one point in each
cell. ut

19

As a corollary, we obtain an effective procedure to compute a representation of the set value(G, s). The complex-
ity of this procedure is given in the following theorem both for the general case, and for fixed number of dimensions
and polynomially bounded weights.

Theorem 14. There is a deterministic exponential time algorithm that given a game G and a state s, constructs a
effective representation of [−WG ,WG]d ∩ value(G, s) as a union of cells. Moreover, when the dimension d is fixed
and weights are polynomially bounded in the size of G, then the algorithm works in deterministic polynomial time.

Proof. The algorithm is based on the result of Lemma 13. We enumerate all subsets of d+ 1 points in VG . Because of
their size, the number of points in VG is bounded by 2P4(d)·(2+log2((WG+1)·(|States|+1))) which equals (4 · (WG + 1) ·
(|States|+1))P4(d). The number of subsets of d+1 points is thus bounded by (4 ·(WG+1) ·(|States|+1))P4(d)·(d+1).
Note that it is exponential in general, but with polynomially bounded weights, WG is polynomial in the sizes of the
input, so that with d fixed this number of subsets is polynomially bounded.

Now for each of these subsets, we compute the geometrical center x, and test whether it is in value(G, s). Thanks
to [8, Theorem 1], there is an algorithm that works in time O(|States|2 · |Edges| · d ·WG · (d · |States| ·WG)d

2+2·d+1)
to determine whether a point is in value(G, s). This is exponential in general, but polynomial when the number of
dimension is fixed and weights are polynomially bounded.

Then, to determine the cell corresponding to the geometrical center x, we test for each H ∈ HG whether x ∈ H:
the intersection of the half-spaces that contain x and the complement of those that do not contain is equal to the cell
containing x. Since the sizes of the half-spaces inH are bounded by P2(d) · (2+ log2((WG +1) · (|States|+1))), we
can test that x belongs to one of them in polynomial time and there are no more than (4 ·(WG+1) ·(|States|+1))P2(d)

such half-spaces. Therefore testing all half-spaces can be done in exponential time in general, and in polynomial time
with fixed dimension and polynomially bounded weights. ut

Pareto curve The Pareto curve is composed of the maximal points in [−WG ,WG]d ∩ value(G, s). To describe this
curve, we need to refine the cells inC(HG): we add toHG the half-spaces that are necessary to represent the downward
closure of cells in C(HG) (details can be found in the appendix). We consider the half-spaces F i−(c) (as defined in
Section 3) for i ∈ J1, dK and c ∈ C(HG) such that c ⊆ [−W,W]d. We takeH+

G = HG ∪
⋃
i∈J1,dK,c∈C(HG) F

i
−(c). We

show that the cells defined byH+
G are compatible with downward closure.

Lemma 14. Let x, y be two points of Rd. If x ∈↓ y, then [x]H+
G
⊆↓ [y]HG (notice that the second equivalence class

considersHG and notHG).

Proof. Let y ∈ Rd and c = [y]HG . There is a subset of half-spaces {H1, . . . ,Hk} ⊆ H+
G , that describes ↓ c. If

z ∈ [x]HG , then it satisfies the same equations and inequations fromH+
G as x, and in particular H1, . . . ,Hk, therefore

z ∈↓ [y]HG . ut

The following lemma identifies cells that contain only maximal values.

Lemma 15. Let c be a cell in C(H+
G). If c ⊆ value(G, s) and for all x ∈ value(G, s) \ c we have that c∩ ↓

[x]H+
G
= ∅, then c ⊆ PO(G, s).

Proof. Let c be a cell in C(H+
G) that satisfies that c ⊆ value(G, s) and for all x ∈ value(G, s)\c, c∩ ↓ [x]H+

G
= ∅.

Towards a contradiction assume that there is y ∈ c that is not Pareto optimal. Then there is x ∈ value(G, s) such that
y < x. We have that y ∈ c∩ ↓ [x]H+

G
, by hypothesis, this means that x ∈ c.

We consider the half-line L = {y + t · (x − y) | t ∈ R+}. All points on this half-line are greater than y.
Let t1 = inf{t | y + t · (x − y) 6∈ c}. There is h ∈ H+

G such that {y + t · (x − y) | t < t1} ∩ h = ∅ and
{y + t · (x− y) | t > t1} ∩ h = ∅. Let z = t1 · (x− y), since value(G, s) is a closed set, z is also in value(G, s).
We have that z ∈ hplane(h) but y 6∈ hplane(h). We have z ∈ value(G, s) \ c, and y ∈↓ [z]. This contradicts that
for all z ∈ value(G, s) \ c, c∩ ↓ [z]H+

G
= ∅. ut

We now establish the other direction.

20

Lemma 16. Let c be a cell in C(H+
G). If c ⊆ PO(G, s) then c ⊆ value(G, s) and for all x ∈ value(G, s) \ c,

c∩ ↓ [x]H+
G
= ∅.

Proof. If c ⊆ PO(G, s) then by definition of Pareto optimality c ⊆ value(G, s). Let x ∈ value(G, s) \ c. Since
c ⊆ PO(G, s), for all y ∈ c, if x ∈ value(G, s) then y 6< x. Therefore c∩ ↓ x = ∅ and by Lemma 14, c∩ ↓ [x]HG =
∅. ut

We deduce from this, a way to represent the Pareto curve as a union of cells in C(H+
G).

Corollary 3. The Pareto curve is the union of cells c in C(H+
G) such that c ⊆ value(G, s) and for all c′ ∈ C(H+

G) \
{c′} if c′ ⊆ value(G, s) then c∩ ↓ c′ = ∅.

Then, the correctness of Theorem 15 follows from the characterization of Corollary 3.

Theorem 15. There is a deterministic exponential algorithm, that given a game G and a state s, computes an ef-
fective representation of PO(G, s) as a union of cells. Moreover, when the dimension d is fixed and the weights are
polynomially bounded then the algorithm works in deterministic polynomial time.

Proof (Sketch). The algorithm works by computing a representation of value(G, s) as a union of cells. Then, for each
of these cells we check that there is no cell above by using the downward closure operator: this is where refining the
cells is required. The number of those cells is exponential so these checks can be done in exponential time. Moreover
in the case where the dimension is fixed and weights are polynomially bounded, this number is polynomial so the
algorithm works in polynomial time. ut

6 General case

We now consider the general case in which the average of dimensions in I ⊂ J1, dK are defined using lim inf and the
average of dimensions in J ⊆ J1, dK are defined using lim sup. We give a characterization of the feasible thresholds
as we did in Theorem 9. While the main ideas are similar, the characterization here is substantially more complicated
and relies on a notion of subgame defined as follows. A subarena for Eve is a tuple 〈States′∃,States

′
∀,Edges

′〉 with
States′ ⊆ States, Edges′ ⊆ Edges and such that ∀s ∈ States′∀. (s, s

′) ∈ Edges ⇒ (s, s′) ∈ Edges′ (i.e. it does not
restrict actions of Adam). The game 〈A′, w′, I ′, J ′〉 is a subgame for Eve of 〈A, w, I, J〉 if A′ is a subarena for Eve
of A and w′ = w, I ′ = I , and J ′ = J . We write Sub(G, s) the set of subgames for Eve which contain the state s.

Theorem 16. Let G be a weighted game and s a state of G, then value(G, s) equals:

⋃
G′∈Sub(G,s)

⋂
s′∈States′

↑J

 ⋂
σ∀∈M

⋃
S′∈SCC(s′,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

})
where ↑J X = {x ∈ Rd | ∀j ∈ J. ∃x′ ∈ X. ∀i ∈ I ∪ {j}. xi = x′i}.

Before proceeding to the poof, we recall here some properties of multi-mean-payoff games which were proved
in [17].

Lemma 17 ([17, Lemma 17]).

∀s ∈ States. ∃σ∃. ∀σ∀. ∀i ∈ I.MPi(Outcome(s, σ∃, σ∀)) ≥ vi and ∀j ∈ J.MPj(Outcome(s, σ∃, σ∀)) ≥ vj
⇔ ∀s ∈ States. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I.MPi(Outcome(s, σ∃, σ∀)) ≥ vi and MPj(Outcome(s, σ∃, σ∀)) ≥ vj .

Lemma 18 ([17, Lemma 14]). Let j ∈ J and s ∈ States.

∃σ∃. ∀σ∀. ∀i ∈ I.MPi(Outcome(s, σ∃, σ∀)) ≥ vi and MPj(Outcome(s, σ∃, σ∀)) ≥ vj
⇔ ∃σ∃. ∀σ∀. ∀i ∈ I.MPi(Outcome(s, σ∃, σ∀)) ≥ vi and MPj(Outcome(s, σ∃, σ∀)) ≥ vj .

21

The proof of the theorem relies on the following lemma which is illustrated by Example 1. From this lemma, we
prove inclusion in Theorem 16 by taking for G′ the restriction of G to states accessible when Eve plays a strategy that
ensures the given value. We prove the inclusion in the other direction by noticing that it is easier to win in G than in a
subgame G′ and conclude using Lemma 19.

Lemma 19. Let G be a weighted game with J 6= ∅, and s a state of G, then
⋂
s∈States value(G, s) is equal to:

⋂
s∈States

↑J

 ⋂
σ∀∈M

⋃
S∈SCC(s,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Proof. Let v be a point in value(G, s) for all state s, then by definition: ∀i ∈ I , MPi(ρ) ≥ vi and ∀j ∈ J ,
MPj(ρ) ≥ vj . Thanks to [17, Lemma 17], this is equivalent to ∀s ∈ States. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥
vi and MPj(ρ) ≥ vj . Then by [17, Lemma 14], this is also equivalent to ∀s ∈ States. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈
I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj . This means that ∀s ∈ States, v ∈↑J value(G′, s), where game G′ is obtained
from G by setting I ′ = I ∪ J and J ′ = ∅. We then obtain the result using the characterization of Theorem 9. ut

2,−2, 0

−2, 2, 1

Figure 7. A one-state mul-
tidimensional mean-payoff
game, controlled by Eve.

↑{1,2}

↓

x

y

1
1

(2,−2, 0)

(−2, 2, 0) (2, 2, 0)

Figure 8. Pareto optimum for z = 0.

↑{1,2}

↓

x

y

1
1

(0, 0, 1
2
)

(−2, 2, 1
2
)

(0, 2, 1
2
)

Figure 9. Pareto optimum for z =
1
2 .

Example 1. Consider the example of Figure 7. We choose J = {1, 2} and I = {3}, i.e. we consider the limit superior
of the weights for the two first coordinate and the limit inferior for the last one. There is only one strategy of the
adversary and one strongly connected component in this game. There are two simple cycles and their weight are
(2,−2, 0) and (−2, 2, 1). We represented in Figure 9 and Figure 9 the the feasible thresholds we can ensure with
z = 0 and z = 1

2 .
For z = 0 the line segment between (−2, 2, 0) and (2,−2, 0) is below the convex hull of (2,−2, 0) and (−2, 2, 1).

The downward closure this segment is the area that is below and left of this segment. The operator ↑{1,2} gives the
whole area below of (2, 2, 0) which is the Pareto optimum for z = 0. For z = 1 only (−2, 2, 1) is below the weight of
a simple cycle therefore it will be the Pareto optimum for z = 1. The convex hull of (−2, 2, 1) and (2,−2, 0) is above
the plane z = 1

2 for coordinates of x and y between (0, 0) and (−2, 2). The operator ↑{1,2} will give the whole area
below (0, 2, 12) which is the Pareto optimum for z = 0.

Proof (of Theorem 16). We first prove inclusion. Let v ∈ value(G, s), and σ∃ a strategy which ensures it. Let S be the
set of states that is reachable from s by following σ∃. We have {s} ⊆ S ⊆ States. We also have v ∈ ∩s′∈Svalue(s′),
since otherwise v would not be ensured by σ∃. Restricting the game to vertices of S defines a subgame G′, since only
edges of Eve have been removed, it is a subgame for Eve. In a subgame for Eve the values can only be lower than
in the original game. Using Lemma 19 on this game, we obtain that v belongs to

⋂
s∈S ↑J

⋂
σ∀∈M

⋃
S∈SCC(s,σ∀) ↓

conv
({

1
|c| · w(c) | c ∈ C(S)

})
, which shows the inclusion.

22

Now, in the other direction, let v be an element of:

⋃
{s}⊆S⊆States

⋂
s′∈S
↑J

 ⋂
σ∀∈M

⋃
S′∈SCC(s,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

}) .

Let G′ be a subgame for Eve such that v ∈
⋂
s∈States′ ↑J

⋂
σ∀∈M

⋃
S′∈SCC(s,G′(σ∀)) ↓ conv

({
1
|c| · w(c) | c ∈ C(S′)

})
.

We use Lemma 19 on this subgame G′, to obtain:

⋂
s∈S

value(s,G′) =
⋂
s∈S
↑J

 ⋂
σ∀∈M

⋃
S∈SCC(s,G′(σ∀))

↓ conv
({

1

|c|
· w(c) | c ∈ C(S)

})
Since the actions of Adam have not been restricted, it is harder to ensure a given threshold in G′ than in G. Therefore
as v is ensured in G′ from all states of S, it can also be ensured in G from all states of States′, which shows the reverse
inclusion. ut

6.1 Expressing thresholds as a union of convex sets

We first prove the following lemma that we will use to reorder union and ↑ operators in the equation of Theo-
rem 16.
Lemma 20. Operator l (defined in appendix 3) is compatible with union, i.e. for all J ⊆ J1, dK and all set X and Y :
(lJ X) ∪ (lJ Y) =lJ (X ∪ Y).

Proof. Let x ∈ (lJ X) ∪ (lJ Y). If x ∈lJ X , there is x′ ∈ X such that πJ(x′) = πJ(x). We also have x′ ∈ X ∪ Y ,
which proves x ∈lJ (X ∪ Y). The case where x ∈lJ Y is similar.

In the other direction, let x ∈lJ (X ∪ Y), there exists x′ ∈ X ∪ Y such that πJ(x) = πJ(x
′). If x′ ∈ X then

x ∈lJ X and otherwise x ∈lJ Y . Therefore x ∈ (lJ X) ∪ (lJ Y).

We use the following to restrict our study to bounded polygon, so that we can easily represent them by their
extremal points.

Lemma 21.
value(G, s) =↓ ([−WG ,WG]d ∩ value(G, s))

Proof. Let v ∈ value(G, s), there is a strategy σ∃ whose outcome all have weight greater than v. Since all outcome ρ
of the game on all coordinate i, a weight wi(ρ) greater than −WG , we can replace all vi that are smaller than −WG by
−WG and we obtain a v′ ≥ v such that v′ ∈ value(s). Similarly, all weights are smaller thanWG so for all coordinate
i, vi cannot be greater than W . Therefore v′ ∈ [−W,W]d ∩ value(G, s) and v ↓ ([−W,W]d ∩ value(G, s)).

For the other inclusion, this is simply because value(G, s) is downward closed and [−W,W]d ∩value(G, s) ⊆
value(G, s).

We will also use the following lemma, to apply the l operator only on bounded polytopes.

Lemma 22. Given a set X ⊆ Rd, a bound W and J ⊆ J1, dK, we have that:

[−W,W]d ∩ (lJ [−W,W]d ∩ (↓ [−W,W]d ∩X)) = [−W,W]d ∩ (lJ↓ ([−W,W]d ∩X))

Proof. The inclusion holds because [−W,W]d ∩ (↓ [−W,W]d ∩ X) ⊆↓ [−W,W]d ∩ X and lJ is monotonic with
respect to inclusion.

In the other direction, let x ∈ [−W,W]d ∩ (lJ↓ ([−W,W]d ∩ X)). There is x′ ∈↓ ([−W,W]d ∩ X) such that
πJ(x

′) = πJ(x). There is x′′ ∈ [−W,W]d ∩ X such that x′′ ≥ x′. Let y be such that yj = x′′j if j ∈ J and
yj = xj = x′j ≤ x′′j otherwise. We have πJ(y) = x and y ∈ [−W,W]d because both x′′ and x do. We also have
y ∈↓ [−W,W]d ∩X because it is smaller than x′′. This shows that x ∈lJ {y} ⊆ [−W,W]d ∩ (lJ [−W,W]d ∩ (↓
[−W,W]d ∩X)). ut

23

Theorem 17. There are polynomial functions P5 and P6 such that for all weighted games G and states s of G,
value(G, s) is a finite union of convex set which can be given as the intersection of a finite set of half-spaces
Hg

1 , . . . ,H
g
kg

whose associated inequations have size bounded by P5(d)+P6(d) ·(2+log2((WG+1) ·(|States|+1))).

Proof. By Theorem 16 value(G, s) is equal to:⋃
{s}⊆S⊆States

⋂
s′∈S

⋂
j∈J
lJ\{j}

⋂
σ∀∈M

⋃
S′∈SCC(s′,σ∀)

↓ conv
({

1

|c|
· w(c) | c ∈ C(S′)

})

We can then reorder intersection and union operators using the fact that l operators are compatible with union
(Lemma 20). We do this by considering functions that selects for a tuple (s′, j, σ∀) a strongly connected component
of SCC(s′, σ∀), i.e. functions of F , where F = {f : States × J × M 7→ 2States | ∀s′ ∈ States, j ∈ J, σ∀ ∈
M. f(s′, j, σ∀) ∈ SCC(s′, σ∀)}. Note that the set F can be huge, but is always finite. We then have that value(G, s)
is equal to: ⋃

{s}⊆S⊆States

⋃
f∈F

⋂
s′∈S

⋂
j∈J
lJ\{j}

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

We use Lemma 21 to restrict the difficult operations (↓ and l) to bounded polytopes. This is because their results
are easier to express using the vertex representation, which requires bounded polytopes. We express value(G, s) as:

↓ [−W,W]d ∩
⋃

{s}⊆S⊆States

⋃
f∈F

⋂
s′∈S

⋂
j∈J
lJ\{j}

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

Note that we can also use Lemma 21 to show:

↓ [−W,W]d ∩
⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
=
⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
since this set is the value set for the game where J would be empty (see 9). We therefore write value(G, s) as:

↓ [−W,W]d ∩
⋃

{s}⊆S⊆States

⋃
f∈F

⋂
s′∈S

⋂
j∈J
lJ\{j}↓ [−W,W]d ∩

⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

We now use Lemma 22 to introduce a cube [−W,W]d between the l and ↓ operators. Then value(G, s) can be
written as: ⋃

{s}⊆S⊆States

⋃
f∈F

↓ [−W,W]d ∩
⋂
s′∈S

⋂
j∈J
lJ\{j} [−W,W]d

∩ ↓ [−W,W]d ∩
⋂
σ∀∈M

↓ conv
({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})
.

We obtain therefore a finite union of convex intersections. We now use geometrical arguments to show that the
inequations defining these polyhedra are of polynomial size which will conclude the proof.

Thanks to Theorem 5.2, the set
⋂
σ∀∈M ↓ conv

({
1
|c| · w(c) | c ∈ f(s

′, j, σ∀)
})

can be given by the intersection
of half-spaces whose inequations have size bounded by P2(d) · (2 + log2((W + 1)(|States| + 1))). The intersection
with the cube [−W,W]d is obtained by adding inequations of size d + ||W || which is smaller than the previous
bound. To apply ↓ we go back to the point representation, using Theorem 5.3, sizes of the vertices are bounded by
P3(d)·(2+P2(d)·(2+log2((WG+1)(|States|+1)))). Then using Theorem 5.2 once again, the downward closure gives
us half-spaces which have size bounded by P2(d) · (2 + P3(d) · (2 + (P2(d) · (2 + log2((WG + 1)(|States|+ 1)))))).
Taking the intersection with the cube [−W,W]d again adds inequation that are within these bounds. We go back
to a point representation in order to apply ↑J\{j}, which gives, thanks to Theorem 5.3, points of size bounded by
P3(d) · (2 + P2(d) · (2 + P3(d) · (2 + (P2(d) · (2 + log2((WG + 1)(|States|+ 1))))))).

24

We show that the operator ↑J\{j} gives half-spaces whose size is polynomially bounded. We have seen in Lemma 6
that given a polyhedron P :

lJ P =
⋂

H∈F(πJ (P))

H +BJ

When P is given by its vertices, the projection πJ is obtained by projecting points one by one, which means replacing
coordinates of J by 0 and therefore does not increase the size of the points. The equations to describe half-spaces of
F(πJ(P)), can be of size bounded by P2(d) times 2 plus the size of the vertices, thanks to Theorem 5.1. The same
system of inequations, gives the sets H + RJ when lifted to Rd. Therefore the size the inequations we obtain after
applying ↑J\{j} is bounded by P5(d)+P6(d) · (2+log2((WG+1) · (|States|+1))) = P2(d) · (2+P3(d) · (2+P2(d) ·
(2 + P3(d) · (2 + (P2(d) · (2 + log2((WG + 1)(|States|+ 1)))))))). Then, the intersection with the cube [−W,W]d

does not add any complexity and thus the previous bound also bounds the size of the half-spaces that describes the
convex set of the expression of value(G, s). ut

Theorem 18. There is a polynomial function P such that if S is a set of states and λ a system of linear equations,
then

⋂
s∈S value(G, s) ∩ [−W,W]d ∩ polyhedron(λ) is of the form

⋃
f∈F conv(Ef) where F is finite and for

each f ∈ F , Ef is a set of vertices which all have size bounded by P (|States|, d, ||λ||, ||W ||).

Proof. By Theorem 17 we have a finite union of polyhedra whose equations have size bounded by a polynomial
function. Let λ = (a1, b1) . . . (ak, bk). We use Theorem 4 to say that if polyhedron(λ) intersects this union of
polyhedra, then there is a solution of size bounded by d · P1(max{||ai, bi|| | 1 ≤ i ≤ k}, P6(||W ||, ||States||, d), d).

ut

Thanks to the characterization of Theorem 16, we can express the value problem in terms of intersection of convex
sets with a small description and using techniques similar to the ones used in the case of limit inferior we can show
the following:

Theorem 19. The polyhedron value problem is Σ2P-complete.

The algorithm uses Theorem 16 and relies on the same principle than for lim inf .

References

1. R. Alur, A. Degorre, O. Maler, and G. Weiss. On omega-languages defined by mean-payoff conditions. In FoSSaCS’09, pages
333–347, 2009.

2. P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Concurrent games with ordered objectives. In L. Birkedal, editor,
FoSSaCS’12, volume 7213 of Lecture Notes in Computer Science, pages 301–315. Springer-Verlag, Mar. 2012.

3. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for mean-payoff games. Formal methods in
system design, 38(2):97–118, 2011.

4. R. Buck. Partition of space. American Mathematical Monthly, pages 541–544, 1943.
5. C. Carathéodory. Über den variabilitätsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen. Math-

ematische Annalen, 64(1):95–115, 1907.
6. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource interfaces. In EMSOFT 2003, volume 2855 of

Lecture Notes in Computer Science. Springer, 2003.
7. K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision processes with multiple objectives. In STACS 2006,

23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006, Proceedings,
volume 3884 of Lecture Notes in Computer Science, pages 325–336. Springer, 2006.

8. K. Chatterjee and Y. Velner. Hyperplane separation technique for multidimensional mean-payoff games. In CONCUR 2013–
Concurrency Theory, pages 500–515. Springer, 2013.

9. M. Joswig. Beneath-and-beyond revisited. In Algebra, Geometry and Software Systems, pages 1–21. Springer, 2003.
10. J. Matoušek. Lectures on discrete geometry, volume 212. Springer, 2002.
11. L. Mirsky. An introduction to linear algebra. Dover Publications, 1955.
12. C. H. Papadimitriou. On the complexity of integer programming. Journal of the ACM (JACM), 28(4):765–768, 1981.
13. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal access of web sources. In Founda-

tions of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 86–92. IEEE, 2000.

25

14. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL89, pages 179–190. ACM Press, 1989.
15. J.-R. Sack and J. Urrutia. Handbook of computational geometry. Elsevier, 1999.
16. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
17. Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. Rabinovich, and J.-F. Raskin. The complexity of multi-mean-payoff

and multi-energy games. CoRR, abs/1209.3234, 2012.
18. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. TCS, 158(1):343–359, 1996.

26

	Pareto Curves of Multidimensional Mean-Payoff Games
	Romain Brenguier, Jean-François Raskin

