
HAL Id: hal-00977342
https://hal.science/hal-00977342v2

Submitted on 15 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new fully two-dimensional conservative
semi-Lagrangian method: applications on polar grids,

from diocotron instability to ITG turbulence
Nicolas Crouseilles, Pierre Glanc, Sever Adrian Hirstoaga, Eric Madaule,

Michel Mehrenberger, Jérôme Pétri

To cite this version:
Nicolas Crouseilles, Pierre Glanc, Sever Adrian Hirstoaga, Eric Madaule, Michel Mehrenberger, et al..
A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from
diocotron instability to ITG turbulence. The European Physical Journal D : Atomic, molecular, optical
and plasma physics, 2014, 68 (9), DOI: 10.1140/epjd/e2014-50180-9. �10.1140/epjd/e2014-50180-9�.
�hal-00977342v2�

https://hal.science/hal-00977342v2
https://hal.archives-ouvertes.fr


EPJ manuscript No.
(will be inserted by the editor)

A new fully two-dimensional conservative semi-Lagrangian
method: applications on polar grids, from diocotron instability to
ITG turbulence

Nicolas Crouseilles1, Pierre Glanc2, Sever A. Hirstoaga2, Eric Madaule3, Michel Mehrenberger2,4 and Jérôme Pétri5
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Abstract. While developing a new semi-Lagrangian solver, the gap between a linear Landau run in 1D×1D
and a 5D gyrokinetic simulation in toroidal geometry is quite huge. Intermediate test cases are welcome
for testing the code. A new fully two-dimensional conservative semi-Lagrangian (CSL) method is presented
here and is validated on 2D polar geometries. We consider here as building block, a 2D guiding-center
type equation on an annulus and apply it on two test cases. First, we revisit a 2D test case previously
done with a PIC approach [18] and detail the boundary conditions. Second, we consider a 4D drift-kinetic
slab simulation (see [10]). In both cases, the new method appears to be a good alternative to deal with
this type of models since it improves the lack of mass conservation of the standard semi-Lagrangian (BSL)
method.

PACS. PACS-key 52.30.GzGyrokinetics – PACS-key 52.65.FfPlasma simulation: Fokker-Planck and
Vlasov equation

1 Introduction

Kinetic models are known to be a precise tool able to de-
scribe plasma arising in a tokamak or a beam. However,
this accurate description requires an important effort in
terms of numerics, since the solution of a kinetic model
depends not only on the space variable, but also on the ve-
locity variable, which gives a six dimensional phase space.
In addition to the filamentation phenomena and presence
of small scales, the numerical approximation of the dis-
tribution function solution to the kinetic model is a huge
challenge despite the current advancement in computers
power.

In recent decades, several different numerical meth-
ods have been developed to this aim. Among them, the
Particle In Cell (PIC) exploits the Lagrangian formula-
tion of the kinetic equation by solving the characteristics
equations. In spite of its relative low computational cost,
these kinds of method suffer from inaccuracy in low den-
sity regions and low convergence rate when the number
of macro-particles increases (see [1]). On the other hand,
Eulerian methods have been introduced. They are based
on methods like finite volumes or finite difference meth-
ods which have been mostly developed in fluids mechan-
ics; the main particularity is that they require a grid of
the full phase space which makes them accurate indepen-

dently of the value of the distribution function, but they
are very costly in terms of memory and computational
power. Moreover, a restriction on the time step has to be
satisfied for stability reasons. An interesting compromise
is the semi-Lagrangian method which tries to take benefit
from the Lagrangian approach by tracking the time evo-
lution of the characteristic equations of the kinetic model,
and from the Eulerian framework by using a grid of the
phase space. In particular, the so-obtained method is free
from standard CFL conditions on the time step.

Different semi-Lagrangian methods have been devel-
oped over this last 40 years [8], [2], [20], to first compute
the solution of the 1D× 1D Vlasov-Poisson equation and
then of the guiding-center model and more recently of the
5D gyrokinetic model. In addition to the high dimension-
ality, the spatial geometry of the latter case is toroidal,
which makes it more complicated to deal with.

While developing a new semi-Lagrangian solver, the
gap between a linear Landau run obtained with the 1D×
1D Vlasov-Poisson model and a 5D gyrokinetic simulation
in toroidal geometry is quite huge. Then, intermediate test
cases are welcome for checking the performance and pre-
cision of the codes.

Tests for which the analytical solution is known at all
times do not include usually sufficient complexity to tackle
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the difficulties of the final problem. Moreover, although
interesting, some test cases are not published and often
different parameter settings are chosen which makes cross
validations with different schemes difficult. Therefore, one
purpose of this work is to provide precise parameter set-
tings for two test cases which have intermediate complex-
ity between the analytic test and the realistic physical
configuration. This enables us to validate the new conser-
vative semi-Lagrangian method.

We consider here as a building block, a 2D guiding-
center type equation on an annulus satisfied by f(t, r, θ):

∂tf −
∂θΦ

r
∂rf +

∂rΦ

r
∂θf = 0, t ∈ [0, T ], (1)

with (r, θ) ∈ Ω = [rmin, rmax]×[0, 2π], where the potential
Φ solves a Poisson type equation. This model constitutes
the basis of the two tests. We first revisit a 2D test case
previously done with a PIC approach [18] and detail the
boundary conditions. We then consider a 4D drift-kinetic
slab simulation [10], [4] which can be viewed as a polar
guiding-center equation of type (1) coupled with a Vlasov
type equation in the parallel (z, v) direction.

In these two configurations, some first results of a new
conservative semi-Lagrangian method are given and com-
pared to the standard one [10]. Indeed, it is well known
that this standard method, namely backward semi-Lagrangian
(BSL), does not preserve the total mass exactly in the 2D
general configuration. Then, in the spirit of [6], we propose
a new fully two-dimensional conservative semi-Lagrangian
(CSL) method. More precisely, a generalization to the 2D
case of [6] is presented in this work to deal with model of
the form (1) without considering directional splitting. In-
deed, even if time splitting techniques are very efficient in
the Vlasov-Poisson case, for the drift-kinetic or guiding-
center models considered here, the characteristic curves
are more complicated and need to be tackled in the full
2D case. Hence, to overcome the lack of conservation of
the standard BSL method, it seems interesting to develop,
validate and compare a 2D conservative semi-Lagrangian
method. Let us remark that similar motivations are con-
sidered in [21].

The rest of this work is organized as follows: first, the
new conservative semi-Lagrangian method is presented.
Then, we present in detail two test cases enabling val-
idation of our new method. In section 3, the diocotron
instability test case [18] is revisited by detailing the radial
boundary conditions and the associated instability rates.
Finally section 4 is devoted to a 4D drift-kinetic test case.

2 A new 2D conservative method

In this section, we present the new conservative semi-
Lagrangian method (CSL) in the cartesian case. We also
briefly recall the standard BSL method and present how
the new method can be extended to polar geometries.

We then consider a 2D advection equation of the form

∂tf + U(x, y) · ∇x,yf = 0, (x, y) ∈ [0, Lx]× [0, Ly], (2)

where the divergence free vector field is

U(x, y) = (Ux(x, y), Uy(x, y)),

and we consider an initial condition f(t = 0, x, y) = f0(x, y).
We first define a spatial uniform mesh xi = i∆x, ∆x =
Lx/Nx, yj = j∆y, ∆y = Ly/Ny, and a time discretization
tn = n∆t with n ∈ N, ∆t > 0. Then, for all (xi, yj), we
define the characteristics equation with X(t) := (x, y)(t)

Ẋ(t) = U(X(t)), X(tn+1) = (xi, yj), t ∈ [tn, tn+1]. (3)

Let us denote by X(s; tn+1, (xi, yj)) the solution of this
differential system, for s ∈ [tn, tn+1].

In this subsection, a new conservative semi-Lagrangian
is proposed. As in the finite volumes context, the un-
knowns in this case are not pointwise values but cell av-
erage values. Let us introduce a control volume Ai,j =
[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], with xi±1/2 = xi±∆x/2
and yj±1/2 = yj ±∆y/2 we define the unknown as

f̄(t)i,j =
1

∆x∆y

∫
Ai,j

f(t, x, y)dxdy. (4)

We use the fact that the volume is preserved with time.
In particular, between times tn and tn+1, we get

(f̄n+1
i,j =)

1

∆x∆y

∫
Ai,j

fn+1(x, y)dxdy

=
1

∆x∆y

∫
X(tn;tn+1,Ai,j)

fn(x, y)dxdy, (5)

whereX(tn; tn+1, Ai,j) =
{
X(tn; tn+1, (x, y)), (x, y) ∈ Ai,j

}
,

X(tn; tn+1, (x, y)) is the solution at time tn of the follow-
ing characteristics equation

Ẋ(t) = U(X(t)), X(tn+1) = (x, y) ∈ Ai,j , t ∈ [tn, tn+1].

Since f̄ni,j is known ∀i, j of the mesh, we can reconstruct
a piecewise polynomial function Pi,j ; an example can be
the Lagrange reconstruction which satisfies, ∀i, j

1

∆x∆y

∫
Ai+`,j+k

Pi,j(x, y)dxdy = f̄ni+`,j+k,∀`, k = −d, . . . , d,

where d determines the order of the reconstruction (Pi,j is
a piecewise polynomial function of degree 2d in this case).
Another example of reconstruction we propose in this work
is based on Hermite reconstruction. Let us introduce some
notation. First, we introduce edge average values

fni±,j '
1

∆y

∫ yj+1/2

yj−1/2

fn(xi±1/2, y)dy,

fni,j± '
1

∆x

∫ xi+1/2

xi−1/2

fn(x, yj±1/2)dx

and pointwise values

fni±,j± ' f
n(xi±1/2, yj±1/2).
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We need to express this quantity as a function of the
known values f̄ni,j . For this, we first compute the edge val-
ues of the form

fni±,j =

s±∑
`=r±

a±` f̄
n
i+`,j , fi,j± =

s±∑
`=r±

a±` f̄
n
i,j+`,

and then the pointwise values

fni±,j± =

s±∑
`=r±

a±` f̄
n
i+`,j± =

s±∑
`=r±

a±` f̄
n
i±,j+`,

with suitable coefficients a±` , ` = r±, . . . , s±. The integers
r±, s± ∈ Z are generally linked to the degree of approxi-
mation.

Now, for given values of r− ≤ 0, s− ≥ 0, we can
compute coefficients a−` , ` = r−, . . . , s− in the following
way. We take

a−` = −
∑̀
k=r−

∏s−+1
j=r−, j 6∈{0,k}(−j)∏s−+1
j=r−, j 6=k(k − j)

, ` = r−, . . . ,−1,

and

a−` =

s−+1∑
k=`+1

∏s−+1
j=r−, j 6∈{0,k}(−j)∏s−+1
j=r−, j 6=k(k − j)

, ` = 0, . . . , s−.

In a similar way, for given values of r+ ≤ 0, s+ ≥ 0, the
coefficients a+` are given by (for ` = r+, . . . , s+)

a+` = −
`−1∑

k=r+−1

∏s+

j=r+−1, j 6∈{0,k}(−j)∏s+

j=r+−1, j 6=k(k − j)
, ` = r+, . . . , 0,

and

a+` =

s+∑
k=`

∏s+

j=r+−1, j 6∈{0,k}(−j)∏s+

j=r+−1, j 6=k(k − j)
, ` = 1, . . . , s+.

For p ∈ N∗, we will take

r− = −bp
2
c, r+ = −bp− 1

2
c, s− = bp− 1

2
c, s+ = bp

2
c.

Using all these expressions, we then can have an approxi-
mation

fni,j(u, v) ' fn(xi−1/2+u∆x, yj−1/2+v∆y), for 0 ≤ u, v ≤ 1.

For this, we can compute intermediate values

fni (u, j±) ' fn(xi−1/2 + u∆x, yj±1/2),

fni (u, j) ' 1

∆y

∫ yj+1/2

yj−1/2

fn(xi−1/2 + u∆x, y)dy,

which reads, for k ∈ {j±, j}

fni (u, k) =

fni−,k+u(fni+,k − f
n
i−,k)+u(1− u)(6fni,k − 3(fni+,k + fni−,k)).

We then obtain the 2D reconstruction for 0 ≤ u, v ≤ 1

fni,j(u, v) =

fni (u, j−) + v(fni (u, j+)− fni (u, j−))

+v(1− v)(6fni (u, j)− 3(fni (u, j+) + fni (u, j−))). (6)

Let us remark that we start to reconstruct in the x direc-
tion but it is possible to first reconstruct in the y direction
by defining fnj (k, v), k ∈ {i±, i} (which is the counterpart

of fni (u, k), k ∈ {j±, j}).
For each choice of p, a specific Hermite method is deduced.
Among them, we distinguish odd and even values of p.
In (6), we can observe that if p is odd, r± = −s± so
that the reconstruction is continuous: this corresponds to
PPM type reconstruction (see [3], [6]). If p is even, the
reconstruction is no longer continuous since r± 6= −s±:
this corresponds to LAGH type reconstruction. We refer
to [9], [5] for more details.

The computation of X(tn; tn+1, Ai,j) needs some de-
tails since it is not possible to compute exactly this vol-
ume. In practice, we only compute the feet of the charac-
teristics ending at the 4 corners of the cell Ai,j :
(xi±1/2, yj−1/2) and (xi±1/2, yj+1/2). This is done by com-

putingX(tn; tn+1, (xi, yj)) andX(tn; tn+1, (xi±1/2, yj±1/2))
is deduced by interpolation. Hence, the computation of the
feet of the characteristics is performed as in the standard
semi-Lagrangian method. This determines a quadrilateral
volume ai,j ≈ X(tn; tn+1, Ai,j) which will be supposed to
be convex. This can be ensured providing that the time
step ∆t is small enough.

The main step consists in the mesh intersection be-
tween the Lagrangian and Eulerian meshes. This step is
not detailed here but we refer to [9].

The last step is the reconstruction step. Considering

ai,j = ∪k,`=1a
k,`
i,j where ak,`i,j = ai,j ∩ Ak,`, we rewrite (5)

as

f̄n+1
i,j =

1

∆x∆y

∫
X(tn;tn+1,Ai,j)

fn(x, y)dxdy,

=
1

∆x∆y

∫
ai,j

fn(x, y)dxdy,

=
1

∆x∆y

∑
k,`

∫
ak,`
i,j

fn(x, y)dxdy.

(7)

From this last expression, we apply the Green theorem
which reformulates an integral over a volume into an in-
tegral over segments. Then, it comes

1

∆x∆y

∑
k,`

∫
ak,`
i,j

fn(x, y)dxdy =∫
∂ak,`

i,j

[P (x, y)dx+Q(x, y)dy],

where ∂ak,`i,j denotes the boundary (which is composed of

edges) of ak,`i,j and P,Q satisfy

−∂yP (x, y) + ∂xQ(x, y) = fn(x, y).
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Finally, once the piecewise polynomial function has
been determined, one can write

fnk,`(x, y) =
∑
p,q

c
(p,q)
k,` xpyq, ∀(x, y) ∈ Ai,j ,

so that∫
ak,`
i,j

fnk,`(x, y)dxdy =
∑
p,q

c
(p,q)
k,`

∫
ak,`
i,j

xpyqdxdy.

We then have to compute the integral on the right hand
side. To do that, we need some notations. For each sub-

cell ak,`i,j , we introduce its corners (xh, yh), h = 0, . . . , S−1
and we suppose that x0 = xS , y0 = yS . Let us compute∫
ak,`
i,j
xpyqdxdy for some given (p, q) using the Green the-

orem. The case p = q = 1 leads to

∫
ak,`
i,j

xydxdy =

S∑
h=1

∫ (xh,yh)

(xh−1,yh−1)

x2y

2
dxdy

=
1

2

S∑
h=1

∫ 1

0

[xh−1 + t(xh − xh−1)]2

×[yh−1 + t(yh − yh−1)] dt (yh − yh−1)

=
(yh − yh−1)

2

S∑
h=1

[yh−1(3x2h−1 + 2xh−1xh + x2h)

+yh(x2h−1 + 2xh−1xh + 3x2h)],

where the changes of variables x = xh−1 + t(xh − xh−1)
and y = yh−1 + t(yh − yh−1) have been done.

The algorithm of the conservative method to solve (2)
then reads

– compute the 4 corners of ai,j by solving the charac-
teristics ending at the 4 corners of Ai,j backward in
time,

– compute the intersection between the Lagrangian mesh
and the cartesian axis,

– compute the corners of ak,`i,j ((xh, yh), h = 1, . . . , S),
– compute the piecewise polynomial function using a La-

grange or Hermite reconstruction,
– compute

∫
ak,`
i,j
xpyqdxdy with the Green theorem,

– compute f̄n+1
i,j with (7).

Standard numerical method We recall the main steps of
the 2D semi-Lagrangian method proposed in [20].

To go from a known function fni,j on the 2D mesh

(xi, yj) to fn+1
i,j , the semi-Lagrangian is based on the prop-

erty that the solution is constant along the characteristics,
and can be written as follows

– compute the feet of the characteristics
X(tn; tn+1, (xi, yj)), solution of (3)

Fig. 1. Illustration of the intersection between the Lagrangian
mesh ak,` and the Eulerian mesh Ai,j .

– compute

fn+1
i,j = fn(X(tn; tn+1, (xi, yj))),

' I(fn)(X(tn; tn+1, (xi, yj)))

where I is an interpolation operator (cubic splines for ex-
ample) since X(tn; tn+1, (xi, yj)) does not coincide with
(xi, yj) in general.

Extension to polar coordinates The two methods have
been validated in classical test cases in cartesian configura-
tions (using Vlasov-Poisson or guiding-center models). To
deal with polar coordinates and non homogeneous Dirich-
let boundary conditions, some adaptations are needed,
similar to techniques proposed in [12] for the FSL method.

Since the new conservative method solves the conser-
vative form of the transport equation, one has to consider
the conservative solution g(t, r, θ) = rf(t, r, θ) which is ob-
tained by multiplying the solution by the Jacobian of the
transformation. Then g solves the following conservative
form

∂tg − ∂r
(
∂θΦ

r
g

)
+ ∂θ

(
∂rΦ

r
g

)
= 0. (8)

The conservative method is then applied to this equation.
Since the BSL method solves the advective form, it does
not require this adaptation.

Another point concerns boundary conditions of the un-
known. To overcome this delicate issue, instead of work-
ing with g, we work with the unknown (g − geq) = r(f −
feq) which satisfies homogeneous Dirichlet boundary con-
ditions in our applications since the solution does not de-
part far from equilibrium. This is also applied to the stan-
dard BSL method.

3 Diocotron instability test case

This section is devoted to the presentation of the diocotron
instability test case [15] which enables us to validate our
new conservative method on a non trivial 2D polar geom-
etry and compare it to analytical results and to the BSL
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method. Let us mention the works [11] and [16], in which
the guiding-center model is solved numerically in its polar
version, using a slightly different initial condition.

We consider ρ(t, r, θ), a solution of (1), with Φ(t, r, θ)
solving the Poisson equation:

−∂2rΦ−
1

r
∂rΦ−

1

r2
∂2θΦ = γρ, (9)

where γ ∈ {−1, 1}, according to the charge of the con-
sidered particles. The guiding-center model (1)-(9) satis-
fied by ρ(t, r, θ) is associated to an initial condition ρ(t =
0, r, θ) (see [7])

ρ(t = 0, r, θ) =

0, rmin ≤ r < r−,
1 + ε cos(`θ), r− ≤ r < r+,
0, r+ ≤ r ≤ rmax,

(10)

where ε = 10−6 (linear case) or ε = 0.5 (nonlinear case).
We also need to define boundary conditions. In the θ ∈
[0, 2π] direction, periodic boundary conditions are used so
that a Fourier transform is applied to (9) whereas different
conditions will be considered in the radial r ∈ [rmin, rmax]
direction. We recall the notation Ω = [rmin, rmax]× [0, 2π].

3.1 Radial boundary conditions for Φ

In this subsection, different radial boundary conditions are
proposed to solve (9). In particular, their influence on the
conservation of electric energy

E(t) =

∫
Ω

[
r|∂rΦ|2 +

1

r
|∂θΦ|2

]
drdθ, (11)

and on total mass

M(t) =

∫
Ω

rρ drdθ, (12)

is discussed.
First, homogeneous Dirichlet boundary conditions are

imposed at rmax:

Φ(t, rmax, θ) = 0,∀t ≥ 0, θ ∈ [0, 2π].

Second, at rmin, we consider two kinds of boundary condi-
tions. We take either the homogeneous Dirichlet boundary
condition

Φ(t, rmin, θ) = 0,∀t ≥ 0, θ ∈ [0, 2π],

or the following condition, named Neumann mode 0:

– the homogeneous Neumann boundary condition at rmin

for the Fourier mode 0 in θ (∂rΦ̂0(t, rmin) = 0)∫ 2π

0

∂rΦ(t, rmin, θ)dθ = 0,

– the homogeneous Dirichlet boundary condition at rmin

for the other Fourier modes (Φ̂k(t, rmin) = 0,∀k 6= 0)

Φ(t, rmin, θ) =
1

2π

∫ 2π

0

Φ(t, rmin, θ
′)dθ′.

For these two choices of radial boundary conditions, one
can prove (see [15]) that the electric energy and the total
mass are preserved in time

∂tE(t) = ∂tM(t) = 0,

which provides a good indicator to compare and validate
the numerical methods. A last configuration has also been
explored, in which homogeneous Neumann boundary con-

ditions are imposed for all the modes ∂rΦ̂k(t, rmin) = 0,∀k.
Let us remark that however in this case, the electric en-
ergy and the total mass are not preserved with time at
the continuous level (see [15]).

For the solution ρ, Dirichlet type boundary conditions
are considered:

ρ(t, r ≤ rmin, θ) = ρ(t, rmin, θ),

ρ(t, r ≥ rmax, θ) = ρ(t, rmax, θ).

3.2 Instability rates

In this subsection, the instability rates are computed from
the linearized problem, considering the different radial
boundary conditions.

Considering a radial equilibrium (n0(r), Φ0(r)) of (1)-
(9) linked by the Poisson equation

−∂r(r∂rΦ0) = rn0,

we then search for an approximate solution to(1)-(9) of
the form

ρ(t, r, θ) ' n0(r) + εn̂1,`(r) exp(i`θ) exp(−iωt/γ)

Φ(t, r, θ) ' γΦ0(r) + εγΦ̂1,`(r) exp(i`θ) exp(−iωt/γ).

Inserting this particular solution into (1)-(9) leads to the
following system

−iωn̂1,` − i`
∂rn0
r

Φ̂1,` + i`
∂rΦ0

r
n̂1,` = 0,

−∂2r Φ̂1,` −
∂rΦ̂1,`

r
+
`2

r2
Φ̂1,` = n̂1,`.

(13)

We express n̂1,` in terms of Φ̂1,` to get an equation for

Φ̂1,`:(
−iω + i`

∂rΦ0

r

)
(−∂2r Φ̂1,`−

∂rΦ̂1,`

r
+
`2

r2
Φ̂1,`)=i`

∂rn0
r

Φ̂1,`.

(14)
We can proceed in the numerical solution of the problem
by making a discretization in the radial direction. With
a uniform radial mesh ri = rmin + i∆r, ∆r = (rmax −
rmin)/Nr and Nr ∈ N∗, we introduce the following nota-
tions and approximations

Φ̂1,`(ri) = φi,

∂rΦ̂1,`(ri) =
φi+1 − φi−1

2∆r
,

∂2r Φ̂1,`(ri) =
φi+1 − 2φi + φi−1

∆r2
.
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Then, (14) is approximated by Aφ = cBφ, with c = ω/`
and where φ = (φ0, φ1, . . . , φN )T ∈ RNr+1 and A,B are
two matrices of size Nr + 1. The problem is then reduced
to find the eigenvalues c of the problem B−1Aφ = cφ. For
each `, we look for the eigenvalue c which has the greatest
(strictly positive) imaginary part. We refer to [7] and [15]
for more details.

Linear case.
Analytical growth rates |=(ω)| of the linear phase are ob-
tained for all the discussed boundary conditions (the ini-
tial condition being (10) with ε = 10−6) and comparison is
made with the BSL method on a 128×128 grid, ∆t = 0.05,
rmin = 1, rmax = 10, γ = 1. In the following tables, com-
parisons between analytical and numerical growth rate for
different modes ` and different r± are performed

– Table 1 refers to the first case (homogeneous Dirichlet
boundary condition).

– Table 2 refers to the second case (Neumann mode 0).
– Table 3 refers to the third case (homogeneous Neu-

mann boundary condition).

One can observe that the numerical instability rates are
very close to the analytical ones (relative error of about
0.1%).

Nonlinear case.
Let us now consider the initial condition (10) with ε = 0.5
and study the influence of radial boundary conditions.
To that purpose, we compare the new CSL method (the
LAGH-9 method is used for the reconstruction) with the
standard BSL method (cubic splines interpolation is used).
Let us recall that the unknowns for CSL are centered at
the vertices ri, θj , following (4).
We first focus on the Neumann mode 0 case: shown in Fig.
2 and 3, we plot the time history of the electric energy E(t)
and of the relative total mass (M(t) −Mex)/Mex (with

Mex =
∫ rmax

rmin

∫ 2π

0
ρ(t = 0, r, θ)rdrdθ = 28.27433389). A

standard rectangle quadrature is used to approximate E
and M given by (11) and (12). We compare the BSL
method with different meshes and the new CSL method
with Nr = 261, Nθ = 256 and ∆t = 0.1 (Nr = 261 is cho-
sen to ensure that r± coincide with a mesh point). First,
we can see that the new CSL method preserves the total
mass better than the standard BSL method. Indeed, even
with a refined mesh Nr = 1026, Nθ = 1024 (purple curve
in Fig. 3), the error in the BSL on this diagnostic is more
important than the error in the CSL. The CSL method is
not exactly conservative because of the boundary effect on
ρ: some loss or gain of mass can occur at rmin and rmax.
It is noted that the first order convergence of the trape-
zoidal quadrature rule in the r direction: refining in this
direction makes the relative total mass converge to zero at
the initial time. Secondly, looking at the time evolution of
the energy (see 2), the same conclusions are realised since
CSL is very well behaved compared to BSL: the variation
of total energy is about 3×10−2 for CSL whereas for BSL,
it is about 5× 10−2 using 16 for both.

Then, we focus on the Neumann case. We plot the same
diagnostics in Fig. 4 and 5. In this Neumann configura-
tion, the total mass and energy are not preserved at the
continuous level, but it is interesting to observe how the
numerical methods behave. Clearly, this is different since
the CSL method does not preserve these two quantities
as well as in the previous case (variations of about 0.4 for
the total energy). However, it is difficult to define a good
solution since the BSL method displays quite different be-
havior. A deeper analysis is needed and is not within the
limits of this article.

` r− r+ =(ω) analytical
2 4 5 0.2875, t ∈ [26, 55] 0.2887
3 4 5 0.3667, t ∈ [26, 72] 0.3673
4 4 5 0.3852, t ∈ [26, 51] 0.3840
7 6 7 0.3424, t ∈ [26, 61] 0.3375

Table 1. Growth rate obtained by the semi-Lagrangian
method and by linearized analysis with homogeneous Dirichlet
boundary conditions.

` r− r+ =(ω) analytical
2 4 5 0.0719, t ∈ [93, 138] 0.0717
3 4 5 0.2264, t ∈ [33, 87] 0.2267
4 4 5 0.2991, t ∈ [34, 69] 0.2988
7 6 7 0.3338, t ∈ [35, 53] 0.3307

Table 2. Growth rate obtained by the semi-Lagrangian
method and by linearized analysis with Neumann for mode
0 boundary conditions.

` r− r+ =(ω) analytical
2 4 5 0.0672, t ∈ [89, 151] 0.0673
3 4 5 0.2263, t ∈ [32, 89] 0.2266
4 4 5 0.2991, t ∈ [34, 69] 0.2988
7 6 7 0.3338, t ∈ [35, 53] 0.3307

Table 3. Growth rate obtained by the semi-Lagrangian
method and by linearized analysis with Neumann boundary
conditions.

4 Drift-kinetic Vlasov equation

This last section is devoted to the validation of the new
conservative method in the context of 4D the drift-kinetic
equation.

Indeed, we look for f = f(t, r, θ, z, v) satisfying the
following 4D slab drift-kinetic equation (see [10])

∂tf −
∂θφ

r
∂rf +

∂rφ

r
∂θf + v∂zf − ∂zφ∂vf = 0, (15)
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Fig. 2. Time evolution of E(t) for different grid sizes and ∆t:
Neumann mode 0 case.

Fig. 3. Time evolution of the relative total mass (M(t) −
Mex)/Mex for different grid sizes and ∆t: Neumann mode 0
case.

Fig. 4. Time evolution of E(t) for different grid sizes and ∆t:
Neumann case.

for (r, θ, z, v) ∈ Ω×[0, L]×R. The self-consistent potential
φ = φ(r, θ, z) solves the quasi neutrality equation

−
[
∂2rφ+

(
1

r
+
∂rn0(r)

n0(r)

)
∂rφ +

1

r2
∂2θφ

]
+

1

Te(r)
(φ− 〈φ〉)

=
1

n0(r)

∫
R
fdv − 1, (16)

Fig. 5. Time evolution of the relative total mass (M(t) −
Mex)/Mex for different grid sizes and ∆t: Neumann case.

with 〈φ〉 = 1
L

∫ L
0
φ(r, θ, z)dz. Periodic boundary condi-

tions are considered in the θ and z directions whereas
in the radial direction, Neumann mode 0 is imposed (see
[13]). For the solution f , periodic boundary conditions are
imposed in the θ, z, v directions, whereas in the radial r
directions, Dirichlet boundary conditions are considered.

The initial function is given by

f(t = 0, r, θ, z, v) =

feq(r, v)

[
1 + ε exp

(
− (r − rp)2

δr

)
cos

(
2πn

L
z +mθ

)]
,

where the equilibrium function is

feq(r, v) =
n0(r) exp(− v2

2Ti(r)
)

(2πTi(r))1/2
.

The radial profiles {Ti, Te, n0} have the analytical expres-
sions

P(r) = CP exp

(
−κPδrP tanh(

r − rp
δrP

)

)
, P ∈ {Ti, Te, n0},

where the constants are

CTi = CTe = 1, Cn0 =
rmax − rmin∫ rmax

rmin
exp(−κn0

δrn0
tanh(

r−rp
δrn0

))dr
.

Finally, we consider the parameters of [4] (MEDIUM case)

rmin = 0.1, rmax = 14.5,

κn0 = 0.055, κTi = κTe = 0.27586,

δrTi = δrTe =
δrn0

2
= 1.45, ε = 10−6, n = 1, m = 5,

L = 1506.759067, rp =
rmin + rmax

2
, δr =

4δrn0

δrTi

.

4.1 Global algorithm

To deal with the 4D drift-kinetic model, a directional
splitting is performed as in [10]. As said before, the stan-
dard semi-Lagrangian method and the new conservative
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semi-Lagrangian method have common steps, in partic-
ular because in the 1D z and v configuration, we deal
with the constant advection coefficient for which the BSL
and CSL methods are equivalent (see [6]). The only differ-
ence between the two methods lies in the 2D advection in
(r, θ). We then call BSL2D the method proposed in [10]
and CSL2D the new conservative method.

The main steps of the algorithms BSL2D and CSL2D are

– solve the 1D advection ∂tf + v∂zf = 0 on ∆t/2 with
the standard semi-Lagrangian method
(periodic cubic splines interpolation),

– solve 1D advection ∂tf − ∂zΦ∂vf = 0 on ∆t/2 with
the standard semi-Lagrangian method
(periodic cubic splines interpolation),

– solve the quasi neutrality equation (16) to compute the
potential Φ, with FFT in θ, z and second order finite
difference in r,

– compute the derivatives (∂rΦ, ∂θΦ, ∂zΦ) of Φ with cu-
bic splines in r, θ and second order finite differences in
z,

– 2D advection in (r, θ) (1), with BSL or CSL,
– solve 1D advection ∂tf − ∂zΦ∂vf = 0 on ∆t/2 with

the standard semi-Lagrangian method
(periodic cubic splines interpolation),

– solve the 1D advection ∂tf + v∂zf = 0 on ∆t/2 with
the standard semi-Lagrangian method
(periodic cubic splines interpolation).

4.2 Numerical results

In this section, we compare the standard BSL method
to the new conservative method. To do that, we consider
the 4D drift-kinetic model in polar geometry (15)-(16).
The practical implementation is done in a modular semi-
Lagrangian library [19].

We are interested in the time history of√∫
Φ2(rp, θ, z)dθdz, (17)

where rp = (rmax + rmin)/2, of the total mass

M(t) =

∫ rmax

rmin

∫ 2π

0

∫ L

0

∫
R
f(t, r, θ, z, v)rdvdzdθdr,

and of the total energy

E(t) =

∫ rmax

rmin

∫ 2π

0

∫ L

0

∫
R

v2

2
f(t, r, θ, z, v)rdvdzdθdr

+

∫ rmax

rmin

∫ 2π

0

∫ L

0

∫
R
f(t, r, θ, z, v)Φ(t, r, θ, z)rdvdzdθdr.

The first quantity (17) is known to exponentially in-
crease with time. The growth rate can be obtained by a
generalization of the approach performed in [4]. Hence,
growth rates obtained in [4] can be compared to numeri-
cal results. The total massM(t) is preserved by the model

Fig. 6. Time evolution of
√∫

Φ2(rp, θ, z)dθdz on 32 × 32 ×
32× 64 grid, with ∆t = 8 and vmax = 7.32.

and it is an important point for the methods to preserve
this quantity as much as possible.

In Fig. 6, we plot the time history of (17) obtained
with BSL2D and CSL2D. Different variants of the CSL2D
method are shown, corresponding to different reconstruc-
tions presented in section 2: p = 3 which corresponds to
third order Lagrange reconstruction, p = 4 (resp. 6) which
corresponds to PPM (resp. PPM2), p = 17 which corre-
sponds to LAGH17, and Lauritzen which corresponds to
the reconstruction proposed in [14]. One can observe that
the linear part is well reproduced by all the method since
the instability rate of all the methods is very close to the
analytical one proposed by [4].

In Fig. 7, the time history of the total mass M(t)
(which is theoretically preserved with time) is plotted for
the different methods (BSL2D and CSL2D for different
reconstructions). The final time is 8000 chosen so that
the linear theory is not available any more. We can first
observe that up to time 3000, the total mass is well pre-
served by all methods. This time interval corresponds to
the linear phase in which few phenomena occur. After
that time, the methods behave differently. In particular,
BSL2D looses the conservation of total mass (even with a
relative error of about 0.1%). On the other side, CSL2D
presents better behavior (relative error of about 0.01%).
Among the different reconstructions, CSL2D p = 6 (which
corresponds to PPM2) behaves in the best way.

Fig. 8 shows the time history of E(t) (which is theo-
retically preserved with time) obtained with the different
methods. This invariant is quite difficult to preserve nu-
merically and we can observe that, as for the total mass,
the CSL methods display very good behavior compared
to the BSL method since the total energy is better con-
served (about 0.1% for CSL and about 1% for BSL). One
interesting point is the very similar behavior of the total
mass and total energy. It seems that the loss of the mass
conservation has a strong influence on the total energy
conservation. Obviously we have to go further into the
comparisons but these first results are quite promising.
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Fig. 7. Time evolution of the total mass on 32× 32× 32× 64
grid, with ∆t = 8 and vmax = 7.32.

Fig. 8. Time evolution of the total energy on 32×32×32×64
grid, with ∆t = 8 and vmax = 7.32.

5 Conclusion

In this work, we proposed the validation of a new con-
servative semi-Lagrangian method CSL, on two non triv-
ial test cases in polar geometry. The first test concerns a
guiding-center model for which boundary conditions in the
radial directions are discussed. It appears that some good
choices lead to conservation of electric energy and total
mass. This is confirmed by the numerical results in which
we observe a very good behavior of the new method com-
pared to BSL. The second test concerns a 4D drift-kinetic
model which can be viewed as a first step to describe toka-
mak plasmas. For these two models, a linear analysis can
be performed and instability rates can be obtained to val-
idate the numerical methods in the linear phase.

The new CSL method seems to be a good alternative
to the standard pointwise semi-Lagrangian method which
is not conservative in these configurations. More compar-
isons are performed in [9] and [5] in these two interme-
diate configurations (guiding-center and 4D drift-kinetic)
to confirm the good behavior of the conservative semi-
Lagrangian method.
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par des méthodes de type remapping conservatif, PhD of the
University of Strasbourg, 2014.

10. V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X.
Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E.
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