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Imaginary bicyclic biquadratic function fields in

characteristic two

Yves Aubry and Dominique Le Brigand∗

Abstract

We are interested in the analogue of a result proved in the number
field case by E. Brown and C.J. Parry and in the function field case
in odd characteristic by Zhang Xianke. Precisely, we study the ideal
class number one problem for imaginary quartic Galois extensions of
k = Fq(x) of Galois group Z/2Z× Z/2Z in even characteristic.
Let L/k be such an extension and let K1, K2 and K3 be the distinct
subfields extensions of L/k. In even characteristic, the fields Ki are
Artin-Schreier extensions of k and L is the compositum of any two of
them.
Using the factorization of the zeta functions of this fields, we get a
formula between their ideal class numbers which enables us to find all
imaginary quartic Galois extensions L/k of Galois group Z/2Z×Z/2Z
with ideal class number one.
Key words - Ideal class number, function fields, Artin-Schreier ex-
tensions, zeta functions.

1 Introduction

E. Brown and C.J. Parry have shown in [2] that there are exactly 47 imag-
inary bicyclic biquadratic number fields with ideal class number one. The
analogous problem in the function field case consists in checking for all imagi-
nary quartic Galois extensions of k = Fq(x), with Galois group Z/2Z×Z/2Z,
such that their ideal class number is equal to one. If L/k is such an exten-
sion, there exists exactly three distincts K1, K2 and K3 subfields of L which
are quadratic extensions of k.

∗The work of the second author is partially supported by INRIA-Rocquencourt - Projet
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In [12], Zhang Xianke has given all solutions to the preceding problem
in case of odd characteristic : for each solution, at least one subfield Ki has
a zero genus. Our purpose here is to study the problem in even characteristic.

In the following, Fq will denote the finite field with q elements, with q
a power of a prime, and k = Fq(x) for an x transcendental over Fq. All
function fields F/Fq will be supposed to admit Fq as full constant field and
we always assume that F is contained in a separable closure of k. If F is a
finite extension of k, let us denote by S∞(F ) the set of places of F above
the infinite place ∞ of k and by s∞(F ) the order of S∞(F ). The elements
of S∞(F ) will be called the infinite places of F/k. If s∞(F ) = [F : k],
that is when the infinite place of k splits in F , one says that F/k is real,
otherwise it is imaginary. A quadratic imaginary extension F/k is called
ramified or inert according to whether the infinite place of k is ramified
or inert in F .
Let us denote by OF the integral closure of Fq[x] in F . Then OF is a
Dedekind domain and we denote by hOF

the order of its ideal class group,
called the ideal class number of OF or of F/k.
A quartic Galois extension F/k of Galois group Z/2Z×Z/2Z will be called
a bicyclic biquadratic extension of k.
This paper is organized as follows. In Section 2, we give a relation between
the ideal class number of an imaginary bicyclic biquadratic extension L/k
and those of the three intermediate field extensions.
In Section 3, for the convenience of the reader, we recall some previously
known results concerning Artin-Schreier extensions in even characteristic.
In Section 4, we prove the main theorem which gives all imaginary bicyclic
biquadratic extensions L/k such that hOL

= 1.

2 Factorization of class numbers

In this section, we show results analogous to the ones given by Zhang in odd
characteristic (see [13]).

2.1 Schmidt’s relation

Let F be a finite extension of k and let hF be its divisor class number, that
is the number of rational points over Fq of the jacobian of F . Then we have
the following relation due to F. K. Schmidt ([10]):

rOF
hOF

= δOF
hF , (1)
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where δOF
is the gcd of the degrees of the infinite places of F/k and rOF

is
the order of the group of zero-degree divisors with support in S∞(F ) modulo
the principal ones. The regulator of F/k, denoted by ROF

, is defined by:

rOF
=

δOF
ROF

∏s∞(F )
i=1 deg℘i

,

where the denominator is the product of the degrees of the infinite places of
F/k.

Remark 2.1 • Notice that, if deg℘i = 1 for all ℘i ∈ S∞(F/k), then
rOF

= ROF
.

• If S∞(F ) = {℘1, ℘2}, with deg℘1 = deg℘2, then rOF
is just the order

of the class of the zero-degree divisor (℘1 −℘2) in the jacobian of F/k
and if moreover gF > 0 and deg℘1 = deg℘2 = 1, then rOF

> 1.

• Recall that for any function field F/Fq of zero genus, we have hF =
hOF

= 1.

2.2 Behaviour of places and zeta functions in a quartic ex-

tension

Let L/k be an imaginary bicyclic biquadratic extension. Since L/k is Galois
of Galois group Z/2Z×Z/2Z, there is by Galois theory three distinct subfield
extensions Ki/k.
For a place p of k, we denote by gp the number of places ℘ of L lying over p,
fp their relative degree and ep their ramification index. Only five situations
may occur. Indeed, we have epfpgp = 4 and thus only 6 possibilities for
(ep, fp, gp). The situation (ep, fp, gp) = (1, 4, 1) is impossible, since, for such
a place, the quotient of the decomposition group by the inertia group is
isomorphic to the Galois group of L/k which is bicyclic and also isomorphic
to the Galois group of the residue class extension L℘/kp which is cyclic.
Thus we only have to consider the following cases:

1. pOL = ℘1℘2℘3℘4,

2. pOL = ℘4,

3. pOL = ℘2,

4. pOL = ℘2
1℘

2
2,

5. pOL = ℘1℘2.
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We see that in the first case p is totally decomposed in all the Ki and in
the second one p is totally ramified in all the Ki. Using the properties
of the decomposition field and the inertia field, we can show that, in case
three p is inert in one Ki and ramified in the two others, in case four p is
decomposed in one Ki and ramified in the two others, and finally in case
five p is decomposed in one Ki and inert in the others.
Thus, if we focus on the infinite place of k, we have the following different
situations:

• case 1 - all Ki/k, i = 1, 2, 3, are real,

• case 2 - all Ki/k, i = 1, 2, 3, are ramified,

• case 3 - two Ki/k are ramified, the third one is inert,

• case 4 - two Ki/k are ramified, the third one is real,

• case 5 - two Ki/k are inert, the third one is real.

Case 1 cannot occur since we assumed that L/k is imaginary.

Remark 2.2 If the characteristic of k is odd, case 2 cannot occur, since
if K1/k and K2/k are ramified, then, for i = 1, 2, Ki = k(yi), with y2i =
fi(x) where fi ∈ k[x] is a monic square-free polynomial of odd degree and
we see that K3/k is real since K3 = k(y3) with y23 = f3(x), where f3 =
(f1 f2)/gcd(f1, f2)

2 is a monic square-free polynomial of even degree.

For an extension F of k, let ζOF
be the zeta function of OF , defined by

ζOF
(s) =

∑

I

1

N(I)s
=

∏

℘

(

1−
1

N(℘)s

)−1
,

where s ∈ C, the sum ranges over the nonzero ideals I ofOF andN(I) stands
for the norm of the ideal I, that is by definition the number of elements of
the residue class ring OF /I, and finally the product ranges over the nonzero
prime ideals ℘ of OF .
The zeta function of the function field F/Fq is such that

ζF (s) = ζOF
(s)

∏

℘∈S∞(F )

(

1−
1

N(℘)s

)−1
. (2)

Then we have:
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Theorem 2.3 Let L be an imaginary bicyclic biquadratic extension of k
and let K1, K2 and K3 be the three intermediate fields of L/k. Then we
have:

ζOL
(s)/ζOk

(s) =

3
∏

i=1

(

ζOKi
(s)/ζOk

(s)
)

.

Proof: If we denote by Spec (OF ) the set of prime ideals of OF , we have
for all i ∈ {1, 2, 3}:

ζOKi
(s) =

∏

p∈Spec (Ok)−{0}

∏

℘|p

(

1−
1

N(℘)s

)−1
.

But, as the prime ideal p of Ok is inert, ramified or splits in Ki/k, the norm
N(℘) of ℘|p is equal to N(p)2, N(p) or N(p). Thus we obtain:

ζOKi
(s) = ζOk

(s)LOk
(s, χ) ,

where

LOk
(s, χ) =

∏

p∈Spec (Ok)−{0}

(

1−
χ(p)

N(p)s

)−1
,

with χ(p) = −1, 0, or 1, according whether p is inert, ramified or splits
in Ki/k. Then we have to consider the behaviour of a place p of k in
the different extensions and remark that the norm of a place ℘ over p in
L equals N(p) or N(p)2, according whether ℘ is of degree one or two. A
simple calculation gives us the result.

Corollary 2.4

(

ζL/ζk
)

(s) =

3
∏

i=1

(

ζKi/ζk
)

(s)

Proof: According to (2), we have to look at the behaviour of the infinite
places of these fields.

2.3 Formula for class numbers

Using the previous results, we have the following proposition.

Corollary 2.5 If the imaginary bicyclic biquadratic extension L/k has a
real quadratic subfield, say K = K1 (cases 4 and 5), we have:

ROL

ROK

hOL
= hOK

hOK2
hOK3

.
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Else (cases 2 and 3), we have:

hOL
= hOK1

hOK2
hOK3

.

Proof: For any function field L/Fq, a residue calculus gives (see [8]):

ζOL
(s) =

−hOL
ROL

(q − 1)
(ln q)s∞(L)−1ss∞(L)−1 +O(ss∞(L)).

Then, if we set ΛOL
(s) = ζOL

(s)/ss∞(L)−1, we have

ΛOL
(0) =

−hOL
ROL

(q − 1)
(ln q)s∞(L)−1

and since s∞(L)−s∞(k) = s∞(K1)+s∞(K2)+s∞(K3)−3s∞(k) we obtain

(

ΛOL
/ΛOk

)

(0) =
3
∏

i=1

(

ΛOKi
/ΛOk

)

(0),

which gives us:

ROL
hOL

=

3
∏

i=1

ROKi
hOKi

.

One gets the result observing that, in any function field F/k, if there is only
one place in F above the infinite place of k, then the regulator ROF

is equal
to one.

Let L/k be an imaginary bicyclic biquadratic extension which has a real
quadratic subfield K. By Dirichlet’s theorem the unit group of L and K are
of rank 1. We set QL/K = [O∗

L : O∗
K ] for the index of the units.

Lemma 2.6 Let L be an imaginary bicyclic biquadratic extension of k which
has a real quadratic subfield K. Then we have:

• QL/K = 1 or 2.

•
ROL
ROK

= 2
QL/K

.

Proof: Let εK and εL be the fundamental units ofK and L respectively. We

have εK ∈ O∗
L thus εK = ε

QL/K

L . If we denote by NL/K the norm of L/K, we

have ε2K = NL/K(εK) = NL/K(ε
QL/K

L ) = NL/K(εL)
QL/K = ε

mQL/K

K , where
m is an integer, thus mQL/K = 2 and then QL/K = 1 or 2. Note that this
a particular case of the situation considered in [1] from which we can also
deduce the second statement.
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Proposition 2.7 Let L/k be an imaginary bicyclic biquadratic extension
and let Ki, i = 1, 2, 3, be the three intermediate fields. We have

hOL
=

Q

2
hOK1

hOK2
hOK3

, (3)

where Q = 2 if none of the Ki/k is real and Q = QL/K = 1 or 2 if one Ki,
say K, is real.

This is a trivial consequence of Corollary 2.5 and Lemma 2.6. Since hOK
is

even if K/k is an inert quadratic extension, we see that hOL
is even in cases

3 and 4. Thus if we want hOL
= 1, we will have to consider only cases 2

and 5 of Section 2.2. Moreover, using Proposition 2.7, we have the following
result.

Corollary 2.8 Let L/k be an imaginary bicyclic biquadratic extension and
let Ki, i = 1, 2, 3, be the three intermediate fields.

1. If all Ki/k are ramified (case 2) then

hOL
= 1 ⇐⇒ (hOKi

)1≤i≤3 = (1, 1, 1) .

2. If two Ki/k are ramified and the third one is real (case 5) then

hOL
= 1 ⇐⇒







(hOKi
)1≤i≤3 = (1, 1, 2) and Q = 1 ,

or
(hOKi

)1≤i≤3 = (1, 1, 1) and Q = 2 .

3 Quadratic extensions in even characteristic

3.1 Equation of Artin-Schreier extensions

Let us recall the Hasse normalized equation for an Artin-Schreier extension
in even characteristic.

Proposition 3.1 - (see [3] or [4]) - Let k = Fq(x), with q a power of 2, and
let K/k be an Artin-Schreier extension. Then K = k(y), where y verifies
the following equation

y2 + y = f(x) = λ
N(x)

∏r
i=1 Pi(x)ni

, (4)

with
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• λ ∈ F
∗
q,

• N and Pi are monic polynomials of Fq[x] and N(x) is prime to
∏r

i=1 Pi(x),

• ni is odd for all i, 1 ≤ i ≤ r.

We set

s =
r

∑

i=1

deg(Pi), t =
r

∑

i=1

ni deg(Pi), n = deg(N) .

For a fixed x, there exists y ∈ K such that K = k(y), where y satisfies (4)
and furthermore,

1. in case gK ≥ 1,

if K/k is ramified, s+ n is odd, t < n , gK = s+n−1
2 ,

if K/k is real, n < t , gK = s+t
2 − 1 ,

if K/k is inert, n = t , λ 6= c2 + c , ∀c ∈ Fq , gK = s+t
2 − 1 .

2. in case gK = 0, (with a ∈ Fq)

if K/k is ramified, y2 + y = x+ a,
if K/k is real, y2 + y = a

x ,
if K/k is inert, y2 + y = λ x+a

x , a 6= 0 and λ 6= c2 + c , ∀c ∈ Fq .

If an Artin-Schreier extension K/k is such that K = k(y), with y satifying
equation (4), we will set K = Kf .

Remark 3.2 The number r which appears in (4) is the number of finite
places of k which are ramified in K.

fixed.

3.2 Parity of the ideal class number

Let us quote a result concerning the parity of the ideal class number of a
quadratic extension K/k. In [14], the quadratic extensions K/k with an odd
ideal class number are characterized in the odd characteristic case. For even
characteristic one has the following result.

Proposition 3.3 Assume that the characteristic of k equals 2. Let K/k be
a quadratic extension, K = k(y), where y satisfies (4). Then the ideal class
number hOK

is odd if and only if the number r of finite places of k which
are ramified in K is such that
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• r = 0, or

• r = 1 and K/k is real.

Recall that if K/k is inert, then, according to (1), hOK
is even.

Sketch of proof: (see [9]) We have K = k(y), with

y2 + y = f(x) = λ
N(x)

∏r
i=1 Pi(x)ni

.

Let us show that the 2-rank, R, of the ideal class group of K/k is equal to

R =

{

r if K/k is imaginary
r − 1 if K/k is real

.

We denote by H the Hilbert class field of (K,S∞) and by M/K the maximal
2-primary subextension of H/K. One can define M explicitly. In fact,
consider the partial decomposition of f(x):

f(x) = S0(x) +

r
∑

i=1

Ni(x)

Pi(x)ni
,

where S0(x) ∈ Fq[x] (S0(x) = 0 if K/k is real) and degNi(x) < ni degPi(x).
Set

Si(x) =
Ni(x)

Pi(x)ni
, i = 1, . . . , r .

It can be shown that M = K(y0, . . . , yr) (resp. M = K(y1, . . . , yr)) if K/k
is imaginary (resp. real), where yi satisfies the equation y2i + yi = Si(x).
Since [M : K] = 2R, we obtain the result.

3.3 Quadratic extensions with a small ideal class number

We will also use the following result, which, in even characteristic, gives
all imaginary quadratic extensions K/k such that hOK

= 1 or 2. The case
hOK

= 1 is due to [7] and [6] and the case hOK
= 2, to [5] or [4].

Proposition 3.4 Assume that the characteristic of k equals 2 and let K/k
be an imaginary quadratic extension. Let K = k(y), then one has (up to
an isomorphism leaving the infinite place of k fixed). We denote by α a
generator of F∗

4.

1. If gK ≥ 1, then hOK
= 1 only if
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• k = F2(x) with y2 + y = x3 + x+ 1 or y2 + y = x5 + x3 + 1.

• k = F4(x) with y2 + y = x3 + α.

2. If gK ≥ 1 and K/k is ramified, then hOK
= 2 only if

• k = F2(x), where y2 + y = f(x) with

gK = 1 and f(x) = x+ 1 + 1
x

gK = 2 and f(x) = x+ 1 + x
x2+x+1

f(x) = x3 + 1 + 1
x

f(x) = x+ 1 + 1
x3 (∗)

gK = 3 and f(x) = x3 + x+ 1
x2+x+1

f(x) = x+ 1 + x
x3+x+1

.

(∗) this case is obtained applying transformation x 7→ 1
x to the

preceeding one.

• k = F4(x), where y2 + y = f(x) with

gK = 2 and y2 + y = x+
α

x
.

For a bicyclic biquadratic extension L/k, one can relate an intermediate field
with the two others.

3.4 Compositum of Artin-Schreier extensions

Lemma 3.5 Assume that the characteristic of k equals 2. Let L/k be a
bicyclic biquadratic extension. Then L is the compositum of K1 = Kf1 and
K2 = Kf2, with f1, f2 F2-linearly independent and the third intermediate
field is K3 = Kf3, with f3 = f1 + f2. The genus of L is

gL = g1 + g2 + g3 . (5)

Proof: It is consequence of the results quoted in [11].

Note that, if Ki = K(yi), with y2i + yi = fi(x) for i = 1, 2, then (y1 + y2) is
a primitive element of K3, that is K3 = k(y1 + y2). One can also show that
t = y1y2 is a primitive element of L = K1K2.
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4 Principal imaginary bicyclic biquadratic func-

tion fields in even characteristic

The solutions to the ideal class number one problem for imaginary bicyclic
biquadratic function fields in even characteristic are listed in the following
theorem.

Theorem 4.1 Let L be an imaginary bicyclic biquadratic extension of k =
F2e(x) and let Ki, i = 1, 2, 3, be the three distinct intermediate fields. The
extensions L/k with ideal class number equal to one are exactly the following
(up to isomorphism leaving the infinite place of k fixed) : L = k(y, z), where

1. k = F2e(x), y
2 + y = f(x), z2 + z = g(x), with degree one polynomials

f, g ∈ F2e [x] that are independent over F2e and then gL = 0.

2. k = F4(x), y
2+ y = x3+α, z2+ z = ax+ b, (a, b) ∈ F

∗
4×F4, and then

gL = 2.

3. k = F4(x), y
2 + y = x+ α

x and z2 + z = x and then gL = 1.

4. k = F2(x), y
2 + y = x+ 1 + 1

x and z2 + z = x+ 1 and then gL = 1.

5. k = F2(x), y
2+y = x+1+ x

x2+x+1
and z2+z = x+1 and then gL = 3.

6. k = F2(x), y
2 + y = x+ 1 + 1

x3 , z
2 + z = x+ 1 and then gL = 3.

7. k = F2(x), y
2+y = x+1+ x

x3+x+1
and z2+z = x+1 and then gL = 5.

As previously, we denote by α a generator of F∗
4.

Proof: The genus of a solution L/k will be easily computed using (5). For
each subfield Ki = k(yi) of L, we will consider the equation y2i + yi = fi(x),
where fi(x) ∈ k(x). According to Corollary 2.3, we only have to consider
cases 2 and 5 of Section 2.2.

1. (case 2) All Ki/k are ramified and (hOKi
)1≤i≤3 = (1, 1, 1).

(a) If two Ki/k are ramified and with genera equal to 0 then so is the
third one (see Proposition 3.1). We can take three Ki = Kfi such
that the corresponding fi’s are linear polynomials, independent
over Fq. This gives solution 1 of the Theorem.
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(b) If q = 4 and gK > 0, then, according to Proposition 3.4, there is a
unique K such that hOK

= 1. Let K1 = k(y), with y2+y = x3+α
and g1 = 1, and let K2 be k-isomorphic to K1 and also ramified.
Then K2 = k(z) with z2+z = x3+ax+b, where a, b ∈ F4. Thus,
we obtain K3 = k(u), u2 + u = ax+ (b+α) with g3 = 0 and this
gives solution 2 of the Theorem.

(c) If q = 2 and gK > 0, then according to Proposition 3.4, there
are exactly two K such that hOK

= 1, which are k(u), with
u2 + u = x3 + x+ 1, g = 1, and k(v), with v2 + v = x5 + x3 + 1,
g = 2. They both define ramified extensions K/k. Let us take
K1 = k(u) or a ramified extension K1/k k-isomorphic to k(u)/k
and K2 = k(v) or a ramified extension K2/k k-isomorphic to
k(v)/k. Then K3 has genus 2 and, since it must have an ideal
class number equal to 1, it has to be k-isomorphic to k(v). There
are no solutions in this case.
It can easily be shown that if one takes K1 = k(u) and K2 (ram-
ified) k-isomorphic to k(u), there are no solutions too. Same
conclusion if one takes f(v) instead of k(u).

2. (case 5) Two Ki/k are ramified, the third one is real and
(hOKi

)1≤i≤3 = (1, 1, 2) and Q = 1 , or (hOKi
)1≤i≤3 = (1, 1, 1) and Q =

2.

(a) If the two ramified fields have genus 0, there are no solutions,
since the third field will also be ramified (see Proposition 3.1).

(b) Now we take one ramified field, say K1, with genus 0 and the
other ramified field, say K2, such that g2 > 0 and hOK2

= 1 or 2.
Then, according to Proposition 3.4, we must have q = 2 or 4.

i. If hOK2
= 1, it can easily be shown as previously that the

third field will be ramified too, so this case cannot occur.

ii. If hOK2
= 2 and q = 4, the unique possibility (up to isomor-

phism) is K2 = k(y), where f2(x) = x+ α
x . Then K1 = k(z),

where f1(x) = ax+ b, and K2 = k(y) give K3 = K(u), where
u2 + u = (a + 1)x + b + α

x . Since K3/k has to be real, we
must have a = 1 and b = 0. Then g3 = 0 (so hOK3

= 1) and
this will give a solution if Q = 1. The genus of L is gL = 1
and the two places of S∞(L) are of degree one because there
is some ramification in K1 and K2. So, since gL > 0, the
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regulator of L is strictly greater than 1 and, since g3 = 0, the
regulator of K3 equals 1, so Q = 1. This is solution 3 of the
Theorem.

iii. If hOK2
= 2 and q = 2, we consider the six possibilities for

K2 = Kf2 given in Proposition 3.4. In the following, we set
K1 = k(z), K2 = k(y) and K3 = k(u), with u = y + z.

• Since the third subfield K3 of L has to be real, we must
have K3 = Kf3 , with deg(f3) < 0 and, since f1 is a linear
polynomial, we will have no solutions if the polynomial
part of f2 has a degree greater than 1.
Thus f2(x) = x3+1+ 1

x or f2(x) = x3+x2+ 1
x2+x+1

give
no solution.

• If f2(x) = x + 1 + 1
x , then f1(x) = x + 1 is the only

possibility to obtain a real third subfield. It gives K3 =
K(u), where u2 + u = 1

x , which is a real extension of k
such that g3 = 0. With the same argument as above, we
show that this is a solution (solution 4 of the Theorem)
and gL = 1.

• If f2(x) = x+1+ x
x2+x+1

, then f1(x) = x+1 is the only
possibility to obtain a real third subfield. It gives f3(x) =

x
x2+x+1

, g3 = 1. We can show that the divisor class

number of K3 is h3 = 4. Since (x2 + x+ 1) is irreducible
over F2, hOK3

is odd because of Proposition 3.3. Then
4 = h3 = hOK3

rOK3
, implies that hOK3

= 1 and rOK3
=

4, since rOK3
> 1 (see remark 2.1). This will give a

solution only if Q = 2 rOK3
/rOL

= 1. Let us compute
rOL

. We consider L as a real quadratic extension of K1 =
k(z) : indeed, we have L = K1(u) with

u2 + u =
z2 + z + 1

z4 + z + 1
, (6)

and it is easy to show that gL = 3, hL = 8. Since K1/k
is ramified, we have S∞(K1) = {P}, with degP = 1.
The integral closure of Fq[x] in L is clearly equal to the
integral closure of k[z] in L. Applying Proposition 3.3
to the real quadratic extension L/K1 defined by (6), we
obtain that hOL

is odd. Then hL = hOL
rOL

implies that
hOL

= 1 and rOL
= 8, so that Q = 2 rOK3

/rOL
= 1. This

gives solution 5 of the Theorem.
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• If f2(x) = x+1+ 1
x3 , f1(x) = x+1 is the only possibility

to obtain a real third subfield. It gives f3(x) =
1
x3 , g3 = 1

and h3 = 3. Thus hOK3
= 1 and rOK3

= 3. As previously,
L is a real quadratic extension of K1 = k(z) and L =
K1(u) with

u2 + u =
1

(z2 + z + 1)3
,

gL = 3, hL = 6. We conclude that Q = 1 as before. This
gives solution 6 of the Theorem.

• If f2(x) = x + 1 + x
x3+x+1

, f1(x) = x + 1 is the only
possibility to obtain a real third subfield. It gives f3(x) =

x
x3+x+1

and we can show that g3 = 2 and h3 = 11. Since
g3 > 0, we have rOK3

> 1 (see Remark 2.1). Thus h3 =
hOK3

rOK3
implies hOK3

= 1 and rOK3
= 11. Then

L = K1(u), , with u2 + u =
z2 + z + 1

z6 + z5 + z3 + z2 + 1
,

gL = 5, hL = 22. Since (z6+z5+z3+z2+1) is irreducible,
hOL

is odd. As previously, we have rOL
/rOK3

= 2/Q = 2
or 1. Then, since hL = 22 = hOL

rOL
, we have rOL

= 22,
so that Q = 1. This gives solution 7 of the Theorem.

iv. If the two ramified fields have genus > 0 and an ideal class
number equal to 1, the third one will not be real: just look
at the possibilities given in Proposition 3.4.
Assume now that hOK1

= 1, hOK2
= 2 and gi > 0 for i = 1, 2.

• If q = 4, according to Proposition 3.4 we must have
f1(x) = x3 + α (up to isomorphism) and f2 = x + a

x
(up to isomorphism). One cannot obtain a third real
subfield.

• If q = 2, it is easy to see that there are no solutions for
similar reasons than previously.

5 Conclusion

If the characteristic of k is even, we have given all imaginary bicyclic bi-
quadratic extensions L/k with ideal class number one. As for odd charac-
teristic (see [12]), all such extensions have at least one intermediate field
with genus 0.
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Université de Caen Université Paris VI
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