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Abstract We study multidimensional mean-payoff games. More pre-
cisely, we want to compute all the values that can be ensured by the first
player. Because weights are given in multiple dimensions, there can be
incomparable such values, and even an infinite number of incomparable
ones. We show that the set the values can be represented by a finite
union of convex sets. From the computational point of view, we show
that deciding if the intersection of the set of values with points satisfy-
ing a set of linear inequations can be done in Σ2-P. The problem is both
NP-hard and coNP-hard.

1 Introduction

Games in computer science are used to model interaction in computerized sys-
tems. They have been successfully used for the synthesis of reactive systems. In
this context, the opponent represents a hostile environment, and winning strate-
gies provide controllers, that ensures the correctness of the system. There has
been recently an effort to lift the study from the qualitative setting to the quan-
titative setting. For example a lot of work have been caried out on the study of
mean-payoff Games, for instance in [4].

In a mean-payoff game players try to maximize the average of the reward they
get at each step of the game. These objectives can be extended to a multidimen-
sional setting [5], where the reward comes as a vector, and each componnent
represent a reward of a different kind.

For example when trying to model a wireless network, where each player
control one device, one dimension of the reward can represent the bandwith and
another dimension the power consumption of the device (or rather its opposite
as we are trying to maximize it).

The study of these multidimensonal mean-payoff games have been focused
until now on checking whether the first player has a strategy to ensure at least
a given value on each dimension [5,11]. In this paper, we show that it is possible
to compute all the values that can be ensured by the first player. This makes
the task of the designer easier as it can directly choose the best solution among
the optimal ones.
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Contribution. In Sect. 2, we define turn-based games played by two player Eve
and Adam and multidimensional mean-payoff objectives and the different decision
problems we consider. Basically our problem is to decide if there is a value
that can be ensure by Eve and that satisfy some other constraints given as
input. In Sect. 3, we study the problem in the case where all objectives are
given by the limit inferior of the average of the reward. In Thm. 1, we give a
full characterization of the values that can be ensured by Eve. This set can be
computed by operation on polyhedra and we show a Σ2-P algorithm to decide
our decision problems. In Sect 4, we generalize our study to the case where both
limit inferior and limit superior are present and show that a similar, although
more involved, characterization holds. Again we have Σ2-Palgorithm to decide
our decision problems, this time the analysis relies on the fact that witnesses
can be found with relatively simple coordinates.

2 Definitions

2.1 Arena

We define weighted arenas, played by two players Eve and Adam.

Definition 1 (Arena). An arena A is a tuple ⟨Stat∃,Stat∀, s0,Edg⟩, where:
– Stat = Stat∃ ∪ Stat∀ is a finite set of states;
– s0 ∈ Stat is the initial state;
– Edg ⊆ Stat × Stat is a finite set of edges;

In an arena A, whenever we arrive at a state s:

– if s ∈ Stat∃, then Eve selects a state s′ such that (s, s′) ∈ Edg.
– if s ∈ Stat∀, then Adam selects a state s′ such that (s, s′) ∈ Edg.

The game then continues from s′. This process starts from s0 and is repeated
ad infinitum to form an infinite sequence of states.

Definition 2 (History and plays). A history of the game G is a finite non-
empty sequence of states i.e. an element of Stat∗ ⋅Stat. We write hi the i-th state
of h, starting from 0, i.e. h = h0 ⋅ h1⋯hn. The length ∣h∣ of such an history is
n + 1. We write last(h) the last state of h, i.e. h∣h∣−1. A play ρ is an infinite
sequence of states, i.e. an element of Statω. We write ρ≤n for the prefix of ρ of
length n + 1, i.e. ρ0⋯ρn. We also write ρ≥n for the suffix of ρ after ρ≤n−1, i.e.
ρn ⋅ ρn+1⋯ and ρ⟦m,n⟧ for (ρ≤n)≥m.

Definition 3 (Strategies). Let A be an arena, a strategy for Eve maps his-
tories ending in a state of Stat∃ to a successor of that state. Formally it is a
function σ∃∶Stat

∗
⋅ Stat∃ → Stat, such that for all for all history h and state s,(s, σ∃(h ⋅s)) ∈ Edg. Similarly, a strategy for Adam is a function σ∀∶Stat

∗
⋅Stat∀ →

Act, such that for all for all history h and state s, (s, σ∀(h ⋅s)) ∈ Edg. A strategy
profile is a pair of a strategy for Eve and a strategy for Adam.



Definition 4 (Outcomes). Let A be an arena, and σ∃ a strategy for Eve.
A play ρ is compatible with the strategy σ∃ if, for all k ∈ N, if ρk ∈ Stat∃ then
ρk+1 = σ∃(ρ≤k). We write OutG(s, σ∃) for the set of paths in G that are compatible
with strategy σ∃ and have initial state s (i.e. ρ such that ρ0 = s), these plays are
called outcomes of σ∃ from s. We simply write OutG(σ∃) when s = s0.

2.2 Multidimensional Mean Payoff

Definition 5 (Multidimensional weighted games). A weighted game is an
arena equipped with a weight function. Formally it is a tuple ⟨A, w⟩, where A is
an arena and w∶Edg ↦ Z

d.

Given a weight function w, we write wi the function that associate to an
edge e the projection to the i-th dimension of w(e). We now present mean
payoff preferences which are given by the long term average of the weights.

Definition 6 (Mean payoff). Given a weight function w, the mean payoff
inferior over dimension i of a play ρ is:

MPi(ρ) = lim inf
n→∞

1

n
∑

0≤k<n

wi(ρk, ρk+1).
Similarly the mean payoff superior over dimension i of a play ρ is:

MPi(ρ) = lim sup
n→∞

1

n
∑

0≤k<n

wi(ρk, ρk+1).
Definition 7. Let v ∈ R

2⋅d, we say that a strategy σ∃ ensures value v from
state s if all outcomes ρ of σ∃ from state s are such that on each dimension i,
MPi(ρ) ≥ vi and MPi(ρ) ≥ vd+i. We write value(s) for the set of vectors v such
that there is a strategy of Eve that ensures value v from state s.

2.3 The Value Problem

Our goal is to find the strategy of Eve that ensures a value as height as possible.
However, since the weight are multidimensional it is not clear how to compare
different values. A natural problem, is to try to optimize the value we can ensure
with respect to a linear function.

Definition 8. A linear function is given by a vector a ∈ R
d. The associated

function αa∶Rd ↦ R is the function such that αa(x) = ∑i∈⟦1,d⟧ ai ⋅ xi. A linear

equation is a pair (a, b) where a ∈ Rd
∖ {0} and b ∈ R. The half-space satisfying(a, b) is the set hsp(a, b) = {x ∈ Rd ∣ αa(x) ≥ b}. The hyperplane defined by (a, b)

is the set hp(a, b) = {x ∈ Rd ∣ αa(x) = b}.
Given a, we are looking for a strategy σ∃ that ensures a value v ∈ Rd, and

such that there is no σ′∃ that ensures a value v′, with α(v′) > α(v). To make this
into a decision problem, we fix a real b, and ask if it is possible to ensure a value
v such that α(v) ≥ b.



Definition 9 (Value problem). Given a mean payoff game G and a linear
equation (a, b) over elements of R

2⋅d, is there a strategy σ∃ and a value v ∈
hsp(a, b) such that σ∃ ensures v?

Remark 1. The answer to this problem is also useful when computing Nash
equilibria in (single dimension) mean payoff games. Indeed, thanks to the suspect
transformation [2], a multiplayer concurrent game with mean payoff objectives
can be transformed into a multidimensional mean payoff turn-based game. The
existence of a Nash equilibria in the original game is then equivalent to the
existence of a run which has a value which can be ensured by the first player of
the game in the suspect game.

We also define a generalization of this problem that considers a system of
equation instead of a single one.

Definition 10 (Threshold problem). Given a mean payoff game G, a system
of linear equation λ = ((a1, b1), . . . , (al, bl)) over elements of R

2⋅d, is there a
strategy σ∃ and a value v ∈ ∩l

k=1hsp(ak, bk) such that σ∃ ensures v?

Remark 2. Other works ([11] for instance) usually focus on the 0-threshold prob-
lem, which can be specified here by a1 = (1,0, . . . ,0), a2 = (0,1,0, . . . ,0), . . . and
all bk are equal to 0. In such a case, it is only needed to check that the value 0
can be ensured. This is indeed simpler than having to find the values that can
be ensured: we will show that the threshold problem is NP-hard and coNP-hard
while the 0-threshold problem is coNP-complete [11].

Many algorithms require computing the winning region for some objective,
this leads to the definition of the following decision problem.

Definition 11 (Region problem). Given a mean payoff game G, a set of
states S, a system of linear equation λ = ((a1, b1), . . . , (al, bl)) over elements of
R

2⋅d, is there from each state s of S, a strategy σs
∃ and a value v ∈ ∩l

k=1hsp(ak, bk)
such that σs

∃ ensures v from s?

2.4 Decomposition in Simple Cycles

Our analysis of mean payoff game will rely on finding good cycles for Eve. Our
proof will use as a tool the decomposition of a play into simple cycles.

Definition 12 (Simple cycles). A simple cycle is sequence s0 ⋅ s1⋯sn, such
that s0 = sn and for all i and j, 0 ≤ i < j < n, si ≠ sj. We write C(G) (C whenG is clear from the context) for the set of simple cycles in the concurrent game
structure G.

In this paragraph, we recall the notion of decomposition of a play into simple
cycles [7]. A history h = s0 ⋅ s1⋯sn is a cycle if s0 = sn, n ≥ 1. A simple cycle is a
cycle such that for all i and j, 0 ≤ i < j < n, si ≠ sj . We write C(A) (C when A
is clear from the context) for the set of simple cycles in the concurrent game A.



Every history h of a finite game can be uniquely decomposed into a sequence
of simple cycles, except for a finite part. The decomposition process maintains a
stack, st(h), of distinct states and moves. We write the stack content s1 ⋅ s2⋯sn
where s1 is at the bottom of the stack and sn the top. We use the notation
s ∈ st(h) for s ∈ {s1, s2, . . . , sn}. The decomposition, dec(h), is a set of simple
cycles. We define dec(h) and st(h) inductively as follows:

– for the single state history s, dec(s) = ∅ and st(s) = s.

– let h′ = h ⋅ s be a history.

● If s ∈ st(h), and st(h) = α ⋅ s ⋅ β, then st(h′) = α ⋅ s and dec(h′) =
dec(h) ∪ {s ⋅ β ⋅ s}.

● else dec(h′) = dec(h), st(h′) = st(h) ⋅ s.
Note that the stack always contains distinct elements, therefore only simple cy-
cles are added to the decomposition. The elements in the stack from the bottom
to the top, form a history s0 ⋅s1 ⋯ sn, where n+1 is the height of the stack. The
decomposition of a play is the union of the decompositions of the finite prefixes
of the play.

3 Case of limit inferior

We first analyze the case where all the mean-payoff values would be taken as
limit inferior of the average cost. We define value by:

value(s) = {v ∈ Rd ∣ ∃σ∃. ∀ρ ∈ Out(s, σ∃). ∀i ∈ ⟦1, d⟧. MPi(ρ) ≥ vi}

3.1 Downward closure

Definition 13. Let ↓ S be the downward closure of S, i.e. {x ∣ ∃x′ ∈ S. ∀i ∈⟦1, n⟧. xi ≤ x′i}.
Lemma 1. – Operator ↓ is monotonic, i.e. for any set X and Y such that

X ⊆ Y , we have that ↓X ⊆↓ Y .

– Operator ↓ is compatible with union, i.e. for any set X and Y : (↓ X) ∪ (↓
Y ) =↓ (X ∪ Y ).

Proof. Assume X ⊆ Y . Let x ∈↓X, there is x′ ∈X such that for all i, x′i ≥ xi. As
X ⊆ Y , x′ ∈ Y , and therefore x ∈↓ Y .

To show (↓X)∪(↓ Y ) ⊆↓ (X∪Y )We use the monotonicity property (Lem. 1):
since X ⊆X ∪ Y , ↓X ⊆↓ (X ∪ Y ).

In the other direction, let x ∈↓ (X ∪ Y ), there exists x′ ∈ X ∪ Y such that
x ≤ x′. If x′ ∈X then x ∈↓X and otherwise x ∈↓ Y .



3.2 Characterizing values

We define memoryless strategies. We will use them to characterize values.

Definition 14 (Memoryless strategies). A strategy σ∀ is said memoryless
if for every history h and h′, and all state s, σ∀(h ⋅ s) = σ∀(h′ ⋅ s). We write

M = {σ1

∀, . . . , σ
∣M∣
∀ } for the set of the memoryless strategies of Adam in G.

Let σ∀ be a memoryless strategy. Strategy σ∀ determines a subgraph of G,
let SSC(σ∀) be the set of strongly connected component in this subgraph. We
write:

C(s, σ∀) = {C ∣ ∃S ∈ SSC(σ∀). C = {c ∣ c simple cycle of S}∧S reachable from s}.
Definition 15 (Convex hull). The convex hull of a set of points V is the set

conv(V ) = {∑
v∈V

tv ⋅ v ∣ ∀v ∈ V. tv ∈ [0,1] ∧ ∑
v∈V

tv = 1} .
We now give a characterization of the set of values that Eve is able to ensure.

Theorem 1.

value(s) = ⋂
σ∀∈M

⋃
C∈C(s,σ∀)

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C})
We start by recalling two lemmas of [11] which we will use in our proof.

Lemma 2 ([11, Lem. 10(2)]). Let S be a strongly connected graph. If S

does not have a non-negative multi-cycle (i.e. C ∈ C(S) and λ ∈ NC such that

∑c∈C λ(c) ⋅w(c) ≥ 0), then there exists a constant mG ∈ N and a real cG > 0 such
that for all history h in the graph S we have min{wi(h) ∣ i ∈ I} ≤mG − cG ⋅ ∣h∣.
Lemma 3 ([11, Lem. 11]). If there is a strongly connected component S reach-
able from s0 that has a non-negative multi-cycle, then Eve has a strategy to satisfy
the mean-payoff-inf (i.e. ∀i ∈ I ∪ J. ∀ρ ∈ Outs0(σ∃). MPi(ρ) ≥ 0).
Lemma 4. Let ρ be a path. If Inf(ρ) ⊆ C for some C ∈ C(σ∀), then MP(ρ) ∈
conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}).

Proof. We consider the lexicographic order ≤lex defined by v≤lexv′⇔ v = v′∨∃i ≤
d. vi < v′i ∧ ∀j < i. vj = v′j . We also consider for each i ∈ ⟦1, d⟧, the preorder

≤i defined by v ≤i v′ ⇔ vi ≤ v′i. We define L(n) = min≤lex { 1

m
⋅w(ρ≤m) ∣m ≥ n}

and Ki(n) = min≤i { 1

m
⋅w(ρ≤m) ∣m ≥ n}. We write MPL(ρ) = limn→∞L(n), this

limit exists because (Rd,≤lex) forms a complete lattice.
We show that for all coordinate i, MPL(ρ)i ≥ MPi(ρ). We write 1i for the

vector in which all coordinates are equal to 0 except the i-th coordinate which is
equal to 1. Let ε > 0 and consider the vector L(n)+ε⋅1i. Since L(n)<lexL(n)+ε⋅1i,
there exists m ≥ n such that 1

m
⋅w(ρ≤m)≤lexL(n) + ε ⋅ 1i. We have that wi(ρ≤m)

m
≤



L(n)i + ε because for all coordinate j < i, wj(ρ≤m)

m
has to be equal to L(n)j . We

also have that 1

m
⋅w(ρ≤m) ≥i Ki(n). Hence for all ε > 0, Ki(n) < L(n)i+ε, which

shows that MPL(ρ)i ≥MPi(ρ).
We now show that MPL(ρ) ∈ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}). After a finite prefix

ρ≤m, the play stays in the component C. We consider the decomposition in simple
cycle of ρ≥m, for n >m:

w(ρ≤n) = w(ρ≤m) +w(st(ρ⟦m,n⟧)) + ∑
c∈dec(ρ⟦m,n⟧)

w(c)
and for all c ∈ dec(ρ⟦m,n⟧), c belongs to C. Since the length of the stack is
bounded by the number of states, we have that:

w(ρ≤m)−W ⋅ ∣V ∣+ ∑
c∈dec(ρ⟦m,n⟧)

w(c) ≤ w(ρ≤n) ≤ w(ρ≤m)+W ⋅ ∣V ∣+ ∑
c∈dec(ρ⟦m,n⟧)

w(c)
where W contains on each coordinate the maximum of absolute value of weights
in this coordinate.

w(ρ≤m)
n

−
W ⋅ ∣V ∣

n
+ ∑
c∈dec(ρ⟦m,n⟧)

1

n
⋅w(c) ≤ w(ρ≤n)

n
≤ w(ρ≤m)

n
+
W ⋅ ∣V ∣

n
+ ∑
c∈dec(ρ⟦m,n⟧)

1

n
⋅w(c)

∑
c∈dec(ρ⟦m,n⟧)

1

n
⋅w(c) = ∑

c∈dec(ρ⟦m,n⟧)

∣c∣
n
⋅
1

∣c∣ ⋅w(c)

= ∑c∈dec(ρ⟦m,n⟧)
∣c∣

n
⋅ ∑
c∈dec(ρ⟦m,n⟧)

∣c∣
∑c∈dec(ρ⟦m,n⟧)

∣c∣ ⋅
1

∣c∣ ⋅w(c)

We write vn for∑c∈dec(ρ⟦m,n⟧)
∣c∣

∑c∈dec(ρ⟦m,n⟧)
∣c∣
⋅
1

∣c∣
⋅w(c), we have that vn ∈ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}).

We will show that 1

n
⋅w(ρn) comes closer and closer to vn.

w(ρ≤m)
n

−
W ⋅ ∣V ∣

n
+
∑c∈dec(ρ⟦m,n⟧)

∣c∣
n

⋅vn ≤ w(ρ≤n)
n

≤ 1

n
⋅w(ρ≤m)+W ⋅ ∣V ∣

n
+
∑c∈dec(ρ⟦m,n⟧)

∣c∣
n

⋅vn

Let i be a coordinate:

∣ 1
n
⋅wi(ρn) − vn∣ ≤ wi(ρ≤m)

n
+
Wi ⋅ ∣V ∣

n
+

n −∑c∈dec(ρ⟦m,n⟧)
∣c∣

n
⋅ ∣(vn)i∣

≤ m ⋅Wi

n
+
Wi ⋅ ∣V ∣

n
+
m + ∣V ∣

n
⋅ ∣Wi∣

≤ 2 ⋅ (m + ∣V ∣) ⋅Wi

n

We show that there is a strictly increasing sequence un such that MP(ρun
)

converges to MPL(ρ). We define u0 by 0 then give un we set un+1 to be the



smallest m ≥ un+1 such that L(un+1) = 1

m
⋅w(ρ≤m). The sequence un is strictly

increasing and L(n) = w(ρ≤un)

n
=MP(ρ≤un

) hence MP(ρun
) converges to MPL(ρ).

Since MP(ρun
) converges and is 2⋅(m+∣V ∣)⋅Wi

n
close to vn, and vn belongs to

conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}) which is a closed set, the limit of MP(ρun

) is within

conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}) and so is MPL(ρ). ⊓⊔

Proof (of Thm. 1). ⊆ Let v ∈ value(s), then there is a strategy σ∃ of Eve, such
that for all memoryless strategy σ∀ ∈M of Adam, ∀i ∈ I ∪ J. MPi(Out(σ∃, σ∀)) ≥
vi. Let ρ = Out(σ∃, σ∀). We have that Inf(ρ) ⊆ C for some C ∈ C(σ∀).
Lem. 4 shows that MP(ρ) ∈↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}) which implies that

v ∈↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}).

As MPL(ρ) ≥ MP(ρ), we have that MP(ρ) ∈↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}).

Moreover, sinceMP(Out(σ∃, σ∀)) ≥ v, it follows that v ∈↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}).

⊇ Let v ∈ ⋂σ∀∈M⋃C∈C(σ∀) ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}). We fix a memoryless

strategy σ∀ of Adam. We have that v is in ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}) for some

C ∈ C(σ∀).
We replace the weights of the game by w′ such that w′i(s) = wi(s) − vi. We

have for all path ρ that if the weight w(ρ) is greater than v then w′(ρ) ≥ 0. We

know there exits some v′ ≥ v of the form ∑∣C∣k=1
λk

∣ck ∣
⋅ w(ck). Hence there exists

λ1,⋯, λ∣C∣ such that ∑∣C∣k=1
λk

∣ck ∣
⋅w′(ck) ≥ 0.

The idea is to construct for all n a finite path of length greater than n that
has a total weight by w′ close to 0. Let n be an integer, there exist pk ∈ N such
that ∣pk

n
− λk ∣ ≤ 1

n
. Let lk = ∏k′≠k ∣ck ∣, we construct the history h that follows

p1 ⋅ l1 times the cycle c1, then goes to the beginning of cycle c2 with a path of
length at most ∣Stat∣ then follows p2 ⋅ l2 times the cycle c2 and so on until the∣C ∣-th cycle.

First, lets look at the length of this path.

∣C∣∑
k=1

pk

n
≥ ∣C∣∑

k=1

λk −
∣C ∣
n

∣C∣∑
k=1

pk ≥ n
∣C∣∑
k=1

λk − ∣C ∣ = n − ∣C ∣

Hence ∣h∣ ≥ n − ∣C ∣, hence it is not bounded when n grows toward infinity.



Let W ′ be the maximum weight that appears in w′. On dimension i, the
total weight of h is such that:

∣C∣∑
k=1

pk ⋅ lk ⋅w
′
i(ck) − ∣Stat∣ ⋅ ∣C ∣ ⋅ ∣W ′∣ ≤ w′i(h)

∣C∣∏
k=1

∣ck ∣ ⋅
∣C∣∑
k=1

pk ⋅
w′i(ck)∣ck ∣ − ∣Stat∣ ⋅ ∣C ∣ ⋅ ∣W ′∣ ≤ w′i(h)

∣C∣∏
k=1

∣ck ∣ ⋅
∣C∣∑
k=1

(λk −
1

n
) ⋅ w′i(ck)∣ck ∣ − ∣Stat∣ ⋅ ∣C ∣ ⋅ ∣W ′∣ ≤ w′i(h)

−
1

n
⋅

∣C∣∏
k=1

∣ck ∣ ⋅
∣C∣∑
k=1

w′i(ck)∣ck ∣ − ∣Stat∣ ⋅ ∣C ∣ ⋅ ∣W ′∣ ≤ w′i(h)

Hence w′i(h) is bounded on all dimension i when we make n grow.
By Lem. 10(2) of [11]1 this implies there is a non negative cycle in C for the

weight w′. By Lem. 11 of [11], σ∀ is not a winning strategy. We know thanks
to Theorem 8 of [11] that multi-mean payoff games are determined under mem-
oryless strategies of Adam. Therefore Adam has no winning strategy. Since these
games are also determined [8], this means that Eve has a winning strategy.
Therefore v ∈ value(s).
3.3 Half-spaces representation

The goal of this section is to show that the equation: value(s)∩hsp(λ) ≠ ∅ can
be solved using a relatively simple half-space representation (it might still be
exponential compared with the size of the arena).

The set conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}) is a convex hull and it is well known these

can be written as finite intersection of half-spaces [9].

Definition 16 (Polyhedron). The boundary of hsp(a, b) is the hyperplane:
bndr(a, b) = {x ∈ Rd ∣ ∑i∈⟦1,d⟧ ai ⋅ xi = b}. If P = ∩k

i=1Hi where for all i, Hi is a
half-space, P is called a polyhedron. A bounded polyhedron is called a polytope.
A face F of P is a subset of P of the form F = P ∩ bndr(HF ), where HF is
a half-space such that P ⊆ HF . In that case, say that HF defines face F of P .
A face of dimension 1 is called a vertex. If P has dimension d′, then a face of
dimension d′ − 1 is called a facet. A complete set of facet defining half-spaces F
contains for each facet F a half-space HF such that P ∩bndr(H) = F and P ⊆H.

Definition 17 (Affine Hull). A affine subspace is a set of the form x+L with
x ∈ R

d and L is a linear subspace of R
d (i.e. a subset closed under addition

of vectors and under multiplication by real numbers). The affine hull of a set

1 Note that in [11] the weights are integer, which may not be the case for us. However
the proof of Lem. 10(2) still works in the case of arbitrary reals.



X ⊆ R
d is the intersection of all affine subspaces of R

d containing X, it is
written aff(X). It can be described as the set of linear combinations of points
of X [9].

We prove a proposition, similar in spirit to Helly’s theorem (see [9]), that we
will use to restrict the search to certain points.

Lemma 5. Let H1, . . . ,Hn be n half-spaces of Rd with n ≥ d ≥ 1, and S be an
affine subspace of Rd of dimension k, with 1 ≤ k ≤ d. If S ∩ ⋂n

i=1Hi ≠ ∅ then
there is i1, . . . , ik such that:

S ∩ k⋂
j=1

bndr(Hij) ⊆ S ∩ n⋂
i=1

Hi.

Notice in particular that this lemma applies to the case where S = R
d.

Proof. We show the proposition by induction other k. If k = 0, then if S ∩
⋂n

i=1Hi ≠ ∅ then every Hi contain S since it is reduced to one point. Therefore
S ∩⋂k+1

i=1 Hi = S = S ∩⋂n
i=1Hi.

Assume now k > 0 and that the property holds for all affine subspace of
dimension k′ < k. We proceed by induction over n. If n = k, then since bndr(Hi) ⊆
Hi for all i, we have that ∩ki=1bndr(Hi) ⊆ ∩ki=1Hi which shows the property.

Assume now that the property holds for n, we consider a half-space Hn+1.

– If S ⊆ bndr(Hn+1) then we use the induction hypothesis for n, we have

k⋂
j=1

(bndr(Hij) ∩ S) ⊆ S ∩ n⋂
i=1

Hi

⊆ S ∩ bndr(Hn+1) ∩ n⋂
i=1

Hi

⊆ S ∩Hn+1 ∩ n⋂
i=1

Hi

⊆ S ∩ n+1⋂
i=1

Hi

– Otherwise bndr(Hn+1) ∩ S forms a affine subspace of dimension k − 1, to
which we can apply the induction hypothesis.● If S ∩ bndr(Hn+1) ∩ ⋂n

i=1Hi ≠ ∅ then there is i1, . . . , ik−1 such that:

(bndr(Hn+1) ∩ S) ∩ k−1⋂
j=1

bndr(Hij) ⊆ S ∩ bndr(Hn+1) ∩ n⋂
i=1

Hi

S ∩ k−1⋂
j=1

bndr(Hij) ∩ bndr(Hn+1) ⊆ S ∩ n+1⋂
i=1

Hi

Which shows the property.



● Otherwise (⋂n
i=1Hi ∩ S) ∩ bndr(Hn+1) = ∅, then since ⋂n

i=1Hi ∩ S is
convex it is either totally inside Hn+1 or totally outside of it. If it is
outside then the intersection is empty. Otherwise, ⋂n

i=1Hi ∩ S ⊆ Hn+1.
We apply the induction hypothesis over n: there is i1, . . . , ik such that:

k⋂
j=1

bndr(Hij) ∩ S ⊆ n⋂
i=1

Hi ∩ S ⊆ S ∩ n+1⋂
i=1

Hi

Which proves the result.

Theorem 2 ([6, Thm. 3.(b)]). Let P be a polytope. Let F be complete set
of facet defining half-spaces, then P is the intersection of aff(P ) with all half-
spaces in F .

The set conv({ 1

∣c∣
⋅w(c) ∣ c ∈ C}) is a convex hull and can be written as finite

intersection of half-spaces [9] but the number of half-spaces that is required can
be exponential with respect to the dimension d: it is of the order of nd where
n is the number of points given as input. In the following, we will describe how
these half-spaces are obtained.

Definition 18. We write πj(x) for the projection of x over the plane {x ∣ xj =
0}, that is πj(x) = x′ such that for all i ≠ j, x′i = xi and x′j = 0. We also
write πJ(x) for the projection of x over the plane {x ∣ ∀j ∈ J. xj = 0}. We
write ↓i X for {v ∣ ∃x ∈ X,λ ≥ 0. v = x − λ ⋅ 1i}. Let also ↕K S be the set{x ∣ ∃x′ ∈ S. ∀j ∈ ⟦1, n⟧ ∖K. x′j = xj}.
Lemma 6. Let P be a polyhedron, and F(πj(P )) be a set of half-spaces of
aff(πj(P )) such that πj(P ) = ⋂H∈F(πj(P ))H.

↕j P = ⋂
H∈F(πj(P ))

H +R ⋅ 1j

Proof.

x ∈↕j P ⇔ ∃x′ ∈ P. πj(x) = πj(x′)
⇔ πj(x) ∈ ⋂

H∈F(πj(P ))

H

⇔ πj(x) +R ⋅ 1j ⊆ ⋂
H∈F(πj(P ))

H +R ⋅ 1j

⇔ x ∈ ⋂
H∈F(πj(P ))

H +R ⋅ 1j

⊓⊔

Lemma 7. Let P be a polyhedron and F(P ) be set of half-spaces such that
P = ∩H∈F(P )H. Let F j

−(P ) ⊆ F(P ) be the set of half-spaces of F(P ) that contain
the direction −1j, i.e. H −R

+
⋅ 1j =H.

↓j P =↕j P ∩ ⋂
H∈Fj

−(P )

H



Proof. ⊆ Let x ∈↓j P . We have that x ∈↕j P . There is x′ ∈ P such that x =
x′−λ ⋅1j with λ ≥ 0. Let f ∈ F j

−, since x
′ ∈Hf we have that x ∈Hf −R

+
⋅1j =Hf .

Therefore x ∈↕j P ∩⋂f∈Fj
−
Hf .

⊇ Let x ∈↕j P ∩ ⋂f∈Fj
−
Hf . There exists x′ ∈ P such that πj(x) = πj(x′).

Consider the line segment [x,x′], it does not intersect any bndr(Hf) with f ∈ F j
−

since both x and x′ are inside these half-spaces.
If [x,x′] does not intersect any bndr(Hf) where f is a facet of P then x is in

the intersection of these half-spaces, and using Thm. 2, this means that x ∈ P .
Otherwise [x,x′] intersects some bndr(Hf) with f facet of P which is not

in F j
−. Since Hf contains x′ but not x, and these two only differs by their j

coordinates, this means that xj ≤ x′j and therefore x ∈↓j P . ⊓⊔

We write BJ for the subspace ∑j∈J R ⋅1j and CJ for the cone ∑j∈J R+ ⋅1j . IfF is a set of half-spaces, we write FJ
− ⊆ F the half-spaces of F that contain the

direction −CJ , i.e. H −CJ =H.

Lemma 8. ↓K P = ⋂
J⊆K

⋂
H∈FK∖J

− (πJ(P ))

H +BJ

with the convention that π∅(P ) = P , F∅− (P ) = F(P ) and B∅ = 0.

Proof. We prove the result by induction over the size of K. The case where∣K ∣ = 1 is a direct consequence of Lem. 6 and 7.
Assume the equality holds for some set K. Consider a dimension j /∈K.

πj(↓K P ) =↓K πj(P ) = ⋂
J⊆K

⋂
H∈FK∖J

− (πJ∪{j}(P ))

H +BJ

So we can chose:

F(πj(↓K P )) = ⋃
J⊆K

{H +BJ ∣H ∈ FK∖J
− (πJ∪{j}(P ))} (1)

We also have by induction hypothesis:

F(↓K P ) = ⋃
J⊆K

{H +BJ ∣H ∈ FK∖J
− (πJ(P ))}

F j
−(↓K P ) = ⋃

J⊆K

{H +BJ ∣H ∈ FK∪{j}∖J
− (πJ(P ))} (2)

Using Lem. 6 and 7:

↓K∪{j} P = ⋂
H∈F(πj(↓KP ))

H +Bj ∩ ⋂
H∈Fj

−(↓KP )

H

= ⋂
J⊆K

⋂
H∈FK∖J

− (πJ∪{j}(P ))

H +BJ +Bj ∩ ⋂
H∈Fj

−(↓KP )

H By (1)

= ⋂
J⊆K

⋂
H∈FK∖J

− (πJ∪{j}(P ))

H +BJ∪{j} ∩ ⋂
J⊆K

⋂
H∈F

K∪{j}∖J
− (πJ(P ))

H +BJ By (2)

= ⋂
J⊆K∪{j}

⋂
H∈F

K∪{j}∖J
− (πJ(P ))

H +BJ



Which proves the property for K ∪ {j} and concludes the induction. ⊓⊔

Corollary 1.

↓ P = ⋂
J⊆⟦1,d⟧

⋂
H∈F

⟦1,d⟧∖J
− (πJ(P ))

H +BJ

3.4 Algorithm

In order to solve the value problem, our algorithm is going to guess a vector of
a certain form which satisfies the linear equation and check that it belong to
value. For this last step, we reuse an algorithm from [11], which is coNPas we
recall here.

Theorem 3. [11, Thm. 7.2] For multi-weighted games with objective {ρ ∣MP(ρ) ≥(0, . . . ,0)}, the problem of deciding whether a given state is winning for Eve is
coNP-complete.

Corollary 2. Given a vector x ∈ Rd and a state s, we can decide with a coNP al-
gorithm whether x ∈ value(s).
Proof. This is done by subtracting x from all the weights and using the preceding
algorithm to decide if s is winning for the objective {ρ ∣MP(ρ) ≥ (0, . . . ,0)}.

value(s)∩hsp(λ) ≠ ∅ if, and only if, there is a function f ∶M↦ C, such that
f(σ∀) ∈ C(s, σ∀) for all strategy σ∀ and

hsp(λ) ∩ ⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ f(σ∀)}) ≠ ∅ (3)

By Corollary 1, ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(σ∀)}) is the intersection of the

half-spaces in Hf(σ∀), where for a set of simple cycles C:

HC = {H +BJ ∣ J ⊆ ⟦1, d⟧ ∧H ∈ F⟦1,d⟧∖J− (πJ(P )) ∧ P = conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C})}

Lemma 9. Let H = {hsp(λ)} ∪⋃σ∀∈MHf(σ∀). The three following propositions
are equivalent:

1. value(s) ∩ hsp(λ) ≠ ∅;
2. there exists d half-spaces H1, . . . ,Hd in H such that ⋂1≤i≤d bndr(Hi) ≠ ∅ and

∃x ∈ ⋂1≤i≤d bndr(Hi), x ∈ value(s) ∩ hsp(λ).
3. there exists d half-spaces H1, . . . ,Hd in H such that ⋂1≤i≤d bndr(Hi) ≠ ∅ and

∀x ∈ ⋂1≤i≤d bndr(Hi), x ∈ value(s) ∩ hsp(λ).
Proof. The implications (3) Ô⇒ (2) Ô⇒ (1) are obvious.



We now prove the implication (1) Ô⇒ (3). By Thm. 1

value(s) = ⋂
σ∀∈M

⋃
C∈C(s,σ∀)

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C})
= ⋃

f ∶M↦C

⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C})
The intersection of hsp(λ) with value(s) is non-empty if, and only if, there

exists f ∶M↦ C, such that hsp(λ)∩⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(σ∀)}) is non

empty. By Corollary 1, ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(σ∀)}) is the intersection of the

half-spaces in Hf(σ∀). So hsp(λ)∩⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(σ∀)}) is non

empty if and only if ∩H∈Hf(σ∀)H is non empty. By Lem. 5 this is the case if and
only if there is d half-spaces H1, . . . ,Hd in Hf(σ∀) such that ⋂1≤i≤d bndr(Hi) ⊆
hsp(λ)∩⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(σ∀)}). This implies ⋂1≤i≤d bndr(Hi) ⊆

hsp(λ) ∩ value(s) which shows that (3) holds. ⊓⊔

Algorithm 1: Algorithm for the value problem in multi-mean-payoff

Existentially guess d half-space H1,⋯,Hd ∈ H

if ⋂
d
j=1 bndr(Hj) = ∅ then return false;

else take x one arbitrary point in ⋂
d
j=1 bndr(Hj)

if x /∈ hsp(λ) then return false;
if x ∈ value(s) then return true

Based on this property we devise Algorithm 1 to decide the value problem.
Its correctness holds from Lem. 9. Algorithm 1 is in Σ2P = NP

NP = NP
coNP,

since checking whether x ∈ value(s) can be done in coNP (by Corollary 2) and
computing the intersection of hyperplanes can be done in polynomial time [10,
Thm. 3.3]. We obtain from this, the following theorem.

Theorem 4. The threshold problem is in Σ2P for limit inferior objectives.

3.5 Hardness

Proposition 1. The threshold problem is NP-hard for limit inferior objectives.

Proof. Let φ = ∃x1. ∃x2. . . .∃xn.C1∧⋯∧Cn be a formula, where Ci = ℓi,1∨ℓi,2∨ℓi,3
with ℓi,j ∈ {xk,¬xk ∣ k ∈ ⟦1, n⟧}. We have two dimensions for each variable xi, so
d = 2 ⋅ n. We write 0i for the vector v such that vi = 0 and vj = 1 for j ≠ i. We
define a family of vectors vi,j where if ℓi,j = xk then vi,j = 02⋅k+1 and if ℓi,j = ¬xk

then vi,j = 02⋅k. We have one initial state s0 controlled by Adam, one state for



Adam

C1Eve C2Eve C3Eve

x1

x2

¬x3

x1

¬x2

¬x3

¬x1

¬x2

x3

(1,0,1,1,1,1)

(1,1,1,0,1,1)

(1,1,1,1,0,1)

(1,0,1,1,1,1)

(1,1,0,1,1,1)

(1,1,1,1,0,1)

(0,1,1,1,1,1)

(1,1,0,1,1,1)

(1,1,1,1,1,0)

Figure 1. Example of the encoding of 3SAT into the threshold problem, for formula
φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

each clause Ci controlled by Eve, and one state for each literal of the formula.
The construction is illustrated in Figure 1.

We consider the constraints λi = (v2⋅i + v2⋅i+1 ≥ 1).
In the example, valuation x1 → true, x2 → false, x3 → true makes the formula

valid, the corresponding value is v = (1,0,0,1,1,0). Consider the strategy of Eve
that in C1 chooses x1, in C2 chooses x1 and in C3 chooses ¬x2. In all the cases
this strategy ensures to Eve a payoff better than v. In contrast, valuation x1 →
false, x2 → false, x3 → true does not make the formula valid, the corresponding
value is v′ = (0,1,0,1,1,0), and if Adam chooses C1 then Eve cannot ensure v′.

Let ξ be a valuation, we associate to it a vector vξ such that if ξ(xi) = true

then (vξ)2⋅i = 1 and (vξ)2⋅i+1 = 0; if ξ(xi) = false then (vξ)2⋅i = 0 and (vξ)2⋅i+1 = 1.
We prove than if ξ makes φ valid then Eve can ensure vξ.

In the other direction, assume vξ makes φ valid. We consider a strategy for
Eve that in each Ci chooses a state ℓi,j such that ξ makes ℓi,j true, this is possible
because vξ makes φ valid. If ℓi,j = xk, then ξ(xk) = true and (vξ)2⋅k+1 = 0. The
payoff is then 02⋅k+1 which is greater than vξ. Similarly, if ℓi,j = ¬xk, the payoff
02⋅k is greater than vξ. This shows that Eve has a strategy to ensure vξ.

We can already conclude that if φ is satisfiable then Eve can ensure a value
that satisfies the equations in λ.

Now, reciprocally, assume there is some v that satisfies λ and that can be
ensured by Eve. For each k ∈ ⟦1, n⟧, v2⋅k > 0 or v2⋅k+1 > 0. We select a valuation
ξv such that ξv(xk) = true⇔ v2⋅k > 0. We prove than if Eve ensures v then ξv
makes φ valid.

Assume Eve ensures v. This means that from every Ci, she can find a ℓi,j
such that vi,j ≥ v. If ℓi,j = xk, then vi,j = 02⋅k+1, hence (vξ)2⋅k+1 = 0. Therefore
ξv(xk) = true. Similarly if ℓi,j = ¬xk, then ξv(xk) = false. This means that in each
Ci, we can find a literal made true by ξv and therefore ξv makes φ valid.



This proves that φ is satisfiable if, and only if, Eve can ensure a value that
satisfies the equations in λ. ⊓⊔

4 General case

4.1 Characterizing values

Proposition 2. If J ≠ ∅, then:
value(s) = ⎛⎝⋂j∈J ↕J∖{j} ⋂σ∀∈M ⋃

C∈C(σ∀)

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C})
⎞
⎠

In order to prove this result, we will reuse some properties of multi-mean-payoff
games that were proved in [11].

Lemma 10 ([11] Lem. 17).

∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and ∀j ∈ J. MPj(ρ) ≥ vj

⇔ ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj .

Lemma 11 ([11] Lem. 14). Let j ∈ J .
∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj

⇔ ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj .

We now proceed to the proof of the proposition.

Proof (of Prop. 2). Let v be a vector of R2⋅d.

v ∈ value(s) ⇔ ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and ∀j ∈ J. MPj(ρ) ≥ vj

⇔ ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj (by Lem. 10)

⇔ ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj (by Lem. 11)

⇔ ∀j ∈ J. v ∈↕J∖{j} value(s)
⇔ v ∈ ⎛⎝⋂j∈J ↕J∖{j} value(s)

⎞
⎠

⇔ v ∈↕J∖{j} ⋂
σ∀∈M

⋃
C∈C(σ∀)

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C}) (by Thm. 1)

4.2 Algorithm

In the following proposition, the goal is to express the value problem in terms
of intersection of convex sets in a space of dimension d = ∣I ∣ + ∣J ∣. The number
of such convex sets is exponential but if the intersection is not empty, there is
a witness whose coordinates are expressible as a small rational. This leads the
way toward a non-deterministic polynomial algorithm.



Definition 19 (Sizes). The size of a rational number r = p

q
where p ∈ Z, q ∈ Z,

p and q are relatively prime, is: ∣∣r∣∣ = 1 + ⌈log
2
(∣p∣ + 1)⌉ + ⌈log

2
(q + 1)⌉. The

size of a vector v = (r1, . . . , rd) is ∣∣v∣∣ = d + ∑i∈⟦1,d⟧ ∣∣ri∣∣. The size of a matrix

A = (aij)di=1nj=1 is ∣∣A∣∣ =m ⋅ n +∑i,j∈⟦1,d⟧×⟦1,n⟧ ∣∣aij ∣∣.

Theorem 5. value(s) ∩ [−W,W ]d is of the form ⋃f∈F conv(Ef) where F is
finite and vertices of Ef have polynomially bounded size.

In order to prove this theorem, we will first state several intermediary propo-
sitions.

Proposition 3 ([10, Corollary 3.2b]). If the system Ax = b of rational linear
equations has a solution, it has one of size polynomially bounded by the sizes of
A and b.

Proposition 4. Given n hyperplanes H1 = hp(a1, b1), . . . ,Hn = hp(an, bn), if
there intersection is non empty we can find a point in the intersection ex-
pressed by α

β
with α,β polynomially bounded with respect to the size of the equa-

tions ∑j∈⟦1,n⟧ ∣bj ∣ +∑i∈⟦1,d⟧ ∣ai,j ∣.
Proof. Points at the intersection are the solutions of the system

⎛⎜⎝
a1⋮
an

⎞⎟⎠X = ⎛⎜⎝
b1⋮
bn

⎞⎟⎠ .

Then Prop. 3 guarantees that we can find a solution with polynomially bounded
size.

Proposition 5. Let P be a polyhedron and F be a complete set of facet defining
half-spaces. If v is a vertex of P , then v is the intersection of at most d + 1
boundary of half-spaces in F , i.e. there is H1, . . . ,Hm ∈ F with m ≤ d + 1 such
that {v} = ∩j∈⟦1,m⟧bndr(Hj).
Proof. A vertex is the intersection of the facets containing it [9, Chapter 5].
Let v be a vertex of P and let Fv ⊂ F be the set of facet defining half-spaces,
corresponding to facets containing v. We have that ∩H∈Fv

bndr(H) = {v}. We
then use Prop. 5, to conclude that d half-spaces are enough.

Proposition 6. Let V1, . . . , Vn be set of points, and let P = ∩n
i=1conv(Vi). Then

P = conv(X) where X is a finite set of points whose size of coordinates are
polynomial with respect to d and size coordinates of points of ∪iVi.

Proof. By Prop. 5, vertices of P are at the intersection of at most d+1 boundaries
of facet defining half-spaces of P . These half-spaces can be taken as a subset of
facet defining half-spaces of {Vi ∣ i ∈ ⟦1, n⟧}.

We first show that equation describing these half-spaces are not too compli-
cated. Facets of conv(Vi) are given by taking at most d+1, vertices of conv(Vi).



If H is given by vertices v1, . . . , vd of Vi, then H = {v1 + λ2 ⋅ (v2 − v1) + ⋯ +
λd−J ⋅ (vd−J − v1) ∣ λ2, . . . , λd ∈ R}. This is equivalently described by an equa-

tion (l1, l2, . . . , ld) where lj is a solution of the equation
⎛⎜⎝
v1
⋮
vd

⎞⎟⎠ l
T
j = 1T

j . Note

that this is only valid when v1, . . . , vd are linearly independent. Using Prop. 3,
coordinates in this equation are polynomial with respect to the coordinates of
vertices v1, . . . , vd.

Now, vertices of P are at the intersection of at most d of these hyperplanes.
Therefore, using Prop.3, there coordinates are polynomially bounded. ⊓⊔

Proposition 7. [−W,W ]d∩⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)}) is the con-

vex hull of a finite set V (j, σ∀) where all points of V (j, σ∀) have coordinate
polynomial with respect to W , d and ∣Stat∣.
Proof. By Corollary 1:

⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ f(j, σ∀)}) = ⋂
σ∀∈M,H∈Hf(σ∀)

H

We also have [−W,W ]d as the intersection of half-spaces in {Fi ∣ i ∈ ⟦1, d⟧} ∪
{Gi ∣ i ∈ ⟦1, d⟧} where Fi = {x ∈ R

d ∣ xi ≥ −W} and Gi = {x ∈ R
d ∣ xi ≤ W}.

As a consequence, the set [−W,W ]d ∩ ⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)})

the intersection of half-spaces and it is bounded, thus it is a convex polytope.
Therefore, it is the convex hull of its set of vertices V [9, Prop.5.3.2]. MoreoverF = H ∪ ⋃i∈⟦1,d⟧ Fi ∪ ⋃i∈⟦1,d⟧Gi is a complete set of facet defining half-spaces

where H = ⋃σ∀∈MHf(σ∀). Vertices in V are at the intersection of at most d +
1 hyperplanes in F by Prop. 5. Therefore by Prop. 3 their coordinates have
size polynomially bounded by the size of W and coefficients appearing in the
equations of half-spaces in H.

The half-spaces of H are of the form H+BJ where J ⊆ ⟦1, d⟧ and H belong toF(πJ(conv( 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)))). Vertices of the projection of the convex hull

are projection of vertices of the convex hull, so equation for these hyperplanes are
given by d−∣J ∣ vertices of the projection. If H is given by vertices v1, . . . , vd−J of
the projection, thenH = {v1+λ2 ⋅(v2−v1)+⋯+λd−J ⋅(vd−J−v1) ∣ λ2, . . . , λd−J ∈ R}.
This is equivalently described by an equation (l1, l2, . . . , ld) where li is a solution

of the equation
⎛
⎜
⎝

v1
⋮

vd−J

⎞
⎟
⎠
lTi = 1T

i . Note that this is only valid when v1, . . . , vd−J are

linearly independent. Using Prop. 3, coordinates in this equation are polynomial
with respect to the coordinates of vertices v1, . . . , vd−J which are themselves of
the form 1

∣c∣
⋅w(c) for some c ∈ C or equal to 0.

We can therefore conclude that coordinates of vectors in V are polynomial
with respect to W and ∣Stat∣. ⊓⊔



Proposition 8. [−W,W ]d∩ ↕J∖{j} ⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)}) =

[−W,W ]d∩ ↕J∖{j} [−W,W ]d ∩⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)})

Proof. Let v ∈ [−W,W ]d∩ ↕J∖{j} ⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)}) then

for all j ∈ J there is some vj such that vj ∈ ⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)})

and for all coordinates k ∈ J∖{j}, vj
k
= vk. We take a vector v′k = −W if k ∈ J∖{j}

and vk otherwise. Obviously v′ belongs to [−W,W ]d.
We show that v′ also belongs to ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)}). There

is x ≥ vj such that x ∈ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)}). We have that for all

coordinate k, xk ≥ −W . Hence, we have that v′ ≤ x and therefore it belongs to

↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)}).

Hence [−W,W ]d∩ ↕J∖{j} [−W,W ]d∩⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)})

contains v. The inclusion in the other direction being trivial, this shows the
equality. ⊓⊔
Proposition 9. If Y ⊆ [−W,W ]d then [−W,W ]d∩ ↕J conv(Y ) = conv(Z)
where Z = {z ∣ ∃y ∈ Y. ∀i /∈ J. zi = yi ∧ ∀i /∈ J. zi ∈ {−W,W}}.
Proof. ⊆ Let x ∈ [−W,W ]d∩ ↕J conv(Y ), there is y ∈ conv(Y ) such that for all
i /∈ J , xi = yi.

For j ∈ J , we define µj = xj+W

2⋅W
, notice that µj ∈ [0,1] since xj ∈ [−W,W ]. We

then define for v ∈ {0,1}∣J ∣ the coefficient λv = ∏vj=1
µj∏vj=0

(1 − µj). We have
that for all v, λv ∈ [0,1] since this is the cause of all µj . Moreover ∑v∈{0,1}∣J ∣ λv =
1, this is proved by a simple induction:

– if ∣J ∣ = 1, then let {j} = J , ∑v∈{0,1}∣J ∣ λv = µj + (1 − µj) = 1;
– if ∣J ∣ > 1, then let k ∈ J :

∑
v∈{0,1}∣J ∣

λv = µk ⋅ ∑
v∣vk=1

λv

µk

+ (1 − µk) ⋅ ∑
v∣vk=0

λv

1 − µk

= µk ⋅ ∑
v∣vk=1

∏
vj=1∣j≠k

µj ∏
vj=0∣j≠k

(1 − µj)
+ (1 − µk) ⋅ ∑

v∣vk=0

∏
vj=1∣j≠k

µj ∏
vj=0∣j≠k

(1 − µj)
= µk + (1 − µk) (By induction hypothesis)

= 1

We can also prove that ∑v∈{0,1}∣J ∣ λv ⋅ v = (µ1, . . . , µj): let k ∈ J :
⎛
⎝ ∑
v∈{0,1}∣J ∣

λv ⋅ v
⎞
⎠
k

= ∑
v∈{0,1}∣J ∣∣vk=1

λv

= µk ⋅ ∑
v∈{0,1}∣J ∣∣vk=1

λv

µk

= µk



Lets write y = ∑n
j=1 νj ⋅yj with νj ∈ [0,1], ∑n

j=1 νj = 1, and yj ∈ Y . Then given

v ∈ {0,1}∣J ∣, we write z(j, v) for z such that ∀i /∈ J. zi = y
j
i and ∀i /∈ J. zi ∈ −W

if vi = 0 and zi = W if vi = 1. We have that πJ(z(j, v)) = πJ(yj). Now, let
x′ = ∑j∈J,v∈{0,1}∣J ∣ νj ⋅ λv ⋅ z(j, v).
– If i /∈ J , then:

x′i = ∑
j∈J,v∈{0,1}∣J ∣

νj ⋅ λv ⋅ yji

= ∑
j∈J

νj ⋅ yji = yi = xi.

– If i ∈ J , then:
x′i = ∑

j∈J,v∈{0,1}∣J ∣
νj ⋅ λv ⋅ z(j, v)

= ∑
j∈J

νj ⋅
⎛
⎝ ∑
v∈{0,1}∣J ∣∣vi=1

λv ⋅W − ∑
v∈{0,1}∣J ∣∣vi=1

λv ⋅W
⎞
⎠

= ∑
j∈J

νj ⋅
⎛
⎝−W + 2 ⋅W ⋅ ⎛⎝ ∑

v∈{0,1}∣J ∣∣vi=1

λv

⎞
⎠
⎞
⎠

= ∑
j∈J

νj ⋅ (−W + 2 ⋅W ⋅ µi)
= ∑

j∈J

νj ⋅ (−W + xi +W )
= ∑

j∈J

νj ⋅ xi

= xi

Hence x = x′ which shows that x is in conv(Z).
⊇ All points z ∈ Z are in [−W,W ]∩ ↕J∖{j} ⋂σ∀∈M ↓ conv({ 1

∣c∣
⋅w(c) ∣ c ∈ f(j, σ∀)})

therefore their convex hull also is. ⊓⊔

Proof (of Thm. 5). By Prop. 2:

value(s) = ⋂
j∈J

↕J∖{j} ⋂
σ∀∈M

⋃
C∈C(σ∀)

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ C}) .
We can then reorder intersection and union operators by considering functions
that selects for pairs (j, σ∀) a simple cycle among C(σ∀), i.e. functions of F ,
where F = {f ∶J ×M↦ C ∣ ∀j ∈ J. ∀σ∀ ∈M. f(j, σ∀) ∈ C(σ∀)}.

We have:

value(s) = ⋃
f∈F

⋂
j∈J

↕J∖{j} ⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ f(j, σ∀)})



value(s) ∩ [−W,W ]d = [−W,W ]d ∩ ⋃
f∈F
⋂
j∈J

↕J∖{j} ⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ f(j, σ∀)})
= ⋃

f∈F
⋂
j∈J

[−W,W ]d∩ ↕J∖{j} ⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ f(j, σ∀)})
Using Prop. 8, this equals to:

⋃
f∈F
⋂
j∈J

[−W,W ]d∩ ↕J∖{j} [−W,W ]d ∩ ⋂
σ∀∈M

↓ conv({ 1

∣c∣ ⋅w(c) ∣ c ∈ f(j, σ∀)})
Using Prop. 7, this equals to

⋃
f∈F
⋂
j∈J

[−W,W ]d∩ ↕J∖{j} conv(V (f, j))
Where all points of ∪f∈F,j∈JV (f, j) have their coordinates polynomially bounded.

Using Prop. 9, [−W,W ]d∩ ↕J∖{j} conv(Y (f, j)) = conv(Z(j, f)) and points
of Z(j, f) also have their coordinates polynomially bounded.

Then using Prop. 6, the vertices of ⋂j∈J[−W,W ]d∩ ↕J∖{j} conv(V (f, j)) have
polynomially bounded coordinates. This concludes the proof of Thm. 5. ⊓⊔

Theorem 6. Let S be a set of states and λ a system of linear equations. ⋂s∈S value(s)∩[−W,W ]d ∩ hsp(λ) is of the form ⋃f∈F conv(Ef) where F is finite and vertices
of Ef have polynomially bounded size.

Proof. This is a consequence of Thm. 5 and Prop. 4.

We write X for the set of points that have coordinates polynomially bounded
by the same polynomial as for Thm. 6 We give a Σ2P algorithm (Algorithm 2)
that given a set S of states, a constraint λ on the payoffs as a system of linear
equation, solves the region problem.

Theorem 7. The region problem is in Σ2P.

Proof. The correctness of the Algorithm 2 is a consequence of Thm. 6.

Algorithm 2: Algorithm for the region problem in multidimensional mean-
payoff games

Existentially guess v in X

if x ∈ ⋂s∈S value(s) ∩ hsp(λ) then return true;
else return false;



References

1. E. H. Bareiss. Sylvesters identity and multistep integer-preserving Gaussian elim-
ination. Mathematics of computation, 22(103):565–578, 1968.

2. P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Concurrent games with
ordered objectives. In L. Birkedal, editor, FoSSaCS’12, volume 7213 of Lecture
Notes in Computer Science, pages 301–315. Springer-Verlag, Mar. 2012.

3. T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector
addition systems with states. In ICALP (2), pages 478–489, 2010.

4. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms
for mean-payoff games. Formal methods in system design, 38(2):97–118, 2011.

5. K. Chartejee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-
payoff and energy games. Leibniz international proceedings in informatics, pages
1–12, 2010.

6. M. Joswig. Beneath-and-beyond revisited. In Algebra, Geometry and Software
Systems, pages 1–21. Springer, 2003.
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