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ABSTRACT

We propose an exactly soluble W ∗-dynamical system generated by re-
peated harmonic perturbations of the one-mode quantum oscillator. In the
present paper we deal with the case of isolated system. Although dynamics is
Hamiltonian and quasi-free, it produces relaxation of initial state of the sys-
tem to the steady state in the large-time limit. The relaxation is accompanied
by the entropy production and we found explicitly the rate for it. Besides,
we study evolution of subsystems to elucidate their eventual correlations and
convergence to equilibrium state. Finally we prove a universality of the dy-
namics driven by repeated harmonic perturbations in a certain short-time
interaction limit.
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1 Preliminaries and the Model

1.1 Setup

We consider quantum system (one-mode quantum oscillator S), which is suc-
cessively perturbed by time-dependent identical repeated interactions. This
sequence of perturbation is switched on at the moment t = 0 and it acts
constantly on the interval 0 ≤ t < ∞. It is a common fashion to present
this sequence as repeated interactions of the system S with an infinite time-
equidistant chain: C = S1 + S2 + . . ., of subsystems {Sk}k≥1. This visualisa-
tion is also motivated by certain physical models [BJM].

Below we suppose that the states of S and of every Sk are normal, i.e.
defined by the density matrices ρ0 and {ρk}∞k=1 on the Hilbert spaces HS
and {HSk

}∞k=1, respectively. The Hilbert space of the total system is then
the tensor product HS⊗HC. Here the infinite product HC = ⊗k≥1HSk

stays
for the Hilbert space chain.

Since for any fixed moment t ≥ 0, only a finite number N(t) of repeated
interactions are involved into the dynamics, the subsystems {Sk}k>N(t) are
still independent for different k, as well as they are independent of compo-
nents S and {Sk}N(t)

k=1 . On the other hand, the problem of correlations between
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components S, Sk for k ≤ N(t) and between Sk, Sk′ for 1 ≤ k < k′ ≤ N(t) is
considered in Section 5. This peculiarity of repeated interactions allows to re-
duce the analysis of dynamics to the finite tensor product: HCN = ⊗N

k=1HSk
.

Then one recovers the above infinite chain S + C as the limit N → ∞, a
posteriori .

Details of dynamics are presented in the next Section 2. In this section
we mention our guiding hypothesises.

Hypothesis 1: For t ≤ 0, all components of S and {Sk}Nk=1 are independent,
i.e. the state of S + CN is described as a finite tensor product: ωS+CN :=
ωS ⊗

⊗N
k=1 ωSk

. We suppose that each of the state in the product is normal.

Remark 1.1 Although it is not decisive for our arguments, we recall that the
product HC as well as the von Neumann algebra of observables of the infinite
total system M = MS⊗MC can be correctly defined, see e.g. [BR1] (Sections
2.7.2 and 2.7.3). Here MS ⊆ L(HS) and MC = ⊗k≥1MSk

⊆ L(HC) are von
Neumann algebras of bounded operators L on HS and HC, respectively.

A basic ingredient in construction of dynamical system S + CN is the
one-mode quantum harmonic oscillator. Recall that it can be described by
(unbounded) boson annihilation and creation operators a, a∗ defined in the
Fock space F . They realise a representation of the Canonical Commutation
Relations (CCR) in F , i.e. formally satisfy the operator relations:

[a, a∗] = 1, [a, a] = 0, [a∗, a∗] = 0 .

Here 1 denotes the unit operator on F . Let Ω ∈ F be the vacuum vector:
aΩ = 0. Then the Hilbert space space F is vector-norm completion of the
algebraic span of vectors {(a∗)mΩ}m≥0.

Denote by {Hk}Nk=0, the copies of the Fock space F for arbitrary but
finite N ∈ N and by H (N), the Hilbert space HS

⊗
HCN for S + CN with

HS = H0 and HSk
= Hk (k = 1, · · · , N), i.e.,

H
(N) := H0 ⊗

N⊗

k=1

Hk = F
⊗(N+1) . (1.1)

Now we define in (1.1) two operators

b0 := a⊗ 1⊗ . . .⊗ 1, b∗0 := a∗ ⊗ 1⊗ . . .⊗ 1 . (1.2)
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These CCR boson operators serve for description of the system S with Hamil-
tonian

HS := E b∗0b0 , dom(HS) ⊂ H
(N) , E > 0 . (1.3)

It is a one-mode harmonic oscillator with discrete spectral spacing E. We
consider it as an isolated (ideal) one-mode quantum harmonic subsystem.

The subsystems {Sk}k≥1 that we consider in the present paper are in
turn identical one-mode harmonic quantum oscillators with discrete spectral
spacing ǫ. Then to describe evolution of the finite system S + CN due to
N = N(t) consecutive interactions, we define in space (1.1) the sequence of
boson operators {bk, b∗k}Nk=1 in the space (1.1):

b1 := 1⊗ a⊗ 1⊗ 1⊗ . . .⊗ 1, b∗1 := 1⊗ a∗ ⊗ 1⊗ 1⊗ . . .⊗ 1,

b2 := 1⊗ 1⊗ a⊗ 1⊗ . . .⊗ 1, b∗2 := 1⊗ 1⊗ a∗ ⊗ 1⊗ . . .⊗ 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.4)

bN := 1⊗ 1⊗ 1⊗ 1⊗ . . .⊗ a, b∗N := 1⊗ 1⊗ 1⊗ 1⊗ . . .⊗ a∗.

The Hamiltonian of each of subsystem Sk has the form

HSk
:= ǫ b∗kbk , dom(HSk

) ⊂ H
(N) , ǫ > 0 , k = 1, 2, . . . , N . (1.5)

Altogether the boson operators (1.2) and (1.4) formally satisfy the CCR in
the space (1.1):

[bk, b
∗
k′] = δk,k′1, [bk, bk′] = [b∗k, b

∗
k′ ] = 0 , k, k′ = 0, 1, 2, . . . , N. (1.6)

Remark 1.2 Note that there is some physical interpretation [NVZ] behind
of this mathematical modelling. For example, the system CN can be identified
with a chain of N quantum particles (atoms or molecules) (1.5) with har-
monic internal degrees of freedom interacting one-by-one with E-one-mode
quantum cavity (1.3).

Hypothesis 2: (Tuned interaction) We consider repeated perturbations in
the tuned regime: for any moment t ≥ 0 exactly one subsystem Sn is inter-
acting with the system S during a fixed time τ > 0. Here n = [t/τ ] + 1,
where [x] denotes the integer part of x ≥ 0.

Hypothesis 3: The time-dependent repeated interaction is a piecewise con-
stant operator, which is taken as the sum over n ≥ 1 of the following bilinear
forms in operators (1.2), (1.4):

Kn(t) := χ[(n−1)τ,nτ)(t) η (b∗0bn + b∗nb0) , η > 0. (1.7)

Here χI(x) is the characteristic function of the set I.
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1.2 The Model

For any N ≥ 1, the Hamiltonian HN(t) of non-autonomous system S + CN
is defined in the space (1.1) as the sum of all ingredients (1.3), (1.5) and
(1.7). This sum is essentially self-adjoint operator in H (N). Since it does
not produce any confusion, we denote its closure by the same symbol:

HN(t) := HS +

N∑

k=1

(HSk
+Kk(t)) (1.8)

= Eb∗0b0 + ǫ

N∑

k=1

b∗kbk +

N∑

k=1

χ[(k−1)τ,kτ)(t) η (b
∗
0bk + b∗kb0) .

By virtue of (1.7), (1.8) only Sn interacts with S for t ∈ [(n − 1)τ, nτ),
n ≥ 1, i.e. the system S + CN is autonomous on this time-interval with
self-adjoint Hamiltonian

Hn(b) := E b∗0b0 + ǫ

N∑

k=1

b∗kbk + η (b∗0bn + b∗nb0) , n ≤ N . (1.9)

Here again operator Hn denotes the closure of the algebraic sum of operators
in the right-hand side of (1.9). We shall consider only the case t < Nτ .

Note that CCR (1.6) and definition of Hamiltonian (1.9) yield

[Hn, b0] = −Eb0 − ηbn , [Hn, bj] = −ǫbj − δjnηb0 , (1.10)

[Hn, b
∗
0] = Eb∗0 + ηb∗n , [Hn, b

∗
j ] = ǫb∗j + δjnηb

∗
0 ,

for any 1 ≤ j ≤ N .
Moreover, since Hamiltonian (1.9) is bilinear, there exists a canonical (i.e.

CCR-preserving ) linear transformation [Ar0]

Pn : {bk}Nk=0 → {ck}Nk=0 , (1.11)

which diagonalises (1.9):

H̃n(c) := ε0 c
∗
0c0 + ε1 c

∗
1c1 +

N∑

k=2

εkc
∗
kck , (1.12)
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where

ε0 :=
1

2
[(E + ǫ) +

√
(E − ǫ)2 + 4η2] , (1.13)

ε1 :=
1

2
[(E + ǫ)−

√
(E − ǫ)2 + 4η2] , (1.14)

and ε2 = . . . = εN = ǫ.

Hypothesis 4: By virtue of (1.13), (1.14) to keep Hamiltonian (1.8) (or
(1.9)) semi-bounded from below, we must impose the condition

η2 ≤ E ǫ . (1.15)

Remark 1.3 (i) The non-autonomous system S + C formally corresponds
to Hamiltonian H∞(t), t ∈ [0,∞), i.e., the case N = ∞ of (1.8). Then for
t ∈ [(n− 1)τ, nτ), n ≥ 1, and for any j ∈ N one obtains:

[H∞(t), b0] = −Eb0 − ηbn , [H∞(t), bj] = −ǫbj − δjnηb0 , (1.16)

[H∞(t), b∗0] = Eb∗0 + ηb∗n , [H∞(t), b∗j ] = ǫb∗j + δjnηb
∗
0 ,

corresponding to (1.10). These formal calculations can be justified in the
framework of the infinite tensor products and the von Neumann algebras
mentioned above [BR1]. Instead of that, in the present paper we look on
N = ∞ as a posteriori inductive limit.

(ii) Below. we study the non-autonomous system S+CN for arbitrary but
fixed N ≥ 1 conditioned by t ∈ [0, τN). Then (1.10) and (1.16) coincides.
Hence, we keep using the notation S + C in this case. We restore the skipped
subindex N only if the finiteness of the chain C is indispensable to stress.

(iii) Note that in contrast to the case studied in [NVZ], the subsystems
Sk are not rigid and the interaction (1.7) is inelastic. Then, besides the
energy/entropy exchange between S and C, the repeated perturbations may

produce entanglement, or correlations, of states in the subsystems {Sk}n(t)k=1 ,
where n(t) = [t/τ ] + 1.

We conclude this section by a general lemma based on harmonic structure
of the model and by the final Hypothesis 5. The first yields an explicit form
for commutators (1.10) and canonical transformation (1.11), (1.12).
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Lemma 1.4 For j = 0, 1, 2, . . . , N and n = 1, 2, . . . , N , one gets

eitHnbje
−itHn =

N∑

k=0

(U∗
n(t))jkbk, eitHnb∗je

−itHn =

N∑

k=0

(U∗
n(t))jkb

∗
k, (1.17)

e−itHnbje
itHn =

N∑

k=0

(Un(t))jkbk, e−itHnb∗je
itHn =

N∑

k=0

(Un(t))jkb
∗
k , (1.18)

for t ≥ 0. Here Un(t) and Vn(t) are (N + 1) × (N + 1) matrices related by
Un(t) = eitǫVn(t), where

(Vn(t))jk :=





g(t)z(t) δk0 + g(t)w(t) δkn (j = 0)

g(t)w(t) δk0 + g(t)z(−t) δkn (j = n)

δjk (otherwise)

(1.19)

with

g(t) := eit(E−ǫ)/2 , w(t) :=
2iη√

(E − ǫ)2 + 4η2
sin t

√
(E − ǫ)2

4
+ η2 , (1.20)

z(t) := cos t

√
(E − ǫ)2

4
+ η2 +

i(E − ǫ)√
(E − ǫ)2 + 4η2

sin t

√
(E − ǫ)2

4
+ η2 .

(1.21)

Remark 1.5 Note that by definitions (1.20) and (1.21), we get |z(t)|2 +
|w(t)|2 = 1, z(−t) = z(t) and w(t) = −w(t). Therefore, the matrix

M(t) :=



z(t) w(t)

w(t) z(−t)




is unitary. For N = 1, one gets M(t) = g(t)V1(t), see (1.19). More-
over, (1.17) and (1.18) imply that {Vn(t)}t∈R and {Un(t)}t∈R are in fact
one-parameter groups of (N + 1)× (N + 1) unitary matrices.

Proof (of Lemma 1.4 ): Let {Jn}Nn=1 and {Xn}Nn=1 be (N + 1) × (N + 1)
Hermitian matrices given by

(Jn)jk :=

{
1 (j = k = 0 or j = k = n)

0 otherwise
, (1.22)
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(Xn)jk :=





(E − ǫ)/2 (j, k) = (0, 0)

−(E − ǫ)/2 (j, k) = (n, n)

η (j, k) = (0, n)

η (j, k) = (n, 0)

0 otherwise

. (1.23)

We define the matrices

Yn := ǫI +
E − ǫ

2
Jn +Xn (n = 1, . . . , N) , (1.24)

where I is the (N + 1) × (N + 1) identity matrix. Then Hamiltonian (1.9)
takes the form

Hn =

N∑

j,k=0

(Yn)jkb
∗
jbk . (1.25)

Since Yn is Hermitian, there exists a diagonal matrix Λ and unitary mapping
Pn : RN+1 → R

N+1, implemented by transformation (1.11), such that Yn =
P ∗
nΛPn holds. Recall that after canonical transformation the matrix Λ :=

{Λij}Ni,j=0 = {δij εj}Ni,j=0 is universal and independent of n, see (1.12). Then
new operators (1.11)

cj =
N∑

k=0

(Pn)jk bk, c∗j =
N∑

k=0

(Pn)jk b∗k (j = 0, 1, . . . , N) (1.26)

satisfy CCR in the space H (N) (1.1) and diagonalise (1.25):

H̃n =

N∑

j=0

Λjjc
∗
jcj , (1.27)

where Λjj = εj , see (1.12). Therefore, the set of all eigenvectors of H̃n is:

{ N∏

j=0

(c∗j )
nj

√
nj!

Ω⊗ . . .⊗ Ω
∣∣∣nj ∈ Z+ (j = 0, 1, . . . , N)

}
. (1.28)

Note that it forms a complete orthonormal basis in H (N). The linear enve-
lope H

(N)
0 of the set (1.28) is invariant subspace for transformations eitH̃n

and its norm-closure coincides with H (N). Then by (1.27) one gets on (1.28)

eitH̃ncje
−itH̃n = e−itΛjjcj , eitH̃nc∗je

−itH̃n = eitΛjjc∗j .
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Now taking into account canonical transformation (1.26), we obtain

eitHnbje
−itHn =

N∑

k=0

(P ∗
n)jk e

itH̃ncke
−itH̃n

=
N∑

k,l=0

(P ∗
n)jke

−itΛkk(Pn)klbl =
N∑

l=0

(
e−itP ∗

nΛPn
)
jl
bl =

N∑

l=0

(
e−itYn

)
jl
bl . (1.29)

Similarly we get on H
(N)
0 :

eitHnb∗je
−itHn =

N∑

l=0

(
e−itYn

)
jl
b∗l .

Note that by virtue of (1.22), (1.23), one has identities

X2
n =

((E − ǫ)2

4
+ η2

)
Jn and JnXn = Xn .

Together with definition (1.24), they yield

eitYn = eitǫ
(
I − Jn + eit(E−ǫ)/2

{
Jn cos t

√
(E − ǫ)2

4
+ η2 (1.30)

+iXn

[
(E − ǫ)2

4
+ η2

]−1/2

sin t

√
(E − ǫ)2

4
+ η2

})
= eitǫVn(t) = Un(t).

Inserting now (1.30) into (1.29), we prove (1.17).
Since Un(t)

∗ = Un(−t), one can similarly establish (1.18). �

Hypothesis 5: The parameters of the model (1.8) and the interaction time
τ verify in addition to (1.15) the conditions |w(τ)| < 1 and |z(τ)| < 1, which
are satisfied for, e.g., small τ :

τ
√

(E − ǫ)2/4 + η2 < π/2, (1.31)

see (1.20), (1.21).

Remark 1.6 Hereafter, we use the short-hand notations:

g := g(τ), w := w(τ), z := z(τ) and Vn := Vn(τ), Un := Un(τ) . (1.32)
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The paper is organised as follows. In Section 2, we give a quite explicit
description of Hamiltonian dynamics of the total non-autonomous system
S + C due to repeated interactions. Since our system is boson, it is a unity
preserving ∗-dynamics on the CCR von Neumann algebra generated by the
Weyl operators. It is a quasi-free W ∗-dynamical system. We recall in Section
3 formulae for entropy of the CCR quasi-free states. In Section 4, we use them
for the entropy production calculations. Section 5 is dedicated to analysis
of reduced dynamics of subsystems their correlations and convergence to
equilibrium. We prove also a universality of the short-time interaction limit
of this dynamics for subsystem S.

2 Hamiltonian Dynamics

We start this section with analysis of evolution of the non-autonomous system
S + C with Hamiltonian (1.8).

A well-known way to avoid the problem of evolution of unbounded creation-
annihilation operators is to construct dynamics of the subsystem S on the
unital CCR C∗-algebra A (F ). Here A (F ) is generated on the Fock space
F as the operator-norm closure of the linear span Aw of the Weyl operator
system:

{ŵ(α) = eiΦ(α)/
√
2}α∈C . (2.1)

Here Φ(α) := ᾱa+ αa∗ is a self-adjoint operator with domain in F and the
CCR take then the Weyl form:

ŵ(α1)ŵ(α2) = e−i Im(ᾱ1α2)/2 ŵ(α1 + α2) , α1, α2 ∈ C . (2.2)

Note that A (F ) is a minimal C∗-algebra, which contains the span Aw

of the Weyl operator system (2.1). Algebra A (F ) is contained in the C∗-
algebra L(F ) of all bounded operators on F .

Similarly we define the Weyl C∗-algebra A (H )⊂L(H ) over H :=
H (N) (1.1). It is appropriate for description the system S + C, see Remark
1.3(ii). This algebra is generated by operators

W (ζ) =

N⊗

k=0

ŵ(ζk), ζ = {ζk}Nk=0 ∈ C
N+1 , N ≥ 1. (2.3)
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Using definitions of the boson operators {bj , b∗j}Nj=1 (1.4) and of the sesqui-
linear forms

〈ζ, b〉 :=
N∑

j=0

ζ̄jbj , 〈b, ζ〉 :=
N∑

j=0

ζjb
∗
j , (2.4)

the Weyl operators (2.3) can be rewritten as

W (ζ) = exp[i
(
〈ζ, b〉+ 〈b, ζ〉

)
/
√
2] . (2.5)

We denote by C1(F ) ⊂ L(F ), the set of all trace-class operators on F .
A self-adjoint, non-negative operator ρ ∈ C1(F ) with unit trace is called
density matrix. Note that the state ωρ(·) generated by ρ on the C∗-algebra
of bounded operators L(F ):

ωρ(A) := TrF (ρA) , A ∈ L(F ) , (2.6)

is a normal state [BR1]. In particular, (2.6) defines a normal state on the
Weyl algebra A (F ).

Let {ρk}Nk=0 be collection of density matrices on F . Then we can define
normal product-state

ωρ⊗(·) := TrH (ρ⊗ · ) , ρ⊗ := ⊗N
k=0ρk , (2.7)

on the C∗-algebra A (H ), which is isometrically isomorphic to the tensor
product ⊗N

k=0A (F ) of identical C∗-algebras A (F ). If we put

Ck(α) := TrF [ρk ŵ(α)] , α ∈ C , (2.8)

then by (2.3) and (2.8) one obtains for ρ⊗ (2.7) the representation:

ωρ⊗(W (ζ)) := TrH [ρ⊗ W (ζ)] =
N∏

k=0

Ck(ζk) . (2.9)

Let ̺ ∈ C1(H ) be a (general) density matrix on H . Then for the
system S + C, the Hamiltonian dynamics Tt : ̺ 7→ ̺(t) of initial density
matrix ̺(0) := ̺ is defined as a unique solution of the Cauchy problem for
the non-autonomous Liouville equation

∂t̺(t) = L(t)(̺(t)) , ̺(t)
∣∣
t=0

= ̺ ∈ D ⊆ C1(H ) . (2.10)
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Here D denotes a suitable class of initial conditions. The time-dependent
generator L(t) with dom(L(t)) ⊆ C1(H ) is defined on the interval [0, τN)
by (1.8)-(1.10):

L(t)(̺(t)) := −i [HN(t), ̺(t)] , t ∈ [0, τN) . (2.11)

The solution of the problem (2.10) is trace-norm (‖ · ‖1) differentiable family
{Tt(̺)}t∈[0,Nτ). By virtue of (1.9) and (2.11), equation (2.10) is autonomous
for each of the interval [(n− 1)τ, nτ) :

L(t)(·) = Ln(·) = −i[Hn , · ] , t ∈ [(n− 1)τ, nτ) , n > 1 , (2.12)

i.e., the Liouvillian generator is piecewise constant (time-independent).
Since any t > 0 has the representation:

t := n(t)τ + ν(t) , n(t) := [t/τ ] and ν(t) ∈ [0, τ) , (2.13)

by Markovian independence of generators (2.12), the ‖·‖1-continuous solution
of the Cauchy problem (2.10) takes the iterative form:

̺(t) = Tt(̺) := Tν(t),n(Tτ,n−1(. . . Tτ,1(̺) . . .)) = (2.14)

e−iν(t)Hne−iτHn−1 . . . e−iτH1̺ eiτH1 . . . eiτHn−1eiν(t)Hn .

Here t ∈ [(n− 1)τ, nτ) and n = n(t) < N . By the ‖ · ‖1-continuity we obtain
from (2.14) that

̺(Nτ − 0) = ̺(Nτ) = TNτ (̺) = e−iτHN . . . e−iτH1̺ eiτH1 . . . eiτHN . (2.15)

Remark 2.1 To bolster that (2.14) gives a solution of the non-autonomous
Cauchy problem (2.10) in the space C1(F ), we note that

U(t) = e−iτH1 · · · e−iτHn−1e−iν(t)Hn(t) , t = n(t)τ + ν(t) , (2.16)

is a one-parameter strongly continuous family of unitary operators on H .
Then ̺(t) = U(t)̺U∗(t) implies that for t ∈ R the map Tt (2.14) is trace-
and positivity-preserving, such that t 7→ ̺(t) enjoys continuity in the weak
operator topology. Since ‖̺(t)‖1 = 1, the weak continuity implies the ‖ · ‖1-
continuity of t 7→ ̺(t), see e.g. [Za], Corollary 2.66. Hence, the map Tt is
a trace-norm continuous ∗-automorphism of the set of all density matrices:
{̺ ∈ C1(F ) : ̺ ≥ 0, ‖̺‖1 = 1}.
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Remark 2.2 Note that equivalent and often more convenient description of
density matrices evolution (2.14) is the dual dynamics T ∗

t : L(H ) → L(H ):

ωTt(̺)(A) = TrH (Tt(̺)A) =: TrH (̺ T ∗
t (A)), for (̺, A) ∈ C1(F )× L(H ).

(2.17)
Since t 7→ Tt(̺) is ‖ · ‖1-continuous and since L(H ) is topologically dual of
C1(H ), one gets that t 7→ T ∗

t (A) in (2.17) is a one-parameter ∗-automorphism
of the unital C∗-algebra of bounded operators L(H ). The automorphism of
the C∗-dynamical system (L(H ), T ∗

t ) is not time-continuous for bosons, see
Appendix A. To ensure the continuity of T ∗

t one considers instead of the
C∗-algebra A (H ) ⊂ L(H ), the von Neumann algebra M(H ), which is
closure of the Weyl linear span Aw generated by (2.1), (2.3) in the weak*-
topology. Since it is weaker than C∗-algebra topology, M(H ) is ∗-isomorphic
to L(H ). Then ‖ · ‖1-continuity of Tt(̺) implies continuity of the dual map-
ping t 7→ T ∗

t (A) in the weak*-topology on M(H ) and defines a W ∗-dynamical
system (M(H ), T ∗

t ).

We leave details for Appendix A and we address the readers to the refer-
ences [AJP1] and [BR1], [BR2].

Remark 2.3 Below we show that T ∗
t maps A (H ) into itself, and that the

action of T ∗
t on Weyl operators can be calculated in the explicit form. Since

A (H ) is ∗-weakly dense in L(H ), these allow to deduce properties of evo-
lution ρ(t).

Using (2.15) and dual representation (2.17), we can prove the main result
of this section.

Lemma 2.4 For t = Nτ , the expectation (2.9) of the Weyl operator (2.5)
with respect to the evolved state has the form

ωρ(Nτ)(W (ζ)) = ωρ(W (U1 . . . UN ζ)) =
N∏

k=0

Ck((U1 . . . UN ζ)k) . (2.18)

Here

(U1 . . . UN ζ)0 = eiNτǫ
(
(gz)Nζ0 +

N∑

j=1

gw(gz)j−1 ζj
)
, (2.19)

whereas

(U1 . . . UN ζ)k = eiNτǫ
(
gw(gz)N−kζ0+gz̄ζk+

N∑

j=k+1

g2w2(gz)j−k−1ζj
)
, (2.20)
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for 0 < k < N , and

(U1 . . . UN ζ)N = eiNτǫ
(
gwζ0 + gz̄ζN

)
, (2.21)

see definitions (1.20) and (1.21).

Proof : Note that (2.9), (2.15) and the duality (2.17) yield

ωρ(Nτ)(W (ζ)) = TrH [ρ T ∗
Nτ (W (ζ))] = TrH [ρ eiτH1 . . . eiτHNW (ζ)e−iτHN . . . e−iτH1 ]

= TrH [ρ W (U1 . . . UN ζ)] =
N∏

k=0

Ck((U1 . . . UN ζ)k). (2.22)

To generate the mapping ζ 7→ U1 . . . UN ζ in (2.22), we use Lemma 1.4 and
sesquilinear forms (2.4) to obtain

eiτH1 . . . eiτHN 〈ζ, b〉e−iτHN . . . e−iτH1 = 〈ζ, U∗
N . . . U∗

1 b〉 (2.23)

= 〈U1 . . . UN ζ, b〉

and the similar expression for its conjugate, which we then insert into (2.5).
Moreover, by the same Lemma 1.4, we get that U1 . . . UN ζ = eiNτǫV1 . . . VN ζ ,

where

(V1 . . . VN)0j =

{
(V1)00 . . . (VN)00 = (gz)N (j = 0)

(V1)00 . . . (Vj−1)00(Vj)0j(Vj+1)jj . . . (VN)jj = (gz)j−1gw (0 < j 6 N),

and for 0 < k 6 N :

(V1 . . . VN)kj =





(V1 . . . Vk−1)kk(Vk)k0(Vk+1 . . . VN)00 = gw(gz)N−k (j = 0)

0 (0 < j < k)

(V1 . . . Vk−1)kk(Vk)kk(Vk+1 . . . VN)kk = gz̄ (j = k)

(V1 . . . Vk−1)kk(Vk)k0(Vk+1 . . . Vj−1)00(Vj)0j(Vj+1 . . . VN)jj

= gw(gz)j−k−1gw (k < j 6 N).

Collecting these formulae, one obtains explicit expressions for components
(2.19) and (2.20) of the vector U1 . . . UN ζ . �
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Remark 2.5 Note that for a fixed N and for any t = mτ , 1 ≤ m ≤ N , the
arguments of Lemma 2.4 give a general formula

ωρ(mτ)(W (ζ)) = ωρ(T
∗
mτ (W (ζ))) = ωρ(W (U1 . . . Um ζ))

=

N∏

k=0

Ck((U1 . . . Um ζ)k) . (2.24)

Following the same line of reasoning as for (2.23) one obtains explicit for-
mulae for the components {(U1 . . . Um ζ)k}Nk=0:

(U1 . . . Um ζ)k =




eimτǫ
(
(gz)mζ0 +

∑m
j=1 gw(gz)

j−1 ζj
)

(k = 0)

eimτǫ
(
gw(gz)m−kζ0 + gz̄ζk +

∑m
j=k+1 g

2w2(gz)j−k−1ζj
)

(1 6 k < m)

eimτǫ
(
gwζ0 + gz̄ζm

)
(k = m)

eimτǫ ζk (m < k 6 N)

Note that for m = N , these formulae coincide with (2.19)-(2.21), except the
last line, which is void in this case.

Remark 2.6 Recall that unity preserving ∗-dynamics t 7→ T ∗
t on the CCR

von Neumann algebra M(H ) generated by {W (ζ)}ζ∈C (2.5) is quasi-free, if
there exist a mapping Ut : ζ 7→ Utζ and a complex-valued function Ωt : ζ 7→
Ωt(ζ), such that

T ∗
t (W (ζ)) = Ωt(ζ)W (Utζ) , Ω0 = 1 , U0 = I , (2.25)

see e.g., [AJP1], [BR2] or [Ve]. Then by Remark 2.5, the step-wise dynamics

T ∗
mτ (W (ζ)) = W (U1 . . . Um ζ) , m = 0, 1, . . . , N

is quasi-free, with Ωt(ζ) = 1 and the matrices {Uj}Nj=1 on C
N+1 defined by

Lemma 1.4.

3 Entropy of CCR Quasi-Free States

In this section, we establish some useful formulae relating expectations of
the Weyl operators (Weyl characteristic function) and the entropy of boson
quasi-free states. We formulate them in a way that is restricted but sufficient
for our purposes. For general settings see, e.g. [Fa], [AJP1], [BR2], [Ve] and
references therein.
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Definition 3.1 A state ω on the CCR C∗-algebra A (F ) (2.1) is called
quasi-free, if its characteristic function has the form

ω(ŵ(α)) := e−
1
4
|α|2− 1

2
h(α) , (3.1)

where h : α 7→ ĥ(α, α) is a (closable) non-negative sesquilinear form on
C × C. A quasi-free state ω is gauge-invariant if ω(ŵ(α)) = ω(ŵ(eiϕα)) for
ϕ ∈ [0, 2π).

Let ωβ denote the Gibbs state with parameter β (inverse temperature)
given by the density matrix ρ(β) = e−βa∗a/Z(β), where Z(β) = (1− e−β)−1.
This state is quasi-free and gauge-invariant, since

ωβ(ŵ(α)) = e−
1
4
|α|2− 1

2
hβ(α) (3.2)

holds for

hβ(α) =
|α|2

eβ − 1
, α ∈ C . (3.3)

Note that the entropy of ωβ is given by

s(β) := −TrF [ρ(β) ln ρ(β)] =
β

eβ − 1
− ln(1− e−β). (3.4)

and that

ωβ(a
∗a) =

1

eβ − 1
. (3.5)

In terms of the variable

1 + e−β

1− e−β
=: x, (3.6)

the entropy (3.4) can be represented as

s(β) = σ
(1 + e−β

1− e−β

)
, (3.7)

where

σ(x) :=
x+ 1

2
ln

x+ 1

2
− x− 1

2
ln

x− 1

2
. (3.8)

Here σ : (1,∞) → (0,∞) and σ′(x) > 0.
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Extension to the case of the space (1.1) is straightforward: general gauge-
invariant quasi-free states on the CCR C∗-algebra A (H ) are defined by
density matrices of the form [Ve]:

ρL =
1

ZL
e−〈b,Lb〉 , ZL = det

[
1− e−L

]−1
. (3.9)

Here sesquilinear operator-valued forms 〈b, Lb〉 =
∑N

n,m=0 ℓnmb
∗
nbm are pa-

rameterised by (N + 1) × (N + 1) positive-definite Hermitian matrix L =
{ℓnm}06n,m6N . Note that the ∗-automorphism Tϕ on A (H ) (the gauge
transformation) :

Tϕ : b∗n 7→ b∗ne
iϕ, bm 7→ bme

−iϕ (ϕ ∈ R , n,m = 0, 1, . . .N) , (3.10)

leaves the state (3.9) invariant.
Then characteristic function of the Weyl operators W (ζ) takes the form

ωρL(W (ζ)) = TrH [ρLW (ζ)] = exp
[
− 1

4
〈ζ, ζ〉 − 1

2
〈ζ, 1

eL − 1
ζ〉
]
. (3.11)

Here the vector in the argument is

ζ =




ζ0
ζ1
·
·
·
ζN




∈ C
N+1 .

Note that the entropy of the state ωρL is given by

S(ρL) = −TrH [ρL ln ρL] = tr[L(eL − 1)−1 − ln(1− e−L)], (3.12)

where the trace in the third member is over CN+1.
If we define the matrix

X := (1 + e−L)(1− e−L)−1, (3.13)

then the characteristic function (3.11) takes the form:

ωρL(W (ζ)) = exp
[
− 1

4
〈ζ,Xζ〉

]
. (3.14)
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And for the entropy (3.12), we obtain

S(ρL) = tr
[X + 1

2
ln

X + 1

2
− X − 1

2
ln

X − 1

2

]
. (3.15)

Below we need a bit more specified set up than (3.13)-(3.15). Let ρ(β, δ; ξ)
be density matrix of a quasi-free state (3.9) corresponding to the operator-
valued sesquilinear form

〈b, L(β, δ; ξ)b〉 = β
N∑

n=0

b∗nbn + δ〈b, ξ〉〈ξ, b〉. (3.16)

on CN+1 × C
N+1. Here β > 0, δ > −β, and the vector

ξ =




ξ0
ξ1
·
·
·
ξN




∈ C
N+1 ,

Lemma 3.2 The partition function of the state ρ(β, δ; ξ) is given by

Z(β, δ; ξ) = TrH [e−〈b,L(β,δ;ξ)b〉] = (1− e−β)−N(1− e−(β+δ〈ξ,ξ〉))−1 , (3.17)

so that

ρ(β, δ; ξ) =
1

Z(β, δ; ξ)
exp

[
− 〈b, L(β, δ; ξ)b〉

]
.

The characteristic function and the entropy of this state are respectively:

TrH [ρ(β, δ; ξ)W (ζ)] = exp
[
− 1

4

1 + e−β

1− e−β
〈ζ, ζ〉

]

× exp
[
− 1

4

(1 + e−β−δ〈ξ,ξ〉

1− e−β−δ〈ξ,ξ〉 −
1 + e−β

1− e−β

)
|〈ξ, ζ〉|2/〈ξ, ξ〉

]
(3.18)

and
S(ρ(β, δ; ξ)) = −TrH [ρ(β, δ; ξ) lnρ(β, δ; ξ)]

= Ns(β) + s(β + δ〈ξ, ξ〉) . (3.19)
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Proof : Proof of (3.17) follows from (3.9) and (3.16). Indeed, since by (3.9)
any orthogonal transformation O on C

N+1 leaves the partition function in-
variant: ZOTLO = ZL, one can calculate it with Oξ (instead of ξ), where Oξ
has only one non-zero component equals to the vector norm 〈ξ, ξ〉1/2. Then
the right-hand side of (3.17) follows straightforwardly from the calculation
of the left-hand side for this choice of Oξ.

Since this transformation O also diagonalise the matrix L := L(β, δ; ξ),
one uses it to simplify the explicit calculations in (3.13), (3.14) and then
returns back to ξ as a last step. To this aim note that

ωρL(W (ζ)) = exp
[
− 1

4
〈Oζ,OXO∗Oζ〉

]
= (3.20)

exp
[
− 1

4

1 + e−β

1− e−β
〈Oζ,Oζ〉′

]
exp

[
− 1

4

1 + e−β−δ〈ξ,ξ〉

1− e−β−δ〈ξ,ξ〉 |(Oζ)0|2
]
.

Here 〈Oζ,Oζ〉′ := ∑N
k=1 |(Oζ)k|2 and we choose transformation O in such a

way that (Oξ)j = δ0,j‖ξ‖. Since

|(Oζ)0|2 =
1

〈ξ, ξ〉〈Oζ,Oξ〉〈Oξ,Oζ〉 , (3.21)

the identities (3.20) give the proof of (3.18).
The same method is valid for entropy (3.12). Calculation of the trace in

diagonal representation for L = L(β, δ; ξ) gives formula (3.19). �

Recall that the state ω on the CCR C∗-algebra A (H ) is regular, if the
map s 7→ ω(W (s ζ)) is a continuous function of s ∈ R for any ζ ∈ C

N+1. This
property follows from the explicit expression (3.18). Since by the Araki-Segal
theorem (see e.g. [AJP1] or [BR1]) a regular state is completely defined by
its characteristic function, (3.18) and (3.19) yield the following statement.

Lemma 3.3 The entropy S(ρ) of the quasi-free state ωρ on the CCR C∗-
algebra A (H ) with characteristic function

ωρ(W (ζ)) = exp
[
− 1

4

(
x〈ζ, ζ〉+ x0|〈ξ, ζ〉|2

)]
(3.22)

is uniquely determined by the parameters (ξ, x, x0), where ξ ∈ C
N+1,

x > 1, x0 > 1− x and it has the form

S(ρ) = Nσ(x) + σ(x+ x0〈ξ, ξ〉) , (3.23)

where σ(·) is defined by (3.8).
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Proof : The proof follows directly from definitions (3.6), (3.7), if one puts

x0〈ξ, ξ〉 =
1 + e−β−δ〈ξ,ξ〉

1− e−β−δ〈ξ,ξ〉 −
1 + e−β

1− e−β
,

in (3.18) and use (3.7) in (3.19). �

4 Repeated Perturbations and Entropy Pro-

duction

We consider evolution (2.14) of the system S+C, when initial density matrix
(2.7) corresponds to the product of gauge-invariant Gibbs quasi-free states
with parameter β0 ≥ 0 for S and with parameter β ≥ 0 for C:

ρ = ρ0 ⊗
N⊗

k=1

ρk ,

where

ρ0 = e−β0a∗a/Z(β0) , ρj = e−βa∗a/Z(β) , j = 1, . . . , N . (4.1)

This case corresponds to ρL in (3.9) with diagonal matrix L =diag (β0, β, · · · , β)
and to ρ(β, δ; ξ) in representation (3.16) with (β, δ; ξ) = (β, β0 − β; e), i.e.,

ρ = ρ(β, β0 − β; e) = exp
[
− β0b

∗
0b0 − β

N∑

j=1

b∗jbj
]
/Z(β, β0 − β) . (4.2)

Here

e =




1
0
·
·
·
0




∈ C
N+1

and

Z(β, β0 − β) = Z(β0)Z(β)
N =

1

(1− e−β0)(1− e−β)N
.

By a straightforward application of formulae (3.18), (3.19) and Lemma
3.2 for ξ = e (i.e. 〈ξ, ξ〉 = 1, 〈ξ, ζ〉 = ζ0) to the state (4.1) (or (4.2)), one
obtains the proof of the following statement:
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Lemma 4.1 The characteristic function of (4.1) (or (4.2)) is

ωρ(W (ζ)) = TrH [ρ W (ζ)] = (4.3)

exp
[
− |ζ0|2

4

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]
,

and the entropy is equal to

S(ρ) = Ns(β) + s(β0) . (4.4)

Since by (2.14) the density matrix ρ(t) for t = Nτ is

ρ(Nτ) = e−iτHN . . . e−iτH1ρ eiτH1 . . . eiτHN , (4.5)

we obtain for evolution of the characteristic function and the entropy of the
total system S + C:

Lemma 4.2 Characteristic function of the state with density matrix (4.5)
is equal to

ωρ(Nτ)(W (ζ)) = (4.6)

exp
[
− |(U1 . . . UNζ)0|2

4

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]
,

whereas the total entropy rests invariant:

S(ρ(Nτ)) = S(ρ) = Ns(β) + s(β0) .

Here the mapping U1 . . . UN : CN+1 → C
N+1 is given by (2.19) and (2.20).

Proof : From (2.18), one gets ωρ(Nτ)(W (ζ)) = ωρ(W (U1 . . . UN ζ)). Since the
mappings Uj : CN+1 → C

N+1, j = 1, . . . , N are unitary (Lemma 2.4), (4.3)
yields (4.6). Finally, one gets that the mapping (4.5) leaves the total entropy
(4.4) invariant by definition (3.4) . �

Let ω and ω0 be two normal states on the Weyl CCR algebra A (H ) with
density matrices ̺ and ̺0. Following Araki [Ar1], we introduce the relative
entropy of the state ω with respect to ω0:

Ent(̺|̺0) := TrH [̺(ln ̺− ln ̺0)] ≥ 0 , (4.7)

see also [AJP3].
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Lemma 4.3 The relative entropy of ωρ(Nτ) with respect to ωρ is

Ent(ρ(Nτ)|ρ) =
(β0 − β)(eβ0 − eβ)

(eβ0 − 1)(eβ − 1)
(1− |z|2N) , (4.8)

where z := z(τ) is defined by (1.21) and (1.32).

Proof : The trace cyclicity yields

Ent(ρ(Nτ)|ρ) = TrH [ρ(Nτ)(ln ρ(Nτ) − ln ρ)] (4.9)

= TrH [ρ(ln ρ− eiτH1 . . . eiτHN ln ρe−iτHN . . . e−iτH1)]

=
β − β0

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj

(
b∗0b0−eiτH1 . . . eiτHN b∗0b0e

−iτHN . . . e−iτH1)] .

Note that one gets b∗0b0 = 〈b, e〉〈e, b〉 by (2.4). Hence, (2.23) implies

eiτH1 · · · eiτHN b∗0b0e
−iτHN · · · e−iτH1 =

N∑

k=0

(U1 . . . UN e)kb
∗
k

N∑

k′=0

(U1 . . . UN e)k′ bk′

(4.10)
Note also that for any k = 0, 1, . . . , N , one has [b∗kbk, ρ] = 0, which implies

the selection rule:

1

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj b∗kbk′ ] = 0 for k 6= k′ . (4.11)

This rule implies that after injection of (4.10) into (4.9) only diagonal terms
with k = k′ will survive in the expectation:

Ent(ρ(Nτ)|ρ) =
β − β0

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj

(
b∗0b0 −

N∑

k=0

|(U1 . . . UNe)k|2b∗kbk
)]

Finally, by Lemma 2.4, (2.19), (2.20) and by (3.4), (3.5), we obtain

Ent(ρ(Nτ)|ρ) =
β − β0

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj

(
(1− |z|2N)b∗0b0 −

N∑

k=1

|w|2|z|2N−2kb∗kbk)
)]

=
(β0 − β)(eβ0 − eβ)

(eβ0 − 1)(eβ − 1)
(1− |z|2N ) ,

that proves (4.8). �

22



Remark 4.4 The relative entropy defined by (4.7) is non-negative. In con-
trast to invariant total entropy (Lemma 4.2), the relative entropy (4.8) is
increasing monotonically as N → ∞ for |z| < 1 (see Lemma 1.4, Remark
1.5). It converges to the limit:

lim
N→∞

Ent(ρ(Nτ)|ρ) = (β − β0)

[
1

eβ0 − 1
− 1

eβ − 1

]
≥ 0 , (4.12)

which is positive for β0 6= β. The limit (4.12) gives asymptotic amount of
the entropy production, when one starts with the initial state corresponding
to (4.1) and then consider Nτ → ∞, see [AJP3].

5 Evolution of Subsystems

5.1 Convergence to Equilibrium

Subsystem S. We start with the simplest subsystem S. Let the initial state
of the total system S + C in (1.1) be a tensor-product of the corresponding
density matrices ρ = ρS ⊗ ρC (see Hypothesis 1). Then for t ≥ 0 the state
ωt
S(·) of the subsystem S is given on the Weyl C∗-algebra A (H0) by

ωt
S(·) := ωρ(t)(· ⊗ 1) . (5.1)

For ζ = (α, 0, . . . , 0) ∈ C
N+1, let us consider the Weyl operator W (ζ) =

ŵ(α)⊗ 1⊗ . . .⊗ 1 (2.3). By virtue of (2.9), (2.24) and (5.1), we obtain for
t = mτ ( 1 ≤ m ≤ N ):

ωmτ
S (ŵ(α)) = ωρ(mτ)(W (ζ)) = ωρ(W (U1 . . . Um ζ)) . (5.2)

Then for components {(U1 . . . Um ζ)k}Nk=0 of the vector U1 . . . Um ζ in (5.2),
one obtains the expression:

(U1 . . . Um ζ)k =





eimτǫ(gz)mα (k = 0)

eimτǫgw(gz)m−kα (1 6 k < m)

eimτǫgwα (k = m)

0 (m < k 6 N) ,

(5.3)

which follows from Remark 2.5.
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If the initial density matrices: ρ = ρS ⊗ ρC corresponds to the product of
Gibbs quasi-free states for different temperatures as in (4.1), then (5.2) and
Lemma4.1 yield

ωmτ
S (ŵ(α)) = exp

[
− |α|2

4

1 + e−β

1− e−β
− |zmα|2

4

(
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)]
(5.4)

Note that for any moment t = mτ the state ωmτ
S (·) is a quasi-free Gibbs

equilibrium state with parameter β∗(mτ) which satisfies the equation

1 + e−β∗(mτ)

1− e−β∗(mτ)
= |z|2m 1 + e−β0

1− e−β0
+ (1− |z|2m)1 + e−β

1− e−β
. (5.5)

This equation yields that either β ≤ β∗(mτ) ≤ β0, or β0 ≤ β∗(mτ) ≤ β.
The Hypothesis 5 implies that for m → ∞ (N → ∞) the Weyl charac-

teristic function (5.4) has the limit

lim
m→∞

ωmτ
S (ŵ(α)) = exp

[
− |α|2

4

1 + e−β

1− e−β

]
. (5.6)

Therefore, in the limit t → ∞ the subsystem S evolves from the Gibbs equi-
librium state with parameter β0 to another equilibrium state with parameter
β imposed by the chain C.
Subsystem S1. The initial state ω0

S1
(·) = ωt

S1
(·)|t=0 of this subsystem again

corresponds to a one-point reduced density matrix or the partial trace on the
CCR Weyl algebra A (H1):

ω0
S1
(ŵ(α)) = ωρ(1⊗ ŵ(α)⊗

N⊗

k=2

1) = exp
[
− |α|2

4

1 + e−β

1− e−β

]
. (5.7)

Now we choose vector ζ (1) := (0, α, 0, . . . , 0) ∈ C
N+1. Then

ωmτ
S1

(ŵ(α)) = ωρ(mτ)(W (ζ (1))) = ωρS⊗ρC(W (U1 . . . Um ζ (1))) (5.8)

for 1 < m ≤ N . By Remark 2.5, the components {(U1 . . . Um ζ (1))k}Nk=0 are:

(U1 . . . Um ζ)k =





eimτǫgw α (k = 0)

eimτǫ δk,1 gz α (1 6 k < m)

0 (k = m)

0 (m < k 6 N).

(5.9)
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Then, we have

ωmτ
S1

(ŵ(α)) = exp
[
− |α|2

4

1 + e−β

1− e−β
− |wα|2

4

(
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)]
(5.10)

for any 1 < m ≤ N . Therefore, the initial state (5.7) changes to (5.10)
after the first act of interaction on the interval [0, τ) and there is no further
evolution of this state for t > τ .

Note that (5.10) is characteristic function of a quasi-free Gibbs equilib-
rium state with parameter β∗, which satisfies the equation

1 + e−β∗

1− e−β∗ = |w|21 + e−β0

1− e−β0
+ (1− |w|2)1 + e−β

1− e−β
.

Again, this equation implies that either β ≤ β∗ ≤ β0, or β0 ≤ β∗ ≤ β.
Evolution of subsystem S1 has a transparent interpretation: after the one

act of interaction during the time t ∈ [0, τ), it relaxed to an intermediate
equilibrium with the subsystem S. This results in a shift of initial parameter
β to β∗, which rests unchangeable since there is no perturbation of S1 for
t > τ .

Subsystem Sm. For 1 < m ≤ N the initial state ω0
Sm

(·) = ωt
Sm

(·)|t=0 of this
subsystem is defined by the partial trace on the CCR Weyl algebra A (Hm):

ω0
Sm

(ŵ(α)) = ωρ(
m−1⊗

k=0

1⊗ ŵ(α)⊗
N⊗

k=m+1

1) = exp
[
− |α|2

4

1 + e−β

1− e−β

]
. (5.11)

Now we choose vector ζ (m) := (0, . . . , 0, α, 0, . . . , 0) ∈ C
N+1, where α occupies

the m+ 1 position. Consequently

ωmτ
Sm

(ŵ(α)) = ωρ(mτ)(W (ζ (m))) = ωρS⊗ρC (W (U1 . . . Um ζ (m))) . (5.12)

The components {(U1 . . . Um ζ (m))k}Nk=0 are:

(U1 . . . Um ζ (m))k =





eimτǫ gw(gz)m−1 α (k = 0)

eimτǫ g2w2 (gz)m−k−1 α (1 6 k < m)

eimτǫgz α , (k = m)

0 (m < k 6 N).

(5.13)
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which again follows from Remark 2.5. Then, we obtain for evolution of the
state of the subsystem Sm:

ωmτ
Sm

(ŵ(α)) = (5.14)

exp
[
− |α|2

4

1 + e−β

1− e−β
− |wα|2

4
|z|2(m−1)

(
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)]
.

Note that interaction for t ∈ [(m− 1)τ,mτ) push out the subsystem Sm

from the Gibbs equilibrium state (5.11), but its effect attenuates for large m:

lim
m→∞

ωmτ
Sm

(ŵ(α)) = exp
[
− |α|2

4

1 + e−β

1− e−β

]
. (5.15)

Again, this is evolution of a quasi-free Gibbs equilibrium state with time-
dependent inverse temperature parameter β∗∗(mτ), which satisfies the equa-
tion

1 + e−β∗∗(mτ)

1− e−β∗∗(mτ)
= |w|2|z|2(m−1) 1 + e−β0

1− e−β0
+ (1− |w|2|z|2(m−1))

1 + e−β

1− e−β
. (5.16)

As above, the value of the parameter β∗∗(mτ) is always between β0 and β.
To interpret the evolution of Sm and the coincidence between (5.15) and

(5.6) note that the state of the subsystem S relaxes to that of initial state of
the chain C, see (5.6). Therefore, after interaction of the subsystem Sm, i.e.
at the moment t = mτ , its parameter β∗∗(mτ) has a value between β and
β∗((m− 1)τ) since (5.5) and (5.16) yield

1 + e−β∗∗(mτ)

1− e−β∗∗(mτ)
= |w|21 + e−β∗((m−1)τ)

1− e−β∗((m−1)τ)
+ (1− |w|2)1 + e−β

1− e−β
.

As in the case m = 1, one may convince that there is no further evolution:
ωnτ
Sm

= ωmτ
Sm

for n > m.

Next, we consider the composed subsystems S+Sm and Sm−n+Sm. Our
aim is to study the eventual correlations imposed by repeated perturbations
due to S.
Subsystem S +Sm. For 1 < m 6 N the initial state ω0

S+Sm
(·) = ωt

S+Sm
(·)|t=0

of this composed subsystem is defined by the partial trace on the Weyl C∗-
algebra A (H0 ⊗ Hm) ≈ A (H0)⊗ A (Hm) by:

ω0
S+Sm

(ŵ(α0)⊗ ŵ(α1)) := ωρ(ŵ(α0)⊗
m−1⊗

k=1

1⊗ ŵ(α1)⊗
N⊗

k=m+1

1)

= exp
[
− |α0|2

4

1 + e−β0

1− e−β0

]
exp

[
− |α1|2

4

1 + e−β

1− e−β

]
. (5.17)
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This is the characteristic function of the product state corresponding to two
isolated systems with different temperatures. If one defines vector ζ (0,m) :=
(α0, 0, . . . , 0, α1, 0, . . . , 0) ∈ C

N+1, where α1 occupies the m+1 position, then

ωmτ
S+Sm

(ŵ(α0)⊗ ŵ(α1)) = ωρ(mτ)(W (ζ (0,m))) = ωρS⊗ρC(W (U1 . . . Um ζ (0,m))) .
(5.18)

The components {(U1 . . . Um ζ (0,m))k}Nk=0 are deduced from Remark 2.5:

(U1 . . . Um ζ (0,m))k =





eimτǫ (gz)m−1 [gz α0 + gw α1], (k = 0)

eimτǫ(gz)m−k−1g2[wz α0 + w2 α1], (1 6 k < m)

eimτǫ [gw α0 + gz α1], (k = m)

0 (m < k 6 N).

(5.19)
Together with (2.9), one gets

ωmτ
S+Sm

(ŵ(α0)⊗ ŵ(α1)) (5.20)

= exp
[
− 1

4
|zα0 + wα1|2|z|2(m−1) 1 + e−β0

1− e−β0

]

× exp
[
− 1

4
|zα0 + wα1|2(1− |z|2(m−1))

1 + e−β

1− e−β

]
exp

[
− 1

4
|wα0 + zα1|2

1 + e−β

1− e−β

]

−→ exp
[
− 1

4
(|α0|2 + |α1|2)

1 + e−β

1− e−β

]

for m → ∞.
Hence, in this limit the composed subsystem S + Sm evolves from the

product of two quasi-free equilibrium states (5.17) with different parameters
β0 and β to the product of quasi-free equilibrium states for the same pa-
rameter β imposed by repeated interaction with the chain C, when m → ∞.
Interpretation of this is similar to the case Subsystem Sm.

Subsystem Sm−n + Sm. We suppose that 1 < (m − n) < m 6 N . Then the
initial state ωt

Sm−n+Sm
(·)|t=0 of this composed subsystem is the partial trace

over the Weyl C∗-algebra A (Hm−n ⊗ Hm) ≈ A (Hm−n)⊗ A (Hm):

ω0
Sm−n+Sm

(ŵ(α1)⊗ ŵ(α2)) := (5.21)

ωρ(

m−n−1⊗

k=0

1⊗ ŵ(α1)⊗
m−1⊗

k=m−n+1

1⊗ ŵ(α2)⊗
N⊗

k=m+1

1) =

= exp
[
− |α1|2

4

1 + e−β

1− e−β

]
exp

[
− |α2|2

4

1 + e−β

1− e−β

]
.
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This is the characteristic function of the product state corresponding to two
isolated systems with the same temperatures.

We define vector ζ (m−n,m) := (0, 0, . . . , 0, α1, 0, . . . , 0, α2, 0, . . . , 0) ∈ C
N+1,

where α1 occupies the m−n+1 position, and α2 occupies the m+1 position,
then

ωmτ
Sm−n+Sm

(ŵ(α1)⊗ ŵ(α2)) = (5.22)

ωρ(mτ)(W (ζ (m−n,m))) = ωρS⊗ρC (W (U1 . . . Um ζ (m−n,m))) .

Again, with help of Remark 2.5 we can calculate the values of components
{(U1 . . . Um ζ (m−n,m))k}Nk=0:

(U1 . . . Um ζ (m−n,m))k = (5.23)

=





eimτǫ (gz)m−n−1 gw[α1 + (gz)nα2] (k = 0)

eimτǫ [g2w2(gz)m−n−k−1 α1 + g2w2(gz)m−k−1 α2] (1 6 k < m− n)

eimτǫ [gz α1 + g2w2 (gz)m−k−1 α2] (k = m− n)

eimτǫ g2w2 (gz)m−k−1 α2 (m− n < k < m)

eimτǫ gz α2 (k = m)

0 (m < k 6 N)

.

Then, we obtain for (5.22) :

ωmτ
Sm−n+Sm

(ŵ(α1)⊗ ŵ(α2)) (5.24)

= exp
[
− 1

4
|w|2|α1 + (gz)n+1α2|2|z|2(m−n−1) 1 + e−β0

1− e−β0

]

× exp
[
− 1

4
{|w|2(1− |z|2(m−n−1)) + |z|2}|α1|2

1 + e−β

1− e−β

]

× exp
[
− 1

4
(1− |w|2|z|2(m−1))|α2|2

1 + e−β

1− e−β

]
.

−→ exp
[
− 1

4
(|α1|2 + |α2|2)

1 + e−β

1− e−β

]
,

as m → ∞ for any fixed n.
Therefore, in this limit, the composed subsystem Sm−n+Sm evolves from

the initial product of two quasi-free equilibrium states (5.21) to the same
final state, although for a finite m the evolution (5.24) is nontrivial. This
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again easily understandable taking into account our analysis of Subsystem
Sm and Subsystem S + Sm.

Consider now the case of a fixed s := m−n > 1. Then the limit in (5.24)
takes the form:

lim
m→∞

ωmτ
Ss+Sm

(ŵ(α1)⊗ ŵ(α2)) = (5.25)

= exp
[
− 1

4
|w|2|z|2(s−1)|α1|2

{
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

}]
×

× exp
[
− 1

4
|α1|2

1 + e−β

1− e−β

]
exp

[
− 1

4
|α2|2

1 + e−β

1− e−β

]

= exp
[
− 1

4
|α1|2

1 + e−β∗∗(sτ)

1− e−β∗∗(sτ)

]
exp

[
− 1

4
|α2|2

1 + e−β

1− e−β

]
,

where β∗∗(sτ) verifies equation (5.16). Hence, in this case the limit state
(5.25) is the product of quasi-free Gibbs states with different parameters
β∗∗(sτ) and β. This means that subsystem Ss keeps a memory about pertur-
bation at the moment t = sτ , when the parameter β∗(sτ) (5.5) of subsystem
S was still different from β.

Note that (5.25) coincides with the product state (5.21) when s → ∞.

Subsystem S∼n. To define S∼n for 0 6 n 6 k 6 N , we divide the total
system at the moment t = kτ into two subsystems: Sn,k + Cn,k. Here

Sn,k := S + Sk + Sk−1 + · · ·+ Sk−n+1 , (S0,k := S) , (5.26)

whereas
Cn,k := SN + · · ·+ Sk+1 + Sk−n + · · ·+ S1 , (5.27)

see definitions in Section 1.1.
We mean that S∼n is an entire “object” whose entity is Sn,k at the mo-

ment t = kτ ( k = n, n + 1, · · · , N ). As time is running, the elementary
subsystems Sk in S∼n are replacing. We study the behaviour of S∼n for large
t = kτ , i.e., the k-dependence of the “state” of Sn,k at t = kτ .

For any fixed t = kτ we can decompose the Hilbert space H into a tensor
product of two subspaces Hs and Hc :

H = Hs ⊗ Hc .
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Here Hs is the Hilbert space of subsystem (5.26) and Hc corresponds to
subsystem (5.27):

Hs := H0 ⊗
n⊗

j=1

Hk−j+1, Hc :=

k−n⊗

j=1

Hj ⊗
N⊗

j=k+1

Hj . (5.28)

For a density matrix ̺ on H , we introduce the reduced density matrix
̺s on Hs as a partial trace over Hc:

̺s := TrHc
̺ . (5.29)

To avoid a possible confusion caused by the fact that all Hj, j = 0, 1, . . .
are identical to F and by the change of components with time, we treat
the Weyl algebra on the subsystem and the corresponding reduced density
matrix of ρ ∈ C1(H ) in the following way. On the Fock space F⊗(n+1) for
n 6 N , we consider the Weyl operator

Wn(ζ) = exp
[
i
〈ζ, b̃, 〉+ 〈b̃, ζ〉√

2

]
, (5.30)

where ζ ∈ C
n+1, b̃0, · · · , b̃n and b̃∗0, · · · , b̃∗n are the annihilation and the cre-

ation operators in F⊗(n+1) satisfying the corresponding CCR, and

〈ζ, b̃〉 =
n∑

j=0

ζ̄j b̃j , 〈b̃, ζ〉 =
n∑

j=0

ζj b̃
∗
j .

By A (F⊗(n+1)), we denote the C∗ algebra generated by the Weyl operators
(5.30). For any subset J ⊂ {1, 2, · · · , N}, we define the operation of taking
the partial trace

RJ : C1(F
⊗(N+1)) ∋ ρ 7−→ RJρ ∈ C1(F

⊗(N+1−|J |))

by
ωRJρ

(
WN−|J |(ζ)

)
= ωρ

(
WN (rJζ)

)
.

Here the mapping

rJ : CN+1−|J | ∋ ζ 7−→ rJζ ∈ C
N+1
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is defined by

(rJζ)j :=





ζ0 (j = 0)

0 (j ∈ J)

ζj−|{i∈J | i<j }| (otherwise)

,

where |A| denotes the number of elements in the set A.
Since all H1,H2, · · · are identical to F , we do not care to distinguish the

spaces ⊗

j∈{0,1,··· ,N}\J
Hj and

⊗

j∈{0,1,··· ,N}\J ′

Hj

for J 6= J ′ but |J | = |J ′|, and consider them as the same space F⊗(N+1−|J |).
Instead, we pay attention to distinguishing projections

N⊗

j=0

Hj −→
⊗

j∈{0,1,··· ,N}\J
Hj

for different subsets J ⊂ {1, 2, · · · , N} with same |J |.
Since we regard Sn,k at time t = kτ for k = n, n + 1, · · · as the result

of the time evolution of a single subsystem S∼n, we define its state at the
moment t = kτ by the reduced density matrix {ρs(kτ)}k>n of this subsystem
as follows:

ρs(kτ) := R{1,··· ,k−n,k+1,··· ,N}(ρ(kτ)
)
= R{1,··· ,k−n,k+1,··· ,N}Tkτ (ρ), (5.31)

see (2.14). Taking into account Lemma 4.2 and identity 〈rJζ, rJζ〉CN+1 =
〈ζ, ζ〉

C
N+1−|J|, one readily obtains the following result.

Lemma 5.1 For the initial density matrix (4.1),

ωρs(kτ)(Wn(ζ)) = ω
R

Jn,kρ(kτ)
(Wn(ζ))

= exp
[
− |(U1 . . . Uk rJn,k

ζ)0|2
4

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]

holds, where Jn,k = {1, 2, · · · , k − n, k + 1, · · · , N}.

To study the limit k → ∞ (and N → ∞ satisfying k 6 N) for a fixed n,
we note that (U1 . . . Uk rJn,k

ζ)0 → 0 follows from (2.19) and |z| < 1 (Hypoth-
esis 5). Lemma 5.1 implies that

lim
k→∞

ωρs(kτ)(Wn(ζ)) = exp
[
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]
= ω

ρ
(β)
n
(Wn(ζ)) , (5.32)
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where

ρ(β)n = exp
[
− β

n∑

j=0

b̃∗j b̃j
]
/Z(β)n+1 (5.33)

by the irreducibility of the CCR algebra A (F⊗(n+1)) and by the definition
of Z(β) = (1− e−β)−1.

Therefore, we proved the following statement:

Theorem 5.2 Let the initial state of the total system S + C is defined by
the density matrix (4.2): ρ = ρ(β, β0 − β; e). Then for any fixed n, the state
ωρs(kτ)(·) of subsystem Sn,k converges to the equilibrium Gibbs state ω

ρ
(β)
n
(·)

as k → ∞ in the weak*-topology for the states on A (F⊗(n+1)), see (A.5).

Theorem 5.3 Under the same conditions as in Theorem 5.2, one gets

lim
k→∞

S(ρs(kτ)) = S(ρ(β)n ) .

Proof : Let vector ξn,k ∈ C
n+1 be defined by (U1 . . . UkrJn,k

ζ)0 =: 〈ξn,k, ζ〉.
Then 〈ξn,k, ξn,k〉 → 0 as k → ∞ for fixed n. By Lemma 3.3 and Lemma 5.1,
we obtain

S(ρs(kτ)) = nσ
(1 + e−β

1− e−β

)
+ σ

(1 + e−β

1− e−β
+ 〈ξn,k, ξn,k〉

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

))

−→ (n + 1)σ
(1 + e−β

1− e−β

)
= S(ρ(β)n ).

�

Remark 5.4 The local entropy decreases or increases according to β > β0

or β < β0, respectively.

5.2 A Short-Time Limit for Repeated Perturbations

The results in the previous Section 5 are essentially due our explicit knowl-
edge of the initial density matrix (2.7), (4.1) of the total system S + C. In
this subsection, we show that the lack of this information is not decisive for
certain results concerning the convergence to equilibrium if one considers a
short-time limit for the repeated interactions.
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Let us study it for example of the subsystem S. We keep to consider the
initial state of the system S+C to be a product state with the density matrix

ρ = ρ0 ⊗
N⊗

k=1

ρk ∈ C1(H ) , (5.34)

see (2.7), but we essentially relax the conditions on ρ0 and {ρk}Nk=1:

(h1) ρ1 = ρ2 = · · · = ρN ∈ C1(F ) ;

(h2) TrF [ρ1a] = TrF [ρ1a
2] = TrF [ρ1a

∗] = TrF [ρ1a
∗2] = 0;

(h3) TrF [ρ1(a
∗a)2] < ∞ .

Remark 5.5 Note that hypothesis (h1)-(h3) are satisfied when the density
matrices {ρk}Nk=0 correspond to the gauge-invariant quasi-free states with pa-
rameter β0 for k = 0 and β for k = 1, 2, . . . , N , see (4.1). Then (h2) is due
to the gauge invariance and one gets for (h3):

TrF [ρk(a
∗a)2] = (2n2

β + nβ) , (5.35)

where nβ = TrFρk(a
∗a) = (eβ − 1)−1, k = 1, . . . , N .

Below we denote by |ya∗ + ȳa| the operator originated from the polar
decomposition of the self-adjoint operator ya∗ + ȳa = U |ya∗ + ȳa|, where U
is the partial isometry on F .

Lemma 5.6 Under hypothesis (h1)-(h3), the following bounds hold:

(i) TrF [ρka
∗a] < ∞,

(ii) TrF [ρk|ya∗ + ȳa|2] 6 C|y|2,
(iii) TrF [ρk|ya∗ + ȳa|3] 6 C ′|y|3,
(iv) TrF [ρk|ya∗ + ȳa|4] 6 C ′′|y|4,

for all k = 1, . . . , N . Here C,C ′, C ′′ are positive constants, which depend
only on Tr[ρ1(a

∗a)2].

Proof : The first bound (i) is a consequence of the Cauchy-Schwarz inequal-
ity and (h3). Applying the inequalities

|A+ A∗|2 6 |A+ A∗|2 + |A− A∗|2 = 2(AA∗ + A∗A),
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|A+ A∗|4 6 |A+ A∗|4 + |A−A∗|4 + |A+ iA∗|4 + |A− iA∗|4

= 4(AA∗ + A∗A)2 + 4(A2A∗2 + A∗2A2),

to A = ȳa, we obtain (ii) and (iv). Finally, a combination of (ii), (iv) with
the Cauchy-Schwarz inequality yields (iii). �

Theorem 5.7 Let τ → 0, N → ∞ be short-time perturbation limit subject
to demands: τ 2N → ∞ and τ 3N → 0. Then for any initial condition (5.34)
verifying (h1)-(h3), the characteristic function ωNτ

S (ŵ(θ)) of the state for
subsystem S at t = Nτ , converges to:

ωS(ŵ(θ)) := lim
τ→0,N→∞

ωNτ
S (ŵ(θ)) = (5.36)

lim
τ→0,N→∞

ωρ(Nτ)(W (ζθ)) = e−|θ|2TrF [ρ1 (a∗a+aa∗)]/4 .

Here θ ∈ C and the (N +1)-component vector for the S+ C Weyl operator is

ζθ =




θ
0
·
·
·
0




∈ C
N+1 .

Remark 5.8 By (5.36) the state ωNτ
S converges to ωS in the weak*-topology,

see Appendix A, A.4. From the right-hand side of (5.36) and Definition 3.1
we deduce that the limit state is gauge-invariant and quasi-free with h(θ) :=
|θ|2TrF [ρ1 a

∗a].

Remark 5.9 Recall that the state ω over the Weyl algebra A (F ) = Aw(F )
is regular, Cn-smooth or analytic, if the function (see (2.1))

s 7→ ω(ŵ(sθ)) = ω(ei sΦ(θ)/
√
2) (5.37)

is respectively continuous, Cn-smooth or analytic in the vicinity of s = 0. In
the last case the characteristic function ω(ŵ(sθ)) (and therefore the state) is
completely determined by

ω(ŵ(sθ)) = exp

{ ∞∑

m=1

imsm

m!
2−m/2 ωT (Φm(θ))

}
. (5.38)
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Here {ωT (Φm(θ))}∞m=0 are truncated correlation functions defined recursively
by relations [BR2], [Ve]:

ωT (Φ(θ)) := ω(Φ(θ)) ,

ωT (Φ2(θ)) := ω(Φ2(θ))− ω(Φ(θ))2 ,

ωT (Φ3(θ)) := ω(Φ3(θ))− 3ω(Φ2(θ))ω(Φ(θ)) + 2ω(Φ(θ))3 , etc

Lemma 5.6 implies that states corresponding to density matrices ρ1 = ρ2 =
. . . are C4-smooth.

Proof (of Theorem 5.7): By (h2) and by Lemma 5.6 (i)-(iii) together with
Remark 5.9, we obtain for the states ω(·) = ωρk(·) the representation of (5.38)
in the form:

Ck(θ) = ωρk(ŵ(θ)) = exp[−1

4
ωT
ρk
(Φ2(θ)) +R(θ)] , k = 1, 2, . . . , N, (5.39)

where R(θ) = O(|θ|3) in the vicinity of θ = 0. For the self-adjoint operator
Φ(θ) = θ̄a+ θa∗, the hypothesis (h2) and Lemma 5.6 (i) imply

ωT
ρk
(Φ2(θ)) = |θ|2 TrF [ρk (a

∗a+ aa∗)] . (5.40)

Now, taking into account Lemma 2.4 for the vector ζθ, (5.39) and (5.40),
we obtain the representation:

ωNτ
S (ŵ(θ)) = ωρ(Nτ)(W (ζθ)) = C0(e

iǫτN(gz)Nθ)

N∏

k=1

Ck(e
iǫτNgw (gz)N−kθ)

= C0(e
iǫτN(gz)Nθ) exp

(
−

N∑

k=1

|θk|2
4

TrF [(a∗a+ aa∗)ρk] + R̂
)
. (5.41)

Here by (2.20) and by (5.39) one has

θk := eiǫNτgw (gz)N−kθ ,
N∑

k=1

|θk|2 = |θ|2|w|21− |z|2N
1− |z|2 , R̂ =

N∑

k=1

O(|θk|3) .

By virtue of (1.20) and (1.21), we get |g(τ)| = 1, |w(τ)|2 + |z(τ)|2 = 1
and also

w(τ) = iητ +O(τ 3) , |z(τ)| = 1− |η|2τ 2
2

+O(τ 4) ,
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for small τ . This yields for small τ > 0 and large N , the estimates |(gz)N | ≤
O(e−|η|2τ2N/2), |θk| ≤ O(τ), and R̂ = O(τ 3N) by virtue of (h1). Then taking
into account the conditions τ 2N → ∞ and τ 3N → 0, we get the limits:

lim
τ→0,N→∞

C0(e
iǫτN(gz)Nθ) = 1 , lim

τ→0,N→∞

N∑

k=1

|θk|2 = |θ|2 , lim
τ→0,N→∞

R̂ = 0 .

Note that C0 is a continuous function because it is defined by a normal state
with density matrix ρ0, see (2.8).

Inserting all these limits into (5.41), we obtain what is claimed as the
limit (5.36). �

Corollary 5.10 Suppose (see Section 4) that all {ρk}Nk=1 correspond to the
gauge-invariant quasi-free Gibbs state with parameter β (4.1):

ρk = e−βa∗a/TrF [e−βa∗a] , (k = 1, 2, . . . , N) .

These states satisfy (h1)-(h3). The statement in Theorem 5.7 is valid with
the limit

lim
τ→0,N→∞

ωNτ
S (ŵ(θ)) = exp

{
−|θ|2

4

1 + e−β

1− e−β

}
. (5.42)

It coincides with the result for equilibrium state (5.6) of the subsystem S
when the finite step τ verifies the Hypothesis 5.

Note that our choice of the short-time perturbation limit τ → 0, N → ∞
subjected to τ 2N → ∞ and τ 3N → 0 gives a universal gauge-invariant
quasi-free limiting state under hypothesis (h1)-(h3). The hypotheses (h2),
(h3) control only first ”two moments” in the creation-annihilations opera-
tors of the reference initial states of subsystem C. Together with station-
arity and independence of repeated perturbations in (h1), these conditions
make our observation similar to well-known universal laws similar to the
non-commutative Central Limit Theorem [Ve].

This similarity is bolstered by the fact that the state ωρ0 of the subsystem
S may be replaced by any regular state. This indicates how large could be the
“basin of attraction” of the universal limiting gauge-invariant quasi-free state.
Another common point is the method of characteristic functions relevant in
the both cases [Ve].
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A Appendix

Let ω̺(t)(·) be time dependent normal state TrH (Tt(̺) · ) on L(H ). Then
evolution operator Tt : ̺ 7→ U(t)̺U∗(t) for t ∈ R on the set of density matri-
ces (2.14) defines a dual ∗-automorphisms T ∗

t of the C∗-algebra of bounded
operator L(H ) (the Heisenberg picture on the W ∗-algebra). We collect here
some general remarks about the C∗-dynamical systems versus W ∗-dynamical
setting, cf Remark 2.2.

A1. Recall that the dual of the Banach space C1(H ) is the set C1(H )∗ :=
L(C1(H ),C) of all bounded linear functionals on C1(H ), and that they co-
incide with {φ 7→ TrH (φA)}A∈L(H ). Here the correspondence is an isometric
isomorphism of L(H ) onto C1(H )∗ such that the norm of each function is
‖TrH ( ·A)‖C∗

1
= ‖A‖, or L(H ) = C1(H )∗.

Note that the set of maps {A 7→ TrH (φA)}φ∈C1(H ) does not cover the
set of all continuous linear functionals on L(H ), but they yield dual of the
subspace, which consists of the compact operators: C∞(H )∗ = C1(H ), with
the norm of each functional: ‖TrH (φ · )‖C∗

∞
= ‖φ‖1.

Therefore, to control the ‖ · ‖1-continuity of density matrix evolution
Tt(̺) with help of duality (2.17), one needs some additional arguments. To
this end, note that since dynamics (2.14) is trace- and positivity- preserving,
one gets ‖Tt(̺)‖1 = 1. By the strong continuity of (2.16) (or by the unity-
preserving T ∗

t (1) = 1, and duality) we also get the weak operator continuity
of Tt(̺). Together these arguments yield the ‖ · ‖1-continuity of Tt(̺) , see
e.g. [Za], Ch.2.4.

A2. C∗-dynamical systems. It is a pair (A, τ t), where A is a unital C∗-algebra
and τ t is a strongly continuous (continuous in topology of this algebra) group
of ∗-automorphisms of A, see [AJP1], [BR1].

In the context of Remark 2.2 one identifies A with A (H ) (or L(H ))
and τ t with dynamics T ∗

t dual with respect to the state ω̺(·) := TrH (̺ ·) on
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L(H ). Here ̺ is a density matrix (see A1) and

ω̺(T
∗
t (A)) = ωTt(̺)(A) . (A.1)

In the case of boson systems (Section 2), the C∗-approach is too restric-
tive. First, it is because the CCR force us to use the Weyl algebra A (H ) and
this C∗-algebra is only a subalgebra of L(H ). Hence, a predual to A (H ) is
not C1(H ), see A1. Second, since the CCR beak the operator-norm conti-
nuity of dynamics T ∗

t (W (ζ)) = W (U(t)ζ):

‖W (ζ1)−W (ζ2)‖A (H ) = 2 , if ζ1 6= ζ2 .

A3. W ∗-dynamical systems. To overcome difficulties mentioned in A2, one
has to take a closure, M(H ), of the Weyl algebra A (H ) (2.1) in topology
which is weaker than the operator-norm topology of this C∗-algebra.

To this end, consider on L(H ) the weak*-topology (w∗-topology) gen-
erated by the set of linear functionals {A 7→ TrH (φA)}φ∈C1(H ), see A1. A
priori, it is stronger than the weak operator topology on L(H ), but weaker
than the operator-norm or the weak Banach space topology on L(H ) since
C1(H ) ⊂ L(H )∗. By A1 the trace-class C1(H ) = L(H )∗ is predual of
L(H ) since C1(H )∗ = L(H ).

If we denote byM(H ) the closure of the Weyl algebra A (H ) (2.5) in the
w∗-topology, then it is the von Neumann algebra acting on the boson Fock
space H . Note thatM(H ) is ∗-isomorphic to L(H ). By construction of the
von Neumann algebra and by duality (A.1) the ∗-automorphism t 7→ T ∗

t (A)
of M(H ) is continuous in the w∗-topology (W ∗-dynamics).

A W ∗-dynamical system is a pair (M, T ∗
t ), where M is a von Neumann

algebra acting on a Hilbert space H and T ∗
t is a W ∗-dynamics on M, see

e.g. [AJP1], [BR1] for details.

A4. Note that the finite linear combinations of (2.3) are norm dense in the
Weyl C∗-algebra A (H ) and the map: ζ 7→ W (ζ) is continuous in the strong
operator topology. Then by the Araki-Segal theorem, see e.g. [AJP1], any
state ω on this algebra is completely determined by its characteristic function

ζ 7→ Eω(ζ) := ω(W (ζ)) . (A.2)

When the function s 7→ Eω(s ζ) is continuous, the state ω is regular. Recall
that the smoothness of this function near s = 0 decides the Cm-smoothness
or analyticity of ω, see Remark 5.9.
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The set of states SA over algebra A (H ) is a subset of a dual to this alge-
bra: SA ⊂ A (H )∗. Besides the uniform topology on A (H )∗ one considers
also the weak*-topology. Restriction of this topology to SA is defined by the
base of neighbourhoods

N (ω;A1, . . . , An) := {ω′,∈ A (H )∗ : |ω′(Ai)− ω(Ai)| < ε, i = 1, 2, . . . , n}
(A.3)

for any ε > 0 and finite sets of operators A1, A2, . . . , An ∈ A (H ). If the
sequence of regular states {ω(k)}k≥1 enjoys the convergence of characteristic
functions

lim
k→∞

Eω(k)(ζ) = E∞(ζ) , ζ ∈ C , (A.4)

then E∞(ζ) verifies conditions of the Araki-Segal theorem and defines on
A (H ) a regular state ω(∞): E∞(ζ) = Eω(∞)(ζ). By definition (A.2) and by
(A.4) this state is the limit of the sequence {ω(k)}k≥1 in the weak*-topology
(A.3) on SA:

ω(∞) = w∗− lim
k→∞

ω(k) , (A.5)

see e.g. [AJP1] and [BR2], Ch.5.2.5.
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