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Optimal Values of

Multidimensional Mean-Payoff Games⋆

Romain Brenguier, Jean-François Raskin

Université Libre de Bruxelles (U.L.B.), Belgium

Abstract In this paper, we study the set of thresholds that the protag-
onist can force in a zero-sum two-player multidimensional mean-payoff
game. The set of maximal elements of such a set is classically called the
Pareto curve, a classical tool to analyze trade-offs. Indeed, as weights
are given as vectors in multiple dimensions, there can be incomparable
such thresholds, and even an infinite number of incomparable ones. Our
main results are as follow. First, we study the geometry of this set and
show that it can be effectively represented as a finite union of convex sets.
Second, we study the computational complexity of natural associated de-
cision problems. In particular, we show that the we can decide in Σ2-P
if this set intersects a convex set of points defined by linear inequations.
We also show that this problem is both NP-hard and coNP-hard. Third,
we show that the Pareto curve can be approximated in polynomial time
for fixed number of dimensions and unary encoding of weights.

1 Introduction

Two-player zero-sum games played on graphs are adequate models for open
reactive systems [11], i.e systems maintaing a continuous interaction with their
environment. In such model, Eve (the protagonist) models the system, Adam
(the antagonist) models the environment, and a winning strategy for Eve in
this game represents a controller that enforces a good property (modelled as
the winning condition in the game) against any behaviours of the environment.
Recently, there has been a large effort to study quantitative extensions of those
graph games, see e.g. [3]. Those extensions are useful to model quantitive aspects
of reactive systems such as mean energy or peak energy consumption, mean
response time, etc. In practice, a system is most often exhibiting several such
quantitative aspects, and they may be conflicting, e.g. you may need to consume
more energy in order to ensure of a lower mean response time. This is why there
is a clear need to study multi-dimensional quantitative games.

In [13], the threshold problem for multi-dimensional mean-payoff games is
studied, i.e. given a d-dimensional value vector v ∈ Zd, does Eve have a strategy
against all strategies of Adam to enforce values larger or equal to v. As weights
in the game are given as vectors in multiple dimensions, there can be incom-
parable thresholds that Eve is able to enforce, and even an infinite number of
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incomparable ones. The set of maximal thresholds that Eve can enforce is classi-
cally called the Pareto curve, it is a classical tool to analyze trade-offs. Another
application of the Pareto curve is the study of multi-player games. For instance
to compute Nash equilibria, a multiplayer game with mean-payoff objectives
can be transformed into a multidimensional mean-payoff two-player game [2],
and the Pareto curve of this multidimensional game is the most important step
towards the computation of equilibria in the associated multi-player game. In
this paper, we study the Pareto curve of thresholds that Eve can enforce in a
multi-dimensional mean-payoff games. Our main contributions are as follows.

First, we characterize the geometry of this set and we show that this (usually
infinite) set can be effectively represented as a (finite) union of convex sets
defined by linear inequations. We obtain this results both for games where the
mean-payoff is given dimension by dimension using lim inf (Theorem 8), and for
a mixture of lim inf and lim sup (Theorem 13). As an application, because the
Pareto curve is effectively representable as a finite union of convex sets, we can
then optimize linear functions by calls to linear programming.

Second, we study the computational complexity of natural associated decision
problems. In particular, we show how to decide in Σ2-P if the set of thresholds
that Eve can enforce intersects a convex set of points defined by linear inequa-
tions. To obtain this result, we need to study finely the linear inequations used
to characterise the Pareto curve. We show that, even if there are possibly an
exponential number of convex sets, each of them being defined by potentially
an exponential number of inequations, they are well behaved. Indeed, all the
inequations that are needed to represent the Pareto curve and its downward
closure (the set of thresholds that can be forced by Eve), are polynomial in the
size of the game (Theorem 3). Additionally, we show that if the set has a non-
empty intersection with a polyhedron defined by linear inequations then there
is a polynomial size witness that can be check in coNP(Theorem 11). Then, we
show that it is unlikely to improve substantially on this complexity as the non
emptiness problem is both NP-hard and coNP-hard (Theorem 12).

Third, we show that it is possible to approximate the Pareto curve in pseudo-
polynomial time for fixed number of dimensions both for notions of relative and
absolute approximations (Theorem 17)1. Those results are of practical relevance
as the number of dimension while multiple is often quite low. For the absolute
approximation, we show that the pseudo-polynomial time algorithm cannot be
turn into a fully polynomial time algorithm without obtaining a polynomial time
solution for 1-dimension mean-payoff games (Theorem 18), a long standing open
question in the field [14].

Structure of the paper Sect. 2 provides the definition of the problems that
we want to solve. Sect. 3 establishes some general results complexity results for
manipulating polyhedra. Sect. 4 solves the lim inf case and Sect. 5 the general

1 We thank Yaron Velner for pointing out his recent algorithm for solving the threshold
problem [4]. This algorithm is instrumental to the pseudo-polynomial time algorithm
that we describe in section 6



problem in which lim inf and lim sup are mixed. Sect. 6 provides results about
the approximation of the Pareto curve.

2 Definitions

We define weighted arenas for players Eve and Adam.

Definition 1 (Arena). An arena A is a tuple 〈Stat∃, Stat∀,Edg〉, where:

– Stat = Stat∃⊎Stat∀ is a finite set of states partitioned between states of Eve
and those of Adam;

– Edg ⊆ Stat × Stat is a finite set of edges. W.l.o.g. we assume that for all
s ∈ Stat, there exists s′ ∈ Stat such that Edg(s, s′).

A play proceeds as follows. Whenever we arrive at a state s: if s ∈ Stat∃,
then Eve selects a state s′ such that (s, s′) ∈ Edg; if s ∈ Stat∀, then Adam selects
a state s′ such that (s, s′) ∈ Edg. The game then continues from s′ and this is
repeated to form an infinite sequence of states. Formally, a play ρ = ρ0ρ1 · · · is
an infinite sequence of states such that for all i ≥ 0, (ρi, ρi+1) ∈ Edg. We write
ρ≤n for the prefix ρ0 · · · ρn.

We write ρ≥n for the suffix of ρ after ρ≤n−1, i.e. ρn · ρn+1 · · · and ρJm,nK for
(ρ≤n)≥m.

A history h of the arena A is a (finite) prefix of a play, i.e. an element of
Stat∗ ·Stat. We write hi the i-th state of h, starting from 0, i.e. h = h0 ·h1 · · ·hn.
The length |h| of such an history is n+ 1. We write last(h) the last state of h,
i.e. h|h|−1.

Let A be an arena, a strategy for Eve maps histories ending in a state of Stat∃
to a successor of that state. Formally it is a function σ∃ : Stat

∗ · Stat∃ → Stat,
such that for all history h and state s, (s, σ∃(h · s)) ∈ Edg. Similarly, a strategy
for Adam is a function σ∀ : Stat

∗ · Stat∀ → Act, such that for all for all history h

and state s, (s, σ∀(h · s)) ∈ Edg. A strategy σ∀ is memoryless if for every history
h and h′, and all state s, σ∀(h · s) = σ∀(h

′ · s). We write M for the (finite) set of
memoryless strategies of Adam.

Let σ∃ a strategy for Eve, a play ρ is compatible with the strategy σ∃ if, for
all k ≥ 0, if ρk ∈ Stat∃ then ρk+1 = σ∃(ρ≤k). We write OutA(s, σ∃) for the set
of plays in A that are compatible with strategy σ∃ and have initial state s (i.e.
ρ such that ρ0 = s). These plays are called outcomes of σ∃ from s. We simply
write Out(s, σ∃) when A is clear from context. The set of outcomes OutA(s, σ∀)
of a strategy of Adam is defined symmetrically.

Definition 2. A weighted game G = 〈A, w, I, J〉 is an arena A equipped with a
weight function w : Edg 7→ Zd, and a partition I ⊎ J = J1, dK.

Given a weight function w, we write wi for the projection to the i-th dimen-
sion of the function w. The mean-payoff inferior and mean-payoff superior over



dimension i of a play ρ are given by:

MPi(ρ) = lim inf
n→∞

1

n

∑

0≤k<n

wi(ρk, ρk+1)

MPi(ρ) = lim sup
n→∞

1

n

∑

0≤k<n

wi(ρk, ρk+1).

The goal of Eve is to maximize the mean-payoff inferior for the dimensions
in I, and the mean-payoff superior for the dimensions in J . Let G be a game, s
a state of G, and v ∈ Rd, we say that a strategy σ∃ ensures thresholds v from
state s if for all outcomes ρ ∈ OutA(s, σ∃), for all dimensions i ∈ I, MPi(ρ) ≥ vi,
and for all dimensions j ∈ J , MPj(ρ) ≥ vj .

Pareto optimality We are interested in strategies of Eve that ensure thresholds
as high as possible on all dimensions. However, since the weights are multidimen-
sional, there is not a unique maximal threshold in general. We use the concept of
Pareto optimality to identify the most interesting thresholds. A threshold v ∈ Rd

is said Pareto optimal from s if there is a strategy σ∃ that ensures threshold v

from s and all v′ 6= v which can be ensured by some σ′
∃ from s are such that

v′i < vi on some dimension i. We write PO(G, s) the set of Pareto optimal thresh-
olds in game G from state s. We refer to this set as the Pareto curve of the game.
Our goal is to compute a representation of this curve. We also consider the set
of feasible thresholds value(G, s) that contains all the thresholds that Eve can
ensure and is in fact the downward closure of PO(G, s).

Linear inequations Let a ∈ Rd be a vector in d dimensions. The associated linear
function αa : R

d 7→ R is the function αa(x) =
∑

i∈J1,dK ai · xi that computes the

weighted sum relative to a. A linear inequation is a pair (a, b) where a ∈ Rd\{0}
and b ∈ R. The half-space satisfying (a, b) is the set 1

2space(a, b) = {x ∈ Rd |
αa(x) ≥ b}. The hyperplane defined by (a, b) is the set hplane(a, b) = {x ∈ Rd |
αa(x) = b}. If H = 1

2space(a, b) is a half-space, we sometimes write hplane(H)
for the associated hyperplane hplane(a, b). A system of linear inequations is a
tuple λ = ((a1, b1), . . . , (al, bl)) of linear inequations. The polyhedron generated
by λ is the set polyhedron(λ) = ∩l

k=1
1
2space(ak, bk).

A natural problem, is to try to optimize the threshold we can ensure with
respect to a linear function α : Rd 7→ R. Given v′ ∈ Rd

+, we are looking for a
strategy σ∃ which ensures a threshold v ∈ Rd, and such that there is no σ′

∃

which ensures a threshold v′, with α(v′) > α(v). To make this into a decision
problem, we fix a real b, and ask if it is possible to ensure threshold v such that
α(v) ≥ b. We consider a generalization of this problem which considers a set of
linear inequations of a single one.

Polyhedron value problem Given a mean-payoff game G, a set of linear inequa-
tions λ over elements of Rd, the polyhedron value problem asks whether there is
a strategy σ∃ and a value v ∈ polyhedron(λ) such that σ∃ ensures v. Note that
this is equivalent to ask whether polyhedron(λ) intersects value(G, s).



Remark 1. Other works ([13,4] for instance) focus on the 0-value problem, which
is a special case of the polyhedron value problem (take as polyhedron the set Rd

+).
This special case is simpler: we will show that the polyhedron value problem is
both NP-hard and coNP-hard while the 0-value problem is coNP-complete [13].

An example Assume that we have some resources R1, . . . , Rn that are shared
among d agents A1, . . . , Ad. Two agents cannot access the same resource at the
same time and can request one resource at any time. We want to control the
access to the resources in a way that minimizes the time spend during the waiting
period by the different agents. This situation can be seen as a d dimensional
game, in which if Ai is waiting then the reward is −1 on the i-th dimension
and 0 otherwise. A situation with two agents and one resource is represented in
Figure 1.

A1 waits R1 A1 waits R1

A2 waits R1 A2 waits R1

A1 and A2 wait R1 A1 and A2 wait R1

0, 0

0, 0
0, 0

−1, 0

0, 0

0,−1

−1, 0

0,−1

−1,−1

Figure 1. A two-dimensional mean-payoff game. Rounded states belong to the
controller and rectangles to the environment.

(0,−1)

(−1, 0)

Figure 2. Pareto curve
of the game of Figure 1.

On each dimension the average correspond to the
opposite of the average time spend waiting by the
agents. For limit inferior objectives the controller can-
not ensure a payoff of 0 on all dimensions. How-
ever, it can ensure thresholds like (−1, 0), (0,−1), or
(− 1

2 ,−
1
2 ), and in fact all the thresholds on the line seg-

ment from point (−1, 0) to (0,−1), or below it, this set
is the set of feasible thresholds. We represented in Fig-
ure 2 the Pareto curve of the game. To illustrate the
polyhedron value problem, assume we want a strategy
which gives at least − 1

3 on the first dimension, at least
− 3

4 on the second one: this corresponds to solution of
the problems with λ = ((1, 0),− 1

3 ), ((0, 1),−
3
4 ). The

frontier of this polyhedron is represented by dotted lines on the figure. This
polyhedron has a non-empty intersection with the set of feasible thresholds.



3 Geometrical Notions

Since our typical reader may not be familiar with all the geometrical notions we
will use, we summarize in this section useful notions and properties related to
convex sets that will be useful to build our characterization of the sets PO(G, s)
and value(G, s). For introduction to discrete geometry we refer the interested
reader to [9]. We were not able to find in the literature on discrete geometry all
the results that we needed for our characterization of the geometry of those two
sets.2

To allow computational complexity measure, the size of the representations
of geometrical objects is relevant. We give here the number of bits required to
represent the objects that we manipulate. The size of a rational number r = p

q

where p ∈ Z, q ∈ N, p and q are relatively prime, is: ||r|| = 1 + ⌈log2(|p|+ 1)⌉+
⌈log2(q+1)⌉. The size of a vector v = (r1, . . . , rd) is ||v|| = d+

∑

i∈J1,dK ||ri||. The

size of a matrix A = (aij)1≤i≤d,1≤j≤n is ||A|| = m · n +
∑

i,j∈J1,dK×J1,nK ||aij ||.

The size of an equation (a, b) is ||(a, b)|| = ||a||+ ||b|| and the size of a system of
equation λ = ((a1, b1), . . . , (an, bn)) is ||λ|| =

∑

i∈J1,nK ||(ai, bi)||.

A bounded polyhedron is called a polytope. A face F of P is a subset of P
of the form F = P ∩HF , where HF is a half-space such that P ⊆ HF . In that
case, say that HF defines face F of P . A face of dimension 1 is called a vertex.
If P has dimension d′, then a face of dimension d′ − 1 is called a facet. Given
a polytope P , a complete set of facet-defining half-spaces F contains for each
facet F a half-space HF = 1

2space(aF , bF ) such that P ∩ hplane(aF , bF ) = F

and P ⊆ HF . We will write F(P ) for such a set.

A affine subspace is a set of the form x + L with x ∈ Rd and L is a linear
subspace of Rd (i.e. a subset closed under addition of vectors and under multipli-
cation by real numbers). The affine hull of a set X ⊆ Rd is the intersection of all
affine subspaces of Rd containing X, it is written aff(X). It can be described as
the set of linear combinations of points of X [9]: aff(X) = {

∑

x∈X tx · x | ∀x ∈
X. tx ∈ R}. The convex hull of a set of points X ⊆ Rd is the set conv(X) =
{
∑

x∈X tx · x | ∀x ∈ X. tx ∈ [0, 1] ∧
∑

x∈X tx = 1
}

. The downward closure of a

set of points X ⊆ Rd, is the set ↓ X = {x | ∃x′ ∈ X. ∀i ∈ J1, nK. xi ≤ x′
i}.

3.1 From the point representation to the half-space representation

If X is a finite set of points, the convex hull P = conv(X) can be written
as a finite intersection of half-spaces [9], it is therefore a polytope. It can be
represented either by its extremal points or as the intersection of its facet-defining
half-spaces. We recall that given a polytope P and F(P ) be complete set of

2 If some results established in this section are easy consequences of known results in
the literature, we would be happy to get relevant pointers.



facet-defining half-spaces for P , then P is the intersection of aff(P ) with all
half-spaces in F(P ) [6, Thm. 3.(b)].
Theorem 1 ([6, Thm. 3.(b)]). Let P be a polytope. Let F(P ) be complete set
of facet-defining half-spaces for P , then P is the intersection of aff(P ) with all
half-spaces in F(P ).

For our algorithms, it is important to be able to go from the half-space
representation to the extremal point representation and vice-versa. We need
also to bound the complexity of the objects that we obtain, i.e. we want to
ensure that the half-spaces are defined with inequations of polynomial size and
the extremal points to be representable with polynomial encodings. We show
that it is possible in Theorem 3, its proof (given in appendix) is based on the
following basic property, see e.g. [12], that states that systems of linear equations
that have solutions, have one of polynomial size.

Theorem 2 ([12, Corollary 3.2b]). There exists a polynomial function P1,
such that if the system Ax = b of rational linear equations has a solution, it has
one of size bounded by P1(||A||, ||b||).

We also show that the representation in term of half-spaces of the downward
closure of a convex hull is of polynomial size. Proofs can be found in the appendix.

Theorem 3. There are polynomial function P2 and P3 such that:

1. given a finite set of points V , there are k ≤ |V |d half-spaces H1, . . . , Hk

whose inequations have size smaller than P2(max{||v|| | v ∈ V }, d) and such
that ∩i∈J1,kKHi = conv(V ).

2. given a polytope (i.e a bounded polyhedron) defined by its set of facet-defining
half-spaces F = { 1

2space(a1, b1), . . . ,
1
2space(ak, bk)}, it can be written as

the convex hull conv(V ) of a finite set V of points which all have size bounded
by P3(max{||ai, bi|| | 1 ≤ i ≤ k}, d).

3. given a finite set of points V , there is a finite collection of half-spaces H1, . . . , Hk

which are described by inequations of size smaller than P2(max{||v|| | v ∈
V }, d), and such that ∩i∈J1,kKHi =↓ conv(V ).

Theorem 4. There is a polynomial function P2 such that given a finite set of
points V , there are k ≤ |V |d half-spaces H1, . . . , Hk whose inequations have size
smaller than P2(max{||v|| | v ∈ V }, d) and such that ∩i∈J1,kKHi = conv(V ).

Proof. Facets of conv(V ) are given by d′ linearly independent vertices of V where
d′ is the dimension of conv(V ).

We first prove the case d′ = d. Let f be a facet of conv(V ) given by v1, . . . , vd
which are d linearly independent points. We show how to obtain an equation of
the half-space Hf defining this facet. The equation







vT1
...
vTd






A =







1
...
1









has a solution and Thm. 2 guarantees that we can find a solution of size bounded
by P1(d

2 +
∑

i∈J1,dK ||vi||, 2 · d). The equation (AT , 1) defines an hyperplane h.

Moreover, for all vj with 1 ≤ j ≤ k, AT vj = (vTj A)T = 1. This means that

h contains all vj and therefore either 1
2space(A

T , 1) or 1
2space(−AT ,−1) is

defining the facet given by v1, . . . , vd. This gives us a description of Hf of size
bounded by P2(max{||v|| | v ∈ V }, d) = P1(d

2 + d · max{||v|| | v ∈ V }, 2 · d).
Since a polytope is the intersection of its facet-defining half-spaces, conv(V ) is
the intersection of the Hf with f facet of conv(V ).

We now assume that d′ < d and that the property holds in a space of dimen-
sion d−1. We look for half-spaces defining the affine subspace A = aff(conv(V ))
of dimension d′ containing conv(V ). We take d′ + 1 linearly independent points
in V , which we write v1, . . . , vd′+1. Since d′ + 1 ≤ d the equation:







vT1
...

vTd′+1






B =







1
...
1







has a solution, and using Thm. 2, there is a solution B whose size is bounded by
P1(d

′2+
∑

i∈J1,d′K ||vi||, 2 ·d
′). The equation (BT , 1) defines an affine subspace of

dimension d− 1 containing conv(Vi), so we can apply the induction hypothesis
inside it. We obtainH ′

1, . . . H
′
k′ half-spaces of A whose equations have size smaller

than P2(max{||v|| | v ∈ V }, d′) and such that A ∩
⋂

i∈J1,k′K H
′
i = conv(V ). The

equation defining H ′
1, . . . , H

′
k′ also define half-spaces of Rd. The convex hull of

Vi is then the intersection of H ′
1, · · · , H

′
k′ and the half-spaces given by (BT , 1)

and (−BT ,−1). The sizes of all the corresponding equations are bounded by
P2(max{||v|| | v ∈ V }, d).

3.2 From the half-space representation to the point representation

Theorem 5. There is a polynomial function P3 such that a polytope (i.e a
bounded polyhedron) given by its set of facet-defining half-spaces F = 1

2space(a1, b1),
. . . , 1

2space(ak, bk), can be written as the convex hull conv(V ) of a finite set V
of points which all have size bounded by P3(max{||ai, bi|| | 1 ≤ i ≤ k}, d).

Proof. Let P be the polytope
⋂

1≤i≤k
1
2space(ai, bi) and d′ be the dimension

of aff(P ). By [9, Prop. 5.3.2 (i)], the extremal points of a polytope are its
vertices (i.e. faces of dimension 0), and a polytope is the convex hull of its
vertices. Vertices are obtained by the intersection of d′ hyperplane corresponding
to facet-defining half-spaces. Therefore, for each vertice v, there is system of
equations of size d′ whose equations are given by a subset of the (ai, bi)1≤i≤k,
such that v is the unique solution. Thanks to Thm. 2, this solution can be written
with size bounded by P1(d

2 + d · max{||ai|| | i ∈ J1, kK}, d · (1 + max{||bi|| |
i ∈ J1, kK}). Taking V the set of vertices of P and considering the polynomial
function P3(X, d) = P1(d

2 + d ·X, d · (1 +X)), we obtain the desired result.



3.3 Downward closure

Lemma 1. Operator ↓ is monotonic, i.e. for any set X and Y such that X ⊆ Y ,
we have that ↓ X ⊆↓ Y .

Proof. Assume X ⊆ Y . Let x ∈↓ X, there is x′ ∈ X such that for all i, x′
i ≥ xi.

As X ⊆ Y , x′ ∈ Y , and therefore x ∈↓ Y .

Lemma 2. Operator ↓ is compatible with union, i.e. for any set X and Y :
(↓ X) ∪ (↓ Y ) =↓ (X ∪ Y ).

Proof. To show (↓ X) ∪ (↓ Y ) ⊆↓ (X ∪ Y ) We use the monotonicity property
(Lem. 1): since X ⊆ X ∪ Y , ↓ X ⊆↓ (X ∪ Y ).

In the other direction, let x ∈↓ (X ∪ Y ), there exists x′ ∈ X ∪ Y such that
x ≤ x′. If x′ ∈ X then x ∈↓ X and otherwise x ∈↓ Y .

Equations of the downward closure of a polyhedron Our goal is from the repre-
sentation in term of half-spaces of a polyhedron, to obtain a representation of
its downward closure. We will show that the downward closure of convex hull
can also be represented by relatively small (i.e. polynomial) equations. We will
prove several lemmas to obtain the full characterization of Corollary 1. But we
first introduce some notations.

Let X be a set of points and J ⊆ J1, dK, we write:

– πJ(X) for the set {x′ | ∃x ∈ X. ∀i ∈ J1, dK \ J. x′
i = xi and ∀j ∈ J. x′

j = 0},
– ↓J (X) for the set {x′ | ∃x ∈ X.∀i ∈ J1, dK \ J. x′

i = xi and ∀j ∈ J. x′
i ≤ xi},

– lJ (X) for the set {x′ | ∃x ∈ X.∀i ∈ J1, dK \ J. x′
i = xi and ∀j ∈ J. x′

i ∈ R};

We also write 1i for the point that has coordinate 1 on dimension i and 0 on the
other dimensions. We write CJ for the cone

∑

j∈J R+ · 1j . If P is a polyhedron
and F(P ) a set of facet-defining half-spaces of P in the subspace aff(P ), we
write FJ

−(P ) ⊆ F(P ) the half-spaces H of F(P ) that contain the direction −CJ ,
i.e. H − CJ = H.

Lemma 3. Let P be a polyhedron, J ⊆ J1, dK, and F(πJ(P )) be a set of half-
spaces of aff(πJ(P )). We have that:

lJ P =
⋂

H∈F(πJ (P ))

H + RJ

where RJ denotes the subspace
∑

j∈J R · 1j.

Proof.

x ∈lJ P ⇔ ∃x′ ∈ P. πJ(x) = πJ(x
′)

⇔ πJ(x) ∈
⋂

H∈F(πJ (P ))

H

⇔ πJ(x) +
∑

j∈J

R · 1j ⊆
⋂

H∈F(πJ (P ))

H +
∑

j∈J

R · 1j

⇔ x ∈
⋂

H∈F(πJ (P ))

H + RJ



⊓⊔

We show how to obtain facet-defining half-spaces of the downward closure of
P with respect to one dimension.

Lemma 4. Let P be a polyhedron, F(P ) be a set of facet-defining half-spaces of
P and j ∈ J1, dK. We have:

↓j P =lj P ∩
⋂

H∈Fj

−(P )

H

Proof. ⊆ Let x ∈↓j P . We have that x ∈lj P . There is x′ ∈ P such that

x = x′ − λ · 1j with λ ≥ 0. Let f ∈ F j
−, since x′ ∈ Hf we have that x ∈

Hf − R+ · 1j = Hf . Therefore x ∈lj P ∩
⋂

f∈Fj

−
Hf .

⊇ Let x ∈lj P ∩
⋂

f∈Fj

−
Hf . There exists x′ ∈ P such that π{j}(x) =

π{j}(x
′). Consider the line segment [x, x′], it does not intersect any hplane(Hf )

with f ∈ Fj
− since both x and x′ are inside these half-spaces.

If [x, x′] does not intersect any hplane(Hf ) where f is a facet of P then x

is in the intersection of these half-spaces, and using Thm. 1, this means that
x ∈ P .

Otherwise [x, x′] intersects some hplane(Hf ) with f facet of P which is not

in Fj
−. Since Hf contains x′ but not x, and these two only differs by their j

coordinates, this means that xj ≤ x′
j and therefore x ∈↓j P . ⊓⊔

We now generalize the previous lemma to the downward closure with respect
to several dimensions.

Lemma 5.
↓K P =

⋂

J⊆K

⋂

H∈F
K\J
− (πJ (P ))

H + RJ

with the convention that π∅(P ) = P , F∅

− (P ) = F(P ) and B∅ = 0.

Proof. We prove the result by induction over the size of K. The case where
|K| = 1 is a direct consequence of Lem. 3 and 4.

Assume the equality holds for some set K. Consider a dimension j 6∈ K.

π{j}(↓K P ) =↓K π{j}(P ) =
⋂

J⊆K

⋂

H∈F
K\J
− (πJ∪{j}(P ))

H +BJ

So we can chose:

F(π{j}(↓K P )) =
⋃

J⊆K

{H + RJ | H ∈ FK\J
− (πJ∪{j}(P ))} (1)

We also have by induction hypothesis:

F(↓K P ) =
⋃

J⊆K

{H + RJ | H ∈ FK\J
− (π{j}(P ))}



Fj
−(↓K P ) =

⋃

J⊆K

{H + RJ | H ∈ FK∪{j}\J
− (π{j}(P ))} (2)

Using Lem. 3 and 4:

↓K∪{j} P =
⋂

H∈F(π{j}(↓KP ))

H +Bj ∩
⋂

H∈Fj

−(↓KP )

H

=
⋂

J⊆K

⋂

H∈F
K\J
− (πJ∪{j}(P ))

H + RJ +Bj ∩
⋂

H∈Fj

−(↓KP )

H By (1)

=
⋂

J⊆K

⋂

H∈F
K\J
− (πJ∪{j}(P ))

H +BJ∪{j} ∩
⋂

J⊆K

⋂

H∈F
K∪{j}\J
− (π{j}(P ))

H + RJ By (2)

=
⋂

J⊆K∪{j}

⋂

H∈F
K∪{j}\J
− (πJ (P ))

H +BJ

Which proves the property for K ∪ {j} and concludes the induction. ⊓⊔

From this lemma we deduce a representation of the downward closure of a
polyhedron in term of half-spaces.

Corollary 1. If P is a polyhedron, then:

↓ P =
⋂

J⊆J1,dK

⋂

H∈F
J1,dK\J
− (πJ (P ))

H + RJ

Theorem 6. There is a polynomial function P2 such that given a finite set of
points V , there is a finite collection of half-spaces H1, . . . , Hk which are de-
scribed by equations of size smaller than P2(max{||v|| | v ∈ V }, d), and such that
∩i∈J1,kKHi =↓ conv(V ).

Proof. We will in fact use the same polynomial function P2 than for Thm. 3.
We use Corollary 1, the collection H1, . . . , Hk is given by the half-spaces of

the form H + RJ with J ⊆ J1, dK, and H ∈ FJ1,dK\J
− (πJ(conv(V ))). We show

that these half-spaces are described by small equations.

We fix such J and H ∈ FJ1,dK\J
− (πJ(conv(V ))). The polytope πJ(conv(V ))

can be obtained as the convex hull of πJ(V ). The set πJ(V ) is a finite set of points
whose sizes are smaller than max{||v|| | v ∈ V }. Using Thm. 3.4, half-spaces of
F(πJ(conv(V ))) can be described with size smaller than P2(max{||v|| | v ∈
πJ(V )}, d− |J |) and thus with size smaller than P2(max{||v|| | v ∈ V }, d). The

set of facet FJ1,dK\J
− (πJ(conv(V ))) is include in F(πJ(conv(V ))) and therefore

the size of the equation of H is also bounded by P2(max{||v|| | v ∈ V }, d).
Now let (A, b) be such an equation of H, it also defines a half-space H ′ of Rd

which obviously contains H. We define A′ to be such that for all i ∈ J1, dK \ J ,
A′

i = Ai and for all j ∈ J , A′
j = 0. Note that the size of A′ is bounded by that

of A and therefore the size of the equation is bounded by P2(max{||v|| | v ∈
V }, d). If A′ = (0, . . . , 0) this contradicts the fact that H is defining a facet of



aff(πJ(conv(V ))). Otherwise the equation (A′, b) defines a half-space which we
write H ′ = 1

2space(A
′, b). We have that H ′ ∩ πJ(R

d) = H since all points of πJ

have coordinate on J equal to 0 and only coefficient on these dimensions differ
between A and A′. Moreover it contains the direction RJ since for all j ∈ J ,
A′ · 1j = 0. Therefore H ′ is equal to H + RJ . This shows that conv(V ) can be
described by equation that have size smaller than P2(max{||v|| | v ∈ V }, d).

Figure 3. Illustration of Lem. 6
in the case of two dimensions:
In this example, the possible wit-
nesses of the property are circled.

Small witnesses of large systems of
inequations Our algorithm to decide the
polyhedron value problem needs to guess
solutions of large systems of inequations.
We need to ensure that the solution that
it guesses is of polynomial size. Intuitively,
our result (Theorem 7) says that if a sys-
tem of inequations as a solution, then there
is one at the intersections of at most d of the
hyperplanes defined by the associated equa-
tions. This is illustrated in Figure 3: in two
dimensions, if a collection of half-spaces (i.e.
half-planes here) intersect (green area in the
picture), then either there is a point at the
intersection of two boundary lines which is
in the intersection, or one of these lines is
included in the intersection.

Lemma 6. Let H1, . . . , Hn be n inequations of Rd. If
⋂n

i=1
1
2space(Hi) 6= ∅

then there are k ≤ d indexes i1, . . . , id such that:
⋂k

j=1 hplane(Hij ) 6= ∅ and
⋂k

j=1 hplane(Hij ) ⊆
⋂n

i=1
1
2space(Hi).

Proof. We will prove by induction a slightly stronger version of the lemma as
follows: let S be an affine subspace of Rd of dimension k, with 1 ≤ k ≤ d. If
S ∩

⋂n
i=1

1
2space(Hi) 6= ∅ then there are k′ ≤ k indexes i1, . . . , ik′ such that:

S ∩
k′
⋂

j=1

hplane(Hij ) 6= ∅ and S ∩
k
⋂

j=1

hplane(Hij ) ⊆ S ∩
n
⋂

i=1

1

2
space(Hi).

The lemma correspond to the case where S = Rd.
We show this property by induction other k. If k = 0, then if S∩

⋂n
i=1

1
2space(Hi) 6=

∅ then every 1
2space(Hi) contains S since it is reduced to one point. Therefore

S ∩
⋂0

i=1
1
2space(Hi) = S = S ∩

⋂n
i=1

1
2space(Hi).

Assume now k > 0 and that the property holds for all affine subspace of
dimension k′ < k. We show the property for k by induction over n. If n = 0 the
property obviously holds.

We now assume that the property holds for n ≥ 0 and prove it for n+1. We
consider a half-space Hn+1.



– If S ⊆ hplane(Hn+1) then we use the induction hypothesis for n: there are

k′ ≤ k indexes i1, · · · , ik′ such that
⋂k′

j=1

(

hplane(Hij ) ∩ S
)

6= ∅ and:

k′
⋂

j=1

(

hplane(Hij ) ∩ S
)

⊆ S ∩
n
⋂

i=1

1

2
space(Hi)

⊆ S ∩ hplane(Hn+1) ∩
n
⋂

i=1

1

2
space(Hi)

⊆ S ∩
n+1
⋂

i=1

1

2
space(Hi).

Thus the property holds for n+ 1 in that case.
– Otherwise hplane(Hn+1)∩ S forms a affine subspace of dimension k− 1, to

which we can apply the induction hypothesis.
• If S ∩ hplane(Hn+1) ∩

⋂n
i=1

1
2space(Hi) 6= ∅ then there are k′ ≤ k − 1

indexes i1, . . . , ik′ such that (hplane(Hn+1) ∩ S) ∩
⋂k′

j=1 hplane(Hij ) 6=
∅ and :

(hplane(Hn+1) ∩ S) ∩
k′
⋂

j=1

hplane(Hij ) ⊆ S ∩ hplane(Hn+1) ∩
n
⋂

i=1

1

2
space(Hi)

S ∩
k′
⋂

j=1

hplane(Hij ) ∩ hplane(Hn+1) ⊆ S ∩
n+1
⋂

i=1

1

2
space(Hi)

Which shows the property.
• Otherwise

(
⋂n

i=1
1
2space(Hi) ∩ S

)

∩hplane(Hn+1) = ∅. Let S′ =
⋂n

i=1
1
2space(Hi)∩

S, we show that it is either included in 1
2space(Hn+1) or it does not in-

tersect it: assume there is one point x ∈ S′ inside 1
2space(Hn+1) and one

point x′ ∈ S′ outside of it, then αa(x) ≥ b and αa(x
′) < b. By continuity

of linear functions, there would be x′′ ∈ [x, x′] such that αa(x
′′) = b.

Since S′ is convex x′′ ∈ S′, and therefore x′′ ∈ S′ ∩hplane(Hn+1) which
contradicts the hypothesis.
If S′ is outside 1

2space(Hn+1) then the intersection S∩
⋂n+1

i=1
1
2space(Hi)

is empty, so we have nothing to prove.
Otherwise,

⋂n
i=1

1
2space(Hi)∩S ⊆ 1

2space(Hn+1). We apply the induc-
tion hypothesis over n: there are k′ ≤ k indexes i1, . . . , ik′ such that
⋂k′

j=1 hplane(Hij ) ∩ S 6= ∅ and :

k′
⋂

j=1

hplane(Hij ) ∩ S ⊆
n
⋂

i=1

1

2
space(Hi) ∩ S ⊆ S ∩

n+1
⋂

i=1

1

2
space(Hi)

Which proves the result. ⊓⊔

Thanks to this property we can deduce that we can find small solutions for
system of inequations, independently of the number of inequations.



Theorem 7. There is a polynomial function P4 such that if the system of in-
equations λ = ((a1, b1), . . . , (an, bn)) has a solution then there is a point x such
that ||x|| ≤ P4(max{||(ai, bi)|| | i ∈ J1, nK}, d) and x ∈ polyhedron(λ).

Proof. Let λ = ((a1, b1), . . . , (an, bn)) be a system of inequations defining a non
empty polyhedron. By Lem. 6, there is a setH1, . . . , Hk subset of { 1

2space(ai, bi) |

i ∈ J1, nK} with k ≤ d and such that:
⋂k

j=1 hplane(Hij ) 6= ∅ and
⋂k

j=1 hplane(Hij ) ⊆
⋂n

i=1
1
2space(Hi). We can renumber the inequations such (a1, b1), . . . , (ak, bk)

are the equation associated withH1, . . . , Hk respectively. Since
⋂k

j=1 hplane(Hij ) 6=
∅ the system of equation ((a1, b1) . . . (ak, bk)) has a solution. Using Thm. 2 there
is a solution x whose size is bounded by P1(k ·d+

∑

i∈J1,dK ||ai||, k+
∑

i∈J1,dK ||bi||)
where P1 is a polynomial function. Since k ≤ d, the size of x can be bounded by
P4(max{||(ai, bi)|| | i ∈ J1, nK}, d) = P1(d

2 + d ·max{||(ai, bi)|| | i ∈ J1, nK}, d +

d · max{||(ai, bi)|| | i ∈ J1, nK}). Since
⋂k

j=1 hplane(Hij ) ⊆
⋂n

i=1
1
2space(Hi),

the solution x is also inside the intersection of
⋂n

i=1
1
2space(Hi), and thus

x ∈ polyhedron(λ).

4 The limit inferior case

We first solve the case where the average of the weights are defined using limit
inferior in all dimensions (i.e. I = J1, dK and J = ∅). In this case, the set of
thresholds that can be ensured by Eve is:

value(s) =
{

v ∈ Rd | ∃σ∃. ∀ρ ∈ Out(s, σ∃). ∀i ∈ J1, dK. MPi(ρ) ≥ vi
}

.

To obtain a geometrical characterization of this set, we first show that the set
of relevant thresholds when Adam plays according to a fixed memoryless strategy
is a finite union of convex sets. Then, we show that the set value(s) can be ob-
tained as the intersection of those sets for all the memoryless strategies of Adam,
as stated in Thm. 8. From this characterization, using the results of previous
section, we deduce that if there is a solution to the polyhedron value problem,
then there is one of small size. In turn, this allows us to define a Σ2P-algorithm
for the polyhedron value problem. Finally, we show that this problem is both
NP-hard and coNP-hard, so its complexity is unlikely to be substantially lower.

Adam plays optimally with memoryless strategies Memoryless strategies
for Adam are important as we know that Adam can always play optimally with
a memoryless strategy in the threshold problem as proved in [13], i.e. if he has
strategy to prevent Eve from ensuring some threshold then he has a memoryless
one. We characterize here what are the possible mean-payoffs of outcomes that
Eve can obtain when Adam plays according to a fixed memoryless strategy.

4.1 Decomposition in Simple Cycles

Our analysis relies on the analysis of simple cycles. Let A be an arena and
S ⊆ Stat a subset of nodes. A simple cycle within S is sequence s0 · s1 · · · sn,



such that s0 = sn, si ∈ S, for all 0 ≤ i ≤ n, and for all i and j, 0 ≤ i < j < n,
si 6= sj . We write C(S) for the set of simple cycles of A within S.

Our proof will use as a tool the decomposition of a play into simple cycles.
We recall the notion of decomposition into simple cycles of a play [7]. Every

history h of a finite game can be uniquely decomposed into a sequence of simple
cycles, except for a finite part. The decomposition process maintains a stack,
st(h), of distinct states and moves. We write the stack content s1 · s2 · · · sn
where s1 is at the bottom of the stack and sn the top. We use the notation
s ∈ st(h) for s ∈ {s1, s2, . . . , sn}. The decomposition, dec(h), is a sequence of
simple cycles. We define dec(h) and st(h) inductively as follows:
– for the single state history s, dec(s) = ∅ and st(s) = s.
– let h′ = h · s be a history.

• If s ∈ st(h), and st(h) = α · s · β, then st(h′) = α · s and dec(h′) =
dec(h) · (s · β · s).

• else dec(h′) = dec(h), st(h′) = st(h) · s.

Note that the stack always contains distinct elements, therefore only simple cy-
cles are added to the decomposition. The elements in the stack from the bottom
to the top, form a history s0 · s1 · · · sn, where n+ 1 is the height of the stack.

The decomposition of a play is the limit of the decompositions of finite pre-
fixes of the play. This is well defined for the distance d(ρ, ρ′) = 2min{i|ρi 6=ρ′

i} since
if h is a prefix of h′ then dec(h) is a prefix of dec(h′).

Let σ∀ ∈ M be a memoryless strategy, it defines a graph G(σ∀) = 〈Stat,Edgσ∀
〉

where Edgσ∀
= {(s, s′) ∈ Edg | s ∈ Stat∃ ∨ (s ∈ Stat∀ ∧ σ∀(s) = s′)} which is

a subgraph of the game arena. Let SCC(s, σ∀) be the set of strongly connected
components accessible from s in this subgraph G(σ∀), that is the set of maximal
subsets of nodes that are strongly connected in G(σ∀).

The following lemma states that the mean-payoff of a run is a convex com-
bination of the weights of the cycles of some strongly connected component.

Lemma 7. Let ρ be a path in G(σ∀). If Inf(ρ) ⊆ S for some S ∈ SCC(s, σ∀),

then MP(ρ) ∈↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})

.

Proof. A point x is an accumulation point of the sequence x0, x1, . . . if, for
every open set containing x, there are infinitely many indices such that the
corresponding elements of the sequence belong to the open set. It is mentioned
as a remark in [1] that a run ρ will eventually comes into the SCC S that it will
never leave (i.e Inf(ρ) ⊆ S) and the set of accumulation points of the sequence
( 1
n
·w(ρ≤n))≤n is included in the convex hull of the simple cycles of the SCC S. We

now show that MP(ρ) is smaller than any accumulation point of ( 1
n
·w(ρ≤n))≤n.

Let x be an accumulation point of ( 1
n
· w(ρ≤n))≤n, then for all dimension i the

sequence 1
n
wi(ρ≤n) comes infinitely often arbitrarily close to xi. This implies that

lim inf 1
n
wi(ρ≤n) is smaller than xi. This being true for all dimensions i, we have

that MP(ρ) ≤ x. Therefore MP(ρ) ∈↓ {x} ⊆↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})

.



s11, 0 0, 1

Figure 4. Example of a game
where MP does not belong to

conv

({

1
|c| · w(c) | c ∈ C(S)

})

.

Note that we cannot show that MP(ρ) is

in the convex hull of
{

1
|c| · w(c) | c ∈ C(S)

}

in general, and we need the downward clo-
sure of this set instead. The example Fig-
ure 4 illustrates this. In this example, the path
(1, 0)2

1

·(0, 1)2
2

·(1, 0)2
3

· · · gives a limit inferior
of 0 on both dimensions. However the simple
cycles have weight (1, 0) and (0, 1) respectively,
so the convex hull is the set of points (t, 1− t)
with t ∈ J0, 1K which does not contain (0, 0).

Characterizing the feasible thresholds As Adam can play optimally with
memoryless strategies, the set of feasible thresholds that Eve can force is obtained
by considering the intersection of all the sets of thresholds that she can enforce
against memoryless strategies of Adam.

Theorem 8. Let G be a weighted game with J = ∅ and s a state of G.

value(s) =
⋂

σ∀∈M

⋃

S∈SCC(s,σ∀)

↓ conv

({

1

|c|
· w(c) | c ∈ C(S)

})

Our proof will rely on this two lemmas:

Lemma 8 ([13, Lem. 10(2)]). Let S be a strongly connected graph. If S does
not have a non-negative multi-cycle (i.e. C ∈ C(S) and λ ∈ NC such that
∑

c∈C λ(c)·w(c) ≥ 0), then there exists a constant mG ∈ N and a real cG > 0 such
that for all history h in the graph S we have min{wi(h) | i ∈ I} ≤ mG − cG · |h|.

Lemma 9 ([13, Lem. 11]). Let σ∀ be a strategy of Adam, and s be a state. If
there is a strongly connected component S reachable from s in G(σ∀) which has a
non-negative multi-cycle, then Eve has a strategy to satisfy the mean-payoff-inf
(i.e. ∀i ∈ I ∪ J. ∀ρ ∈ Outs(σ∃). MPi(ρ) ≥ 0).

Proof (of Thm. 8). ⊆ Let v ∈ value(s), then there is a strategy σ∃ of Eve, such

that for all memoryless strategies σ∀ ∈ M of Adam, ∀i ∈ J1, dK.MPi(Out(σ∃, σ∀)) ≥
vi. Let ρ = Out(σ∃, σ∀). We have that Inf(ρ) ⊆ S for some S ∈ SCC(σ∀).

Lem. 7 shows that MP(ρ) ∈↓ conv

({

1
|c| · w(c) | c ∈ C(S)

})

which implies that

v ∈↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})

.

⊇ Let v ∈
⋂

σ∀∈M

⋃

S∈SCC(σ∀)
↓ conv

({

1
|c| · w(c) | c ∈ C(S)

})

. We will

show that Eve has a winning strategy for v against all memoryless strategy
of Adam and then use the fact that if Adam has a winning strategy then he has a
memoryless one [13, Thm. 8].

We fix a memoryless strategy σ∀ of Adam. We have that v is in ↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})

for some S ∈ SCC(σ∀).



We first reduce the problem to the case where v = (0, . . . , 0) by subtract-
ing v from all weights. We replace the weights of the game by w′ such that

w′
i(s) = wi(s) − vi. We have for all history h that if the average weight w(h)

|h|

is greater than v then w′(ρ) ≥ (0, . . . , 0). We know there exits some v′ ≥ v in

conv

({

1
|c| · w(c) | c ∈ C(S)

})

. We can write v′ in the form
∑|C|

k=1
λk

|ck|
· w(ck)

with all λk ∈ [0, 1] and
∑|C|

k=1 λk = 1. Hence there exists λ1, · · · , λ|C| such that
∑|C|

k=1
λk

|ck|
· w′(ck) ≥ 0.

The idea is to construct for all n a finite path of length greater than n that
has a total weight by w′ close to 0. Let n be an integer, there exist pk ∈ N such
that |pk

n
− λk| ≤

1
n
. Let lk =

∏

k′ 6=k |ck|, we construct the history h that follows
p1 · l1 times the cycle c1, then goes to the beginning of cycle c2 with a path of
length at most |Stat| then follows p2 · l2 times the cycle c2 and so on until the
|C|-th cycle.

First, lets look at the length of this path.

|C|
∑

k=1

pk

n
≥

|C|
∑

k=1

λk −
|C|

n

|C|
∑

k=1

pk ≥ n

|C|
∑

k=1

λk − |C| = n− |C|

Hence |h| ≥ n− |C|, hence it is not bounded when n grows toward infinity.
Let W ′ be the maximum weight that appears in w′. On dimension i, the total

weight of h is such that:

|C|
∑

k=1

pk · lk · w′
i(ck)− |Stat| · |C| · |W ′| ≤ w′

i(h)

|C|
∏

k=1

|ck| ·

|C|
∑

k=1

pk ·
w′

i(ck)

|ck|
− |Stat| · |C| · |W ′| ≤ w′

i(h)

|C|
∏

k=1

|ck| ·

|C|
∑

k=1

(

λk −
1

n

)

·
w′

i(ck)

|ck|
− |Stat| · |C| · |W ′| ≤ w′

i(h)

−
1

n
·

|C|
∏

k=1

|ck| ·

|C|
∑

k=1

w′
i(ck)

|ck|
− |Stat| · |C| · |W ′| ≤ w′

i(h)

Hence w′
i(h) is bounded on all dimension i when we make n grow.

By Lem. 10(2) of [13]3 this implies there is a non negative cycle in C for the
weight w′. By Lem. 11 of [13], σ∀ is not a winning strategy. We know thanks

3 Note that in [13] the weights are integer, which may not be the case for us. However
the proof of Lem. 10(2) still works in the case of arbitrary reals.



to Theorem 8 of [13] that multi-mean-payoff games are determined under mem-
oryless strategies of Adam. Therefore Adam has no winning strategy. Since these
games are also determined [8], this means that Eve has a winning strategy. There-
fore v ∈ value(s). ⊓⊔

Proof (Sketch4). The inclusion is a consequence of consequence of Lem. 7. Now
in the other direction, let v be in the second set. Fixing a memoryless strategy σ∀

of Adam, we have that v is smaller or equal to some linear combination of cycles in
SCC(s, σ∀). We construct a history h which approximates this linear combination
by cycling an adequate number of time in cycles of SCC(σ∀). By constructing
histories h longer and longer we obtain a sequence of histories for which the sum
of the weight w − v is bounded below. Thanks to [13, Lem. 10(2)], this means
there is a non negative cycle in C for the weight w′. By Lem. 11 of [13], σ∀ is
not a winning strategy. Thanks to Theorem 8 of [13], multi-mean-payoff games
are determined under memoryless strategies of Adam and since these games are
also determined [8], this means that Eve has a winning strategy for threshold v.

Simple solutions Let us now show that if there is a solution to the polyhe-
dron value problem then there is a witness threshold which has coordinate of
polynomial size. First note that solving this problem is equivalent to determine
whether (s) ∩ polyhedron(λ) 6= ∅.

Theorem 9. There is a polynomial function P5 such that for all weighted game
G and system of linear inequation λ, if (s)∩ polyhedron(λ) 6= ∅ then there is a
point x in the intersection such that ||x|| ≤ P5(||λ||, ||W ||, |||Stat|+1||, d), where
W is the maximal value appearing in the weights.

Proof. Let λ be a system of linear inequations. It follows from Thm. 8 that
value(s) ∩ polyhedron(λ) 6= ∅ if, and only if, there is a function f : M 7→ 2Stat,
such that f(σ∀) ∈ SCC(s, σ∀) for all strategy σ∀ and polyhedron(λ) intersects
⋂

σ∀∈M
↓ conv

({

1
|c| · w(c) | c ∈ C(f(σ∀))

})

.The points 1
|c| · w(c) such that

c ∈ C(S) for some strongly connected component S have size smaller than
d · (||W || + |||Stat| + 1|| + 1) + |||Stat| + 1||. As we saw in Thm. 3.6, the set

↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})

can be written as the intersection of half-spaces

whose equations have polynomial size in that of the points of the form 1
|c| ·w(c).

We conclude using Thm.7 that there is a point x ∈ (s) ∩ polyhedron(λ) whose
size is bounded by P5(||λ||, ||W ||, |||Stat|||, d) which can be taken as P4(||λ||+ d ·
(||W ||+ |||Stat|+ 1||+ 1) + |||Stat|+ 1||, d). ⊓⊔

To solve the polyhedron value problem, our algorithm will guess some point
and check that it satisfies the linear equations and that it belong to value. For
this last step, there exists a coNP algorithm as we recall here.

Theorem 10 ([13, Thm. 7.2]). For multi-weighted games with objective {ρ |
MP(ρ) ≥ (0, . . . , 0)}, the problem of deciding whether a given state is winning
for Eve is coNP-complete.

4 The full proof can be found in the appendix



Given a vector v, we can subtract it from all the weights of the game G
and using the preceding algorithm, then ensuring (0, . . . , 0) in this new game is
equivalent to ensuring v in G. We therefore have the following corollary.

Corollary 2. Given a vector v ∈ Qd and a state s, we can decide with a coNP al-
gorithm whether v ∈ value(s).

To summarize, our algorithm to decide polyhedron value problem which pro-
ceeds as follows: existentially guess a point x ∈ [−W,W ]d such that ||x|| ≤
P5(||λ||, ||W ||, ||n||, d); if x ∈ polyhedron(λ) and x ∈ value(s) then answers
yes and no otherwise. Its correctness holds from Thm. 9. The algorithm is in
Σ2P = NPNP = NPcoNP, since checking whether x ∈ value(s) can be done in
coNP (by Corollary 2) and computing the intersection of hyperplanes can be
done in polynomial time [12, Thm. 3.3]. This results in the following theorem.

Theorem 11. The polyhedron value problem is in Σ2P for mean-payoff inferior.

Hardness We conclude this section by showing that it is unlikely to improve
substantially on the complexity of our algorithm as we show that the polyhedron
value problem is both NP-hard and coNP-hard.

Theorem 12. The polyhedron value problem is both coNP-hard and NP-hard
for limit inferior objectives, and for limit superior objectives.

Proof. Concerning coNP-hardness, this is a consequence of the co-NP-hardness
for the value (0, . . . , 0) problem [13]. We can code the question whether (0, . . . , 0)
can be ensured by a polyhedron value problem by taking equations λ = (λ1, . . . , λd)
where λi = (1i, 0).

Let φ = ∃x1. ∃x2. . . . ∃xn.C1∧· · ·∧Cn be a formula, where Ci = ℓi,1∨ℓi,2∨ℓi,3
with ℓi,j ∈ {xk,¬xk | k ∈ J1, nK}. We have two dimensions for each variable xi,
so d = 2·n. We write 0i for the vector v such that vi = 0 and vj = 1 for j 6= i. We
define a family of vectors vi,j where if ℓi,j = xk then vi,j = 02·k+1 and if ℓi,j =
¬xk then vi,j = 02·k. We have one initial state s0 controlled by Adam, one state for
each clause Ci controlled by Eve, and one state for each literal of the formula. In
s0 Adam chooses a clause Ci and then Eve chooses a literal ℓi,j of Ci. From there
the weights are equal to vi,j . We consider the constraints λi = (v2·i+v2·i+1 ≥ 1).
The construction is illustrated in Figure 5. The correctness of the construction
is proved in the appendix, here we will only illustrate it on an example. Let
ξ be a valuation, we associate to it a vector vξ such that if ξ(xi) = true then
(vξ)2·i = 1 and (vξ)2·i+1 = 0; if ξ(xi) = false then (vξ)2·i = 0 and (vξ)2·i+1 = 1.
In the example of Figure 5, valuation x1 → true, x2 → false, x3 → true makes
the formula true, the corresponding value is v = (1, 0, 0, 1, 1, 0). Consider the
strategy of Eve that in C1 chooses x1, in C2 chooses x1 and in C3 chooses ¬x2.
In all the cases this strategy ensures to Eve a payoff better than v. In contrast,
valuation x1 → false, x2 → false, x3 → true does not make the formula true,
the corresponding value is v′ = (0, 1, 0, 1, 1, 0), and if Adam chooses C1 then Eve

cannot ensure v′.



Adam

C1Eve C2Eve C3Eve

x1

x2

¬x3

x1

¬x2

¬x3

¬x1

¬x2

x3

(1, 0, 1, 1, 1, 1)

(1, 1, 1, 0, 1, 1)

(1, 1, 1, 1, 0, 1)

(1, 0, 1, 1, 1, 1)

(1, 1, 0, 1, 1, 1)

(1, 1, 1, 1, 0, 1)

(0, 1, 1, 1, 1, 1)

(1, 1, 0, 1, 1, 1)

(1, 1, 1, 1, 1, 0)

Figure 5. Example of the encoding of 3SAT into the polyhedron value problem,
for formula φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

Proof (Continued). Let ξ be a valuation, we associate to it a vector vξ such that
if ξ(xi) = true then (vξ)2·i = 1 and (vξ)2·i+1 = 0; if ξ(xi) = false then (vξ)2·i = 0
and (vξ)2·i+1 = 1. Assume ξ makes φ true, we will prove that Eve can ensure
vξ. We consider a strategy for Eve that in each Ci chooses a state ℓi,j such that
ξ makes ℓi,j true, this is possible because vξ makes φ true. If ℓi,j = xk, then
ξ(xk) = true and (vξ)2·k+1 = 0. The payoff is then 02·k+1 which is greater than
vξ. Similarly, if ℓi,j = ¬xk, the payoff 02·k is greater than vξ. This shows that
Eve has a strategy to ensure the threshold vξ. We conclude that if φ is satisfiable
then Eve can ensure a threshold that satisfies the equations in λ.

Now, reciprocally, assume there is some v that satisfies λ and that can be
ensured by Eve. For each k ∈ J1, nK, v2·k > 0 or v2·k+1 > 0 as v satisfies λ. We
select a valuation ξv such that ξv(xk) = true ⇔ v2·k > 0. Assume Eve ensures
v, we will prove that ξv makes φ true. From every Ci, she can find a ℓi,j such
that vi,j ≥ v. If ℓi,j = xk, then vi,j = 02·k+1, hence (vξ)2·k+1 = 0. Therefore
ξv(xk) = true. Similarly if ℓi,j = ¬xk, then ξv(xk) = false. This means that in
each Ci, we can find a literal made true by ξv and therefore ξv makes φ true.

This proves that φ is satisfiable if, and only if, Eve can ensure a threshold
that satisfies the inequations in λ. ⊓⊔

5 General case

We now consider the general case in which the average of dimensions in I ⊂
J1, dK are defined using lim inf and the average of dimensions in J ⊆ J1, dK are
defined using lim sup. We give a characterization of the feasible thresholds as
we did in Thm. 8. While the main ideas are similar, the characterization here
is substantially more complicated and relies on a notion of subgame defined as
follows. A subarena for Eve is a tuple 〈Stat′∃, Stat

′
∀,Edg

′〉 with Stat′ ⊆ Stat,
Edg′ ⊆ Edg and such that ∀s ∈ Stat′∀. (s, s

′) ∈ Edg ⇒ (s, s′) ∈ Edg′ (i.e. it does
not restrict actions of Adam). The game 〈A′, w′, I ′, J ′〉 is a subgame for Eve of



〈A, w, I, J〉 if A′ is a subarena for Eve of A and w′ = w, I ′ = I, and J ′ = J . We
write Sub(G, s) the set of subgame for Eve which contain the state s.

Theorem 13. Let G be a weighted game and s a state of G, then:

⋃

G′∈Sub(G,s)

⋂

s′∈Stat′

↑J





⋂

σ∀∈M

⋃

S′∈SCC(s′,G′(σ∀))

↓ conv

({

1

|c|
· w(c) | c ∈ C(S′)

})





where ↑J X = {x ∈ Rd | ∀j ∈ J. ∃x′ ∈ X. ∀i ∈ I ∪ {j}. xi = x′
i}.

We recall here some properties of multi-mean-payoff games which were proved
in [13].

Lemma 10 ([13, Lem. 17]).

∀s ∈ Stat. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Out(s, σ∃, σ∀)) ≥ vi and ∀j ∈ J. MPj(Out(s, σ∃, σ∀)) ≥ vj

⇔ ∀s ∈ Stat. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Out(s, σ∃, σ∀)) ≥ vi and MPj(Out(s, σ∃, σ∀)) ≥ vj .

Lemma 11 ([13, Lem. 14]). Let j ∈ J and s ∈ Stat.

∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Out(s, σ∃, σ∀)) ≥ vi and MPj(Out(s, σ∃, σ∀)) ≥ vj

⇔ ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(Out(s, σ∃, σ∀)) ≥ vi and MPj(Out(s, σ∃, σ∀)) ≥ vj .

The proof of the theorem relies on the following lemma which is illustrated
by Example 1. From this lemma, we prove inclusion in Thm. 13 by taking for G′

the restriction of G to states accessible when Eve plays a strategy that ensures
the given value. We prove the inclusion in the other direction by noticing that
it is easier to win in G than in a subgame G′ and conclude using Lem. 12.

Lemma 12. Let G be a weighted game with J 6= ∅, and s a state of G, then:

⋂

s∈Stat

(s) =
⋂

s∈Stat

↑J





⋂

σ∀∈M

⋃

S∈SCC(s,σ∀)

↓ conv

({

1

|c|
· w(c) | c ∈ C(S)

})





Proof. Let v be a point in value(s) for all state s, then by definition: ∀i ∈ I,
MPi(ρ) ≥ vi and ∀j ∈ J , MPj(ρ) ≥ vj . Thanks to [13, Lem. 17], this is equivalent
to ∀s ∈ Stat. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈ I. MPi(ρ) ≥ vi and MPj(ρ) ≥ vj . Then
by [13, Lem. 14], this is also equivalent to ∀s ∈ Stat. ∀j ∈ J. ∃σ∃. ∀σ∀. ∀i ∈
I.MPi(ρ) ≥ vi and MPj(ρ) ≥ vj . This means that ∀s ∈ Stat, v ∈↑J value(G′, s),
where game G′ is obtained from G by setting I ′ = I ∪ J and J ′ = ∅. We then
obtain the result using the characterization of Thm. 8. ⊓⊔Example 1. Consider the example of Fig. 6. We choose J = {1, 2} and I = {3},
i.e. we consider the limit superior of the weights for the two first coordinate and
the limit inferior for the last one. There is only one strategy of the adversary
and one strongly connected component in this game. There are two simple cycles
and their weight are (2,−2, 0) and (−2, 2, 1). We represented in Figure 8 and
Figure 8 the the feasible thresholds we can ensure with z = 0 and z = 1

2 .



2,−2, 0

−2, 2, 1

Figure 6. A one-
state multidimen-
sional mean-payoff
game, controlled by
Eve.

↑{1,2}

↓

x

y

1
1

(2,−2, 0)

(−2, 2, 0) (2, 2, 0)

Figure 7. Pareto optimum
for z = 0.

↑{1,2}

↓

x

y

1
1

(0, 0, 1

2
)

(−2, 2, 1

2
)

(0, 2, 1

2
)

Figure 8. Pareto opti-
mum for z = 1

2 .

For z = 0 the line segment between (−2, 2, 0) and (2,−2, 0) is below the
convex hull of (2,−2, 0) and (−2, 2, 1). The downward closure this segment is
the area that is below and left of this segment. The operator ↑{1,2} gives the
whole area below of (2, 2, 0) which is the Pareto optimum for z = 0. For z = 1
only (−2, 2, 1) is below the weight of a simple cycle therefore it will be the Pareto
optimum for z = 1. The convex hull of (−2, 2, 1) and (2,−2, 0) is above the plane
z = 1

2 for coordinates of x and y between (0, 0) and (−2, 2). The operator ↑{1,2}
will give the whole area below (0, 2, 1

2 ) which is the Pareto optimum for z = 0.

Proof (of Thm. 13). We first prove inclusion. Let v ∈ value(s), and σ∃ a strat-
egy which ensures it. Let S be the set of states that is reachable from s by
following σ∃. We have {s} ⊆ S ⊆ Stat. We also have v ∈ ∩s′∈Svalue(s

′), since
otherwise v would not be ensured by σ∃. Restricting the game to vertices of
S defines a subgame G′, since only edges of Eve have been removed, it is a
subgame for Eve. In a subgame for Eve the values can only be lower than in
the original game. Using Lem. 12 on this game, we obtain that v belongs to
⋂

s∈S ↑J
⋂

σ∀∈M

⋃

S∈SCC(s,σ∀)
↓ conv

({

1
|c| · w(c) | c ∈ C(S)

})

, which shows the

inclusion.

Now, in the other direction, let v be an element of:

⋃

{s}⊆S⊆Stat

⋂

s′∈S

↑J





⋂

σ∀∈M

⋃

S′∈SCC(s,G′(σ∀))

↓ conv

({

1

|c|
· w(c) | c ∈ C(S′)

})



 .

Let G′ be a subgame for Eve such that v ∈
⋂

s∈Stat′
↑J

⋂

σ∀∈M

⋃

S′∈SCC(s,G′(σ∀))
↓

conv

({

1
|c| · w(c) | c ∈ C(S′)

})

. We use Lem. 12 on this subgame G′, to obtain:

⋂

s∈S

value(s,G′) =
⋂

s∈S

↑J





⋂

σ∀∈M

⋃

S∈SCC(s,G′(σ∀))

↓ conv

({

1

|c|
· w(c) | c ∈ C(S)

})







Since the actions of Adam have not been restricted, it is harder to ensure a given
threshold in G′ than in G. Therefore as v is ensured in G′ from all states of S,
it can also be ensured in G from all states of Stat′, which shows the reverse
inclusion.

5.1 Expressing thresholds as a union of convex sets

Thanks to the previous characterization, we can express the value problem
in terms of intersection of convex sets with a small description.

We first prove the following lemma that will allow use to reorder union and
↑ operators in the equation of Thm. 13.
Lemma 13. Operator l (defined in appendix 3.3) is compatible with union, i.e.
for all J ⊆ J1, dK and all set X and Y : (lJ X) ∪ (lJ Y ) =lJ (X ∪ Y ).

Proof. Let x ∈ (lJ X) ∪ (lJ Y ). If x ∈lJ X, there is x′ ∈ X such that πJ(x
′) =

πJ(x). We also have x′ ∈ X ∪ Y , which proves x ∈lJ (X ∪ Y ). The case where
x ∈lJ Y is similar.

In the other direction, let x ∈lJ (X ∪ Y ), there exists x′ ∈ X ∪ Y such that
πJ(x) = πJ(x

′). If x′ ∈ X then x ∈lJ X and otherwise x ∈lJ Y . Therefore
x ∈ (lJ X) ∪ (lJ Y ).

We use the following to restrict our study to bounded polygone, so that we
can easily represent them by there extremal points.

Lemma 14.
value(s) =↓ ([−W,W ]d ∩ value(s))

Proof. Let v ∈ value(s), there is a strategy σ∃ whose outcome all have weight
greater than v. Since all outcome ρ of the game on all coordinate i, a weight
wi(ρ) greater than −W , we can replace all vi that are smaller than −W by
−W and we obtain a v′ ≥ v such that v′ ∈ value(s). Similarly, all weights are
smaller than W so for all coordinate i, vi cannot be greater than W . Therefore
v′ ∈ [−W,W ]d ∩ value(s) and v ↓ ([−W,W ]d ∩ value(s)).

For the other inclusion, this is simply because value(s) is downward closed
and [−W,W ]d ∩ value(s) ⊆ value(s).

We will also use the following lemma, to apply the l operator only on bounded
polytopes.

Lemma 15. Given a set X ⊆ Rd, a bound W and J ⊆ J1, dK, we have that:

[−W,W ]d∩(lJ [−W,W ]d∩(↓ [−W,W ]d∩X)) = [−W,W ]d∩(lJ↓ ([−W,W ]d∩X))

Proof. The inclusion holds because [−W,W ]d∩(↓ [−W,W ]d∩X) ⊆↓ [−W,W ]d∩
X and lJ is monotonic with respect to inclusion.

In the other direction, let x ∈ [−W,W ]d ∩ (lJ↓ ([−W,W ]d ∩ X)). There is
x′ ∈↓ ([−W,W ]d ∩X) such that πJ(x

′) = πJ(x). There is x′′ ∈ [−W,W ]d ∩X

such that x′′ ≥ x′. Let y be such that yj = x′′
j if j ∈ J and yj = xj = x′

j ≤ x′′
j



otherwise. We have πJ(y) = x and y ∈ [−W,W ]d because both x′′ and x do.
We also have y ∈↓ [−W,W ]d ∩X because it is smaller than x′′. This shows that
x ∈lJ {y} ⊆ [−W,W ]d ∩ (lJ [−W,W ]d ∩ (↓ [−W,W ]d ∩X)). ⊓⊔

Theorem 14. There is polynomial function P6 such that for all weighted game
G and state s of G, value(s) is of the form

⋃

g∈G Cg where g is finite and for
each g, Cg is a convex set, which can be given as the intersection of a finite
set of half-spaces Hg

1 , . . . , H
g
kg

whose associated inequations have size bounded by

P6(||W ||, ||n||, d).

Proof. By Thm. 13 value(s) is equal to:

⋃

{s}⊆S⊆Stat

⋂

s′∈S

⋂

j∈J

lJ\{j}
⋂

σ∀∈M

⋃

S′∈SCC(s′,σ∀)

↓ conv

({

1

|c|
· w(c) | c ∈ C(S′)

})

We can then reorder intersection and union operators using the fact that
l operators are compatible with union (Lem. 13). We do this by considering
functions that selects for a tuple (s′, j, σ∀) a strongly connected component of
SCC(s′, σ∀), i.e. functions of F , where F = {f : Stat × J × M 7→ 2Stat | ∀s′ ∈
Stat, j ∈ J, σ∀ ∈ M. f(s′, j, σ∀) ∈ SCC(s′, σ∀)}. Note that the set F can be huge,
but is always finite. We then have that value(s) is equal to:

⋃

{s}⊆S⊆Stat

⋃

f∈F

⋂

s′∈S

⋂

j∈J

lJ\{j}
⋂

σ∀∈M

↓ conv

({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})

.

We use Lem. 14 to restrict the difficult operations (↓ and l) to bounded
polytopes. This is because their results are easier to express using the vertice
representation, which requiers bounded polytopes. We express value(s) as:

↓ [−W,W ]d∩
⋃

{s}⊆S⊆Stat

⋃

f∈F

⋂

s′∈S

⋂

j∈J

lJ\{j}
⋂

σ∀∈M

↓ conv

({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})

.

Note that we can also use Lem. 14 to show:

↓ [−W,W ]d∩
⋂

σ∀∈M

↓ conv

({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})

=
⋂

σ∀∈M

↓ conv

({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})

since this set is the value set for the game where J would be empty (see 8). We
therefore write value(s) as:

↓ [−W,W ]d∩
⋃

{s}⊆S⊆Stat

⋃

f∈F

⋂

s′∈S

⋂

j∈J

lJ\{j}↓ [−W,W ]d∩
⋂

σ∀∈M

↓ conv

({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})

.

We now use Lem. 15 to introduce a cube [−W,W ]d between the l and ↓ opera-
tors. Then value(s) can be written as:

⋃

{s}⊆S⊆Stat

⋃

f∈F

↓ [−W,W ]d ∩
⋂

s′∈S

⋂

j∈J

lJ\{j} [−W,W ]d

∩ ↓ [−W,W ]d ∩
⋂

σ∀∈M

↓ conv

({

1

|c|
· w(c) | c ∈ f(s′, j, σ∀)

})

.



We obtain therefore a finite union of convex intersections. We now use geo-
metrical arguments to show that the inequations defining these polyhedra are of
polynomial size which will conclude the proof.

Thanks to Thm. 3.6, the set
⋂

σ∀∈M
↓ conv

({

1
|c| · w(c) | c ∈ f(s′, j, σ∀)

})

can be given by the intersection of half-spaces whose inequations have size
bounded by P2(d·(||W ||+||n+1||+1)+||n+1||, d). The intersection with the cube
[−W,W ]d is obtained by adding inequations of size d+ ||W || which is within the
bounds of P2. To apply ↓ we go back to the point representation, using Thm. 3.5,
sizes of the vertices are bounded by P3(P2(d·(||W ||+||n+1||+1)+||n+1||, d), d).
Then using Thm. 3.6 once again, the downward closure gives us half-spaces which
have size bounded by P2(P3(P2(d · (||W ||+ ||n+1||+1)+ ||n+1||, d), d), d). Tak-
ing the intersection with the cube [−W,W ]d again adds inequation that are with
the bounds of the polynomial function. We go back to a point representation in
order to apply ↑J\{j}, which gives, thanks to Thm. 3.5, points of size bounded
by P3(P2(P3(P2(d · (||W ||+ ||n+ 1||+ 1) + ||n+ 1||, d), d), d), d).

We show that the operator ↑J\{j} gives half-spaces whose size is polynomially
bounded. We have seen in Lem. 3 that given a polyhedron P :

lJ P =
⋂

H∈F(πJ (P ))

H +BJ

When P is given by its vertices, the projection πJ is obtained by projecting
points one by one, which means replacing coordinates of J by 0 and therefore
does not increase the size of the points. The equations to describe half-spaces
of F(πJ(P )), can be of size bounded by P2 with respects to the vertices thanks
to Thm. 3.4. The same system of inequations, gives the sets H + RJ when
lifted to Rd. Therefore the size the inequations we obtain after applying ↑J\{j}
is bounded by P6(||W ||, ||n||, d) = P2(P3(P2(P3(P2(d · (||W || + ||n + 1|| + 1) +
||n+1||, d), d), d), d), d). Then the intersection with the cube [−W,W ]d does not
add any complexity and thus the polynomial function P6 bounds the size of the
half-spaces that describes the convex set of the expression of value(s). ⊓⊔

Algorithm We deduce a Σ2P algorithm from the previous theorem.

Theorem 15. There is a polynomial function P such that if S is a set of
states and λ a system of linear equations, then

⋂

s∈S value(s) ∩ [−W,W ]d ∩
polyhedron(λ) is of the form

⋃

f∈F conv(Ef ) where F is finite and for each f ∈
F , Ef is a set of vertices which all have size bounded by P (|Stat|, d, ||λ||, ||W ||).

Proof. By Thm. 14 we have a finite union of polyhedra whose equations have size
bounded by a polynomial function. Let λ = (a1, b1) . . . (ak, bk). We use Thm. 7
to say that if polyhedron(λ) intersects this union of polyhedra, then there is a
solution of size bounded by P4(max{||ai, bi|| | 1 ≤ i ≤ k}, P6(||W ||, ||n||, d), d).

Theorem 16. The polyhedron value problem is in Σ2P.

The algorithm relies on the same principle than for the lim inf but uses Theo-
rem 14 to bound the size of the guessed point. Correctness follows from Thm. 15.



Algorithm 1: Algorithm for the polyhedron value problem in multidimen-
sional mean-payoff games

Existentially guess v in X

if x ∈
⋂

s∈S
value(s) ∩ polyhedron(λ) then return true;

else return false;

6 Approximate Pareto Curve

In this section, we show how to approximate the Pareto curve in the sense of [10].
We consider both a relative and an absolute notions of approximation.

Definition 3. An ε-relative approximate Pareto curve [10], is a set Pε of thresh-
olds v ∈ Qd that Eve can enforce such that there is no threshold v′ that Eve can
force such that v′ ≥ (1 + ε)v. An ε-absolute-approximate Pareto curve, is a set
Pε of thresholds v that Eve can enforce such that there is no threshold v′ that
Eve can force such that v′ ≥ v + (ε, . . . , ε).

The relative notion of approximation can be used when all the weights are
strictly positive only (it is not well defined for negative vectors, and not an
approximation in 0). For the general case, we consider the absolute (or additive)
version of the approximation.

We show that if we fix the number of dimensions d, then there is an pseudo-
polynomial5 time algorithm to construct an approximate Pareto curve for the
two notions of approximation.

Theorem 17. Let d be a fixed number of dimension, let W be the largest abso-
lute value of the weights in the game. There is a polynomial time algorithm (in
the size of the game and W ), that given a weighted game G, constructs both an
ε-relative approximate and an ε-relative approximate Pareto curve.

Proof. For the absolute Pareto curve, the justification is as follows. The algo-
rithm works by considering a grid on [−W,W ]d and checking for each point on
this grid whether Eve can ensure the corresponding threshold. We consider the
set G of points x inside [−W,W ]d which have coordinates of the form xi = ε · k
with k ∈ Z. The number of points on the grid G is polynomial thanks to the
hypothesis that W is encoded in unary and that the number of dimensions d

is fixed. We can determine for each point whether there is a strategy of Eve to
ensure the corresponding threshold. Thanks to [4, Thm. 1], to determine that,

there is an algorithm that works in time O(n2 · m · d · W · (d · n · W )d
2+2·d+1)

(where n is the number of states, and m the number of edges), which is polyno-
mial here. Therefore we can compute in polynomial time a set Pε of points x in
G such that x can be ensured by Eve and there is no x′ ∈ G \ {x} that can be
ensured and such that x′ ≥ x.

5 That is a polynomial time algorithm for weights encoded in unary.



We show that Pε is an ε-absolute-approximate Pareto curve. Let s ∈ Pε, and
s′ ≥ s+ (ε, . . . , ε). If s+ (ε, . . . , ε) > (W, . . . ,W ) then s′ is above the maximum
possible weights and cannot be ensured. Otherwise there is s + (ε, . . . , ε) ∈ G.
Since s ∈ Pε and by construction of Pε, s+(ε, . . . , ε) cannot be ensured by Eve.
Since s′ is greater than s + (ε, . . . , ε), it cannot be ensured either. This shows
that Pε is an ε-absolute-approximate Pareto curve.

For the relative Pareto curve, the justification is as follows. Here, we need only
to consider games with strictly positive weights. The minimum weight that can
be obtained in the game is (1, . . . , 1) and the maximum is (W, . . . ,W ). Since the
weights are all greater than 1, the ε-absolute-approximate Pareto curve is also
a ε-approximate Pareto curve and therefore the preceding algorithm is suitable
to construct a ε-approximate Pareto curve.

The two results rely on the following properties. First, when the number
of dimension is fixed then for both notions of approximation, only a pseudo-
polynomial number of thresholds are relevant for the approximation of the Pareto
curve. For the absolute approximation, there are the minimal points of the hyper-
rectangles defined by the grid of precision ǫ for all value between −W and W ,
for the relative approximation, there are the minimal points of hyper-rectangles,
such that, in each dimension, the ratio of the larger to the smaller coordinate is
1 + ǫ. Second, when the number of dimensions is fixed and weights are encoded
in unary, [4] gives a polynomial time algorithm to decide the threshold problem.
So the overall complexity of our algorithm is pseudo-polynomial.

In the case of weights encoded in binary, we show that even with one dimen-
sion, computing an ε-absolute-approximate Pareto curve is harder than comput-
ing the winner of a mean-payoff game (a similar result of inapproximability has
been proved in [5]). Thus we cannot approximate the Pareto curve in polyno-
mial time unless there is a polynomial time algorithm to compute the winner of
a mean-payoff game which is an long standing open problem in the area [14].

Theorem 18. If there is a polynomial algorithm that given a weighted game G
with dimension d = 1, construct a ε-absolute-approximate Pareto curve, then
there is a polynomial algorithm that given a weighted game G with dimension
d = 1 decide whether Eve can ensure the threshold 0.

Proof. Assume that a polynomial algorithm exist for constructing a ε-absolute-
approximate Pareto curve. We know (see for instance Thm. 8) that in a one
dimensional mean-payoff game, the value (i.e. maximal threshold that can be
ensured) is a rational whose denominator is bounded by the number of vertices
n. Let us choose ε = 1

2n (which is polynomial) and construct a ε-absolute-
approximate Pareto curve Pε in polynomial time. We can look at the points of
Pε to determine if one of them is above −ε. This is the case if and only if there
is a winning strategy in the mean-payoff game for the threshold 0. Thus we have
constructed a polynomial algorithm that decides whether Eve can ensure the
threshold 0.
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