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Learning Non-linear SVM in Input Space
for Image Classification
Gaurav Sharma, Frédéric Jurie and Patrick Pérez

Abstract—The kernel trick enables learning of non-linear decision functions without having to explicitly map the original data to a

high dimensional space. However, at test time, it requires evaluating the kernel with each one of the support vectors, which is time

consuming. We propose a novel approach for learning non-linear support vector machine (SVM) corresponding to commonly used

kernels in computer vision, namely (i) Histogram Intersection, (ii) χ2, (ii) Radial Basis Function (RBF) and (iv) RBF with χ2 distance,

without using the kernel trick. The proposed classifier incorporates non-linearity while maintaining O(D) testing complexity (for D-

dimensional space), compared to O(D ×Nsv) (for Nsv number of support vectors) when using the kernel trick. We also promote the

idea that such efficient non-linear classifier, combined with simple image encodings, is a promising direction for image classification. We

validate the proposed method with experiments on four challenging image classification datasets. It achieves similar performance w.r.t.

kernel SVM and recent explicit feature mapping method while being significantly faster and memory efficient. It obtains competitive

performance while being an order of magnitude faster than the state-of-the-art Fisher Vector method and, when combined with it,

consistently improves performance with a very small additional computation cost.

Index Terms—Support vector machine, margin maximization, kernel methods, image classification.

✦

1 INTRODUCTION

IMAGE classification is one of the central problems
of computer vision. Recent works have addressed

various image domains, e.g. outdoor scenes [1], [2],
indoor scenes [3], [4], object images [5], [6], [7], [8],
human attributes [2], [9], [10]. The standard pipeline for
an image classification system is (i) extract local image
features, (ii) encode them, (iii) aggregate (or pool) the
encodings to make a fixed length image representation
and then finally (iv) use a classifier to learn the decision
boundaries between the different classes. The seminal
works of Sivic and Zisserman [11] and Csurka et al.
[12] introduced the bag-of-features (BoF) representation in
the computer vision community. It is based on encoding
local features by using vector quantization and aggre-
gating them by simple zeroth order statistics, i.e., his-
togramming/counting over the quantization bins. Since
such a simple pooling leads to loss of spatial informa-
tion, Lazebnik et al. [1] proposed using spatial pyramid
(SP) pooling. When used with non-linear classifiers, e.g.
kernel support vector machines (SVMs), SP lead to state-
of-the-art systems [1], [5], [6]. However, using simple
statistics required the use of kernel SVMs, which at test
time necessitated computation of a large number (order
of number of training images) of kernel evaluations and
hence were quite expensive. Driven by this limitation,
on one hand, researchers started focusing on offloading
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the complexity from the classifier step to the encoding
and aggregation step, demonstrating that using better
coding (using higher order statistics) and aggregation
[13], [14], [15], [16], [17], [18] gives better results with
inexpensive linear SVM. On the other hand, in parallel,
methods were proposed to make non-linear classifiers
efficient [19], [20], [21], [22]. Balancing this trade-off
between encoder and classifier complexity has remained
an important question for image classification.

In the present paper, we focus on simple encodings
and efficient complex classifiers. As a first contribution,
we propose to learn efficient nonlinear SVM directly
in the input space (a preliminary version of this part
appeared in [23]), with popular and successful kernels
used in computer vision, namely (i) Histogram Inter-
section, (ii) χ2, (ii) Radial Basis Function (RBF) and (iv)
RBF with χ2 distance. Among these different kernels,
we find the RBF-χ2 to be particularly interesting as it is
known to give the state-of-the-art performance on image
classification tasks [5], [6], [8].

For the second contribution, we first note that, while
the recently proposed complex encodings, e.g. [7], [18],
lead to state-of-the-art performance, they are relatively
slower than the simpler bag-of-features encoding with
approximate nearest neighbor based hard quantization
of local features [24]. Also, it has been demonstrated em-
pirically that using complementary features, e.g. based
on gray and color, leads to improvement in performance,
albeit with expensive RBF-χ2 kernel SVMs [5], [25].

Motivated by this observation, we empirically investi-
gate the speed vs. performance trade-off by using the
proposed RBF-χ2 SVM with fast and simple statistics
based on complementary features. We show that the
efficient nonlinear classifiers, as proposed, when used
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with simple statistics of complementary features lead to
substantial gain in performance at a very small cost in
computational time. This allows us to design systems
at different operating points balancing time and perfor-
mance (Fig. 1). Most interestingly, we find that it is pos-
sible to reach 95% of the performance of state-of-the-art
methods (which use complex encoding and linear SVM)
using complementary features with proposed non-linear
RBF-χ2 SVM, while being 11× faster for complete testing
and 33× faster when excluding the common feature
extraction part (which could run at relatively negligible
cost on dedicated hardware such as GPU). Further, it is
possible to improve the state-of-the-art while adding a
very small run time cost. We obtain such improvements
consistently on four recent publicly available challenging
image classification datasets: (i) Flickr Materials [26], (ii)
MIT Indoor Scenes [4], (iii) Human Attributes [27] and
(iv) Pascal VOC 2007 [5].

1.1 Related Work

The two main ingredients of many successful approaches
for visual recognition are (i) the representation of images
by distributions (i.e., histograms) of visual features such
as in BoF [12] and HOG [28] and (ii) the use of margin
maximizing classifiers such as SVMs [29]. Systems built
on them have led to state-of-the-art performance on
image classification [1], [2], [30] and object detection [6],
[31], [32].

The standard formulation for learning classifiers is
the SVM primal formulation (Eq. 2, see [29] for more
details) which allows the learning of a linear classifica-
tion boundary in the space of (images represented as)
distributions. However, general visual tasks, e.g. scene or
object based classification of unconstrained images, are
very challenging due to the presence of high variability
due to viewpoint, lighting, pose, etc. and linear decision
boundaries are not sufficient. Many competitive methods
in image classification [1], [5] and object detection [6],
[31], thus, use non linear classifiers. Such non linear
classifiers are obtained by using the kernel trick with the
dual formulation (Eq. 3) of the SVM. The SVM dual
formulation only requires the dot products between the
vectors and so a nonlinear kernel function k(x1, x2) is
used which implicitly defines a (non linear) mapping φ :
R

D → F of input vectors to a high (potentially infinite)
dimensional feature space with k(x1, x2) = 〈φ(x1), φ(x2)〉.
With the kernel trick, a linear decision boundary in
the feature space is learned which corresponds to a
non linear decision boundary in the input space. Such
kernel based SVMs have been shown to improve the
performance of linear SVMs in many visual tasks (e.g.
classification and detection) by a significant margin, e.g.
[1], [6], [31].

While the dual formulation allows the learning of non
linear decision boundaries, the computation of classifier
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Fig. 1. The classification performances (mAP) on the

Pascal VOC 2007 [5] dataset: (i) the proposed non-

linear SVM method (denoted nSVM, in red/light) with

complementary features, i.e., gray (subscript GRAY) and

color (subscript COL); (ii) Fisher Vector [7], an existing

state-of-the-art method (denoted FV, in black/dark); (iii)

combinations of the two, by late fusion (denoted FV +

nSVM, in red/light). The areas of the disks are pro-

portional to the testing times of the respective meth-

ods. As argued in text, ‘nSVMGRAY +nSVMCOL’ and

‘FV+nSVMGRAY +nSVMCOL’ are especially appealing.

decision for a test vector x,

f(x) ∝
Nsv∑

i=1

cik(x, xi) (1)

(ci being the model parameters), depends on kernel com-
putation with all support vectors {xi ∈ R

D|i = 1 . . . Nsv}.
Hence, the test time and space complexities becomes
O(D ×Nsv)

1 vs. O(D) for the linear case (where f(x) =
wT x). In practice, Nsv is of the order of number of train-
ing examples, and this leads to significant cost in terms
of time and space. Such high cost makes it impractical
for kernel based classifiers to be used for large scale
tasks, e.g. object detection, in which the classifier has
to be applied to more than 100,000 windows per image
[6], [31] or large scale image classification [34] with
thousands of classes. Similarly, it makes them impractical
to use with limited capability mobile devices in con-
sumer applications, e.g. smart-phone/tablet applications
for object or landmark recognition or for real time object
based video editing.

Traditionally, classifiers based on non linear SVMs
have led to the best results on image classification prob-
lems with the standard BoF [11], [12] image representa-
tion (e.g. the high ranking entries of the PASCAL VOC
2007 competition [5]). However, such classifiers incur a
very high testing cost, as explained above. To address

1. While noting that there are kernels with polynomial complexities,
i.e., O(Dn) with n > 1 (e.g. Earth movers’ distance based kernels
with worst case exponential complexity [33]), in the present work we
consider only those with linear complexities
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this problem of efficiency, approaches have primarily
taken one of the following two directions.

Efficient classification. Methods were proposed to re-
duce, primarily, the test time complexity of kernel SVMs.
Bruges [35] gave a method to approximate the decision
function of kernel SVM using a reduced set of vectors
(w.r.t. the set of all support vectors). Many other works
were then proposed in a similar spirit, e.g. [36], [37], [38],
[39].

Recently, Maji et al. [19] showed that SVM classifier
decision corresponding to the histogram intersection
(HI) kernel can be computed in logarithmic (w.r.t. Nsv)
time and also proposed a constant (w.r.t. Nsv) time and
space approximation for the same. Mapping features to
another, higher dimensional, yet finite space where the
inner product of the transformed vectors approximates
the kernel and then using recent fast linear SVM classi-
fication methods, e.g. [40], [41], [42], [43], [44], has been
quite popular recently. To this end, Williams and Seeger
[45], [46], Smola and Scholkopf [47] and Fine and Schein-
berg [48] used Nystrom’s approximation. Perronnin et al.
[21] applied Nystrom’s approximation to each dimension
for additive kernels for image classification. In a data
independent way, Rahimi and Recht [49] proposed to
use random Fourier features, Raginsky and Lazebnik
[50] proposed to construct binary codes corresponding to
shift invariant kernels. Maji and Berg [20] approximated
the feature map corresponding to the HI kernel and
Vedaldi and Zisserman [22] approximated general addi-
tive kernels, e.g. HI and χ2. The advantage of resorting
to such explicit mappings is that they allow the use of
linear classification methods with the feature mapped
vectors, but the drawback is that each data point has to
be explicitly mapped, which has a cost.

Stronger Encodings. Simple extensions of BoF, e.g. from
hard assignment to a single quantization bin to soft
assignments of local features to multiple bins, were
shown to improve performance [51], [52], [53], [54].
Later works proposed even more sophisticated coding
and pooling methods, e.g. sparse coding [13], [14], [15],
[16], [17], [18], [55] with max pooling reporting very
good classification performances with linear classifier.
Works were also reported using higher order statistics
of features for coding, e.g. Super Vectors [56] and Fisher
Vectors [7], [57], which, used with linear SVMs, are the
current state-of-the-art methods for image classification
[24].

In addition to all the methods cited above, our method
is also loosely related to the pre-image and reduced set
problem in kernel methods [35], [58], [59]. However, the
objectives of those works is in sharp contrast with the
proposed method. We comment more on this in § 2.3.

In this paper, we take an (as far we know) unexplored
route and show that it is possible to learn nonlinear
classifiers directly in the input space without using the
dual formulation and the kernel trick, achieving similar

classification performance at improved speed and mem-
ory requirements.

In a recent empirical study [24], the complex encoding
method of Fisher Vectors [7] was shown to be the state-
of-the-art image representation and has been applied
to many classification tasks [3], [24], [60], [61]. In our
experiments, we show that our method leads to 95%
of the performance of this state-of-art method, while
being an order of magnitude faster, and, when combined
with it, leads to consistent improvements at a very small
additional cost (Fig. 1).

2 APPROACH

Support vector machine (SVM) primal formulation, i.e.,

min
w∈RD

λ

2
||w||22 +

1

N

N∑

i=1

ξi (2)

sb.t. yiw
⊤xi ≥ 1− ξi and ξi ≥ 0, ∀ i = 1 . . . N,

is a standard formulation to learn a linear classifier,
where w is a normal to the linear decision hyperplane
and (xi, yi) ∈ R

D × {−1,+1}, i = 1 . . . N , are the N
training vector and label pairs. The optimization prob-
lem is convex and well studied, and many standard
libraries (e.g. liblinear [44]) exist for solving it. How-
ever, only a linear decision boundary (i.e., a hyperplane
parametrized by w) can be learned with this formulation.
General visual tasks, e.g. scene or object based classifica-
tion of unconstrained images, are very challenging due
to the high variability caused by changes in viewpoint,
lighting, pose, etc. and linear decision boundaries are
not sufficient. To allow learning more complex nonlinear
decision boundaries, the dual formulation of the problem

max
α∈RN

N∑

i=1

αi +

(
1

2
−

1

λ

) N∑

i=1

N∑

j=1

αiαjyiyj x⊤i xj (3)

sb.t. 0 ≤ αi ≤
1

N
, ∀ i = 1 . . . N,

is used. In this formulation, the kernel trick can then
be mobilized whereby dot products are replaced by a
suitable kernel function k such that:

k(xi, xj) = 〈φ(xi), φ(xj)〉F (4)

with

φ : RD → F (5)

being a feature map from the input space R
D into a high

(potentially infinite) dimensional Hilbert feature space F
where the classes are hoped to be linearly separable. In
the kernelized version of dual problem (3), dot products
x⊤
i xj are replaced by kernel-based similarities k(xi, xj)

and map φ is not explicitly required (see [29] for detailed
discussion). Learning a kernel based non-linear SVM
with the primal formulation, using similarly the kernel
trick, is also possible [62] but less common in practice.
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Towards the goal of learning a nonlinear classifier
in input space, we start with the SVM problem (un-
constrained formulation equivalent to Eq. 2) in feature
space, obtained by mapping the input space vectors
using the feature map φ:

min
wφ∈F

λ

2
||wφ||

2
F +

1

N

N∑

i=1

l(yi, 〈wφ, φ(xi)〉F )

︸ ︷︷ ︸

Lφ(wφ)

, (6)

with l being the hinge loss function

l(y, δ) = max(0, 1− yδ) (7)

and where wφ ∈ F denotes the (parameters of the) linear
decision boundary in the feature space. We note that
arbitrary vectors in feature space might not have pre-
images relative to φ in input space [29], [59]. Hence, we
denote by w ∈ R

D either the pre-image of wφ ∈ F if it
exists or the best approximate pre-image otherwise, i.e.,

wφ ≈ φ(w). (8)

We can now derive a new objective function in input
space, L(w) = Lφ(φ(w)), which reads:

L(w) =
λ

2
||φ(w)||2F +

1

N

N∑

i=1

l(yi, 〈φ(w), φ(xi)〉F ). (9)

This objective is same as the original objective upto
the approximation introduced due to the possible non-
existence of a pre-image for the solution wφ of original
problem. Said differently, by minimizing L(w) in input
space, we solve kernel SVM problem (6) under the
constraint that the normal to separating plane in feature
space is in φ(RD).

Although we are working with non-negative input
vectors such as bag-of-features histograms, we expect
the vector w to be negative as well, in general. In that
case, we can see the w vector as a combination of two
non-negative vectors with disjoint supports:

w = w+ −w−, with w+ and w− ∈ R
D
+ , (10)

where the w+ (w−) capture the discriminative informa-
tion supporting the positive (negative) class.

Given a kernel k, the regularization term in Eq. 9
becomes

R(w) := ||φ(w)||2F = 〈φ(w), φ(w)〉F = k(w,w) (11)

and hinge loss computations in the second term involve
computing

yi〈φ(w), φ(xi)〉F = yif(xi;w) (12)

where f(·;w) := k(w, ·) acts like a scoring function,
parametrized by w. This score function induces a de-
cision boundary in the input space that is non-linear in
general (unless k is a monotonic function of dot product
in input space).

Hence, the complete feature space optimization can be
written (approximately) in input space as minimizing

L(w) =
λ

2
k(w,w) +

1

N

N∑

i=1

max(0, 1− yik(w, xi)). (13)

Minimizing Lφ w.r.t. wφ in the feature space is a con-
vex problem (in input space). It is solved using the kernel
trick which evades the need of explicitly specifying φ.
However, at test time, to compute the prediction for
a test image, computing kernels with all the support
vectors (which are of the order of number of training
images) is required.

In this paper, instead of minimizing the convex objec-
tive Lφ (Eq. 6) in feature space, we propose to directly
minimize the nonlinear and non-convex objective L (Eq.
13) in input space.

2.1 Nonlinear SVM with important kernels

We now show how nonlinear SVM learning problem can
be formulated and learned directly in the input space
for four kernels popular in computer vision namely
Histogram Intersection, χ2, RBF with Euclidean distance
and RBF with χ2 distance function. We start with the
optimization (13), written for any general kernel k(x, y)
as,

min
w,b

λ

2
k(w,w)+

1

N

N∑

i=1

max[0,m− yi(k(w, xi) + b)], (14)

where we have (i) replaced the unit margin with a free
parameter m (we comment more on this in § 3.1) and
(ii) added, in the scoring function, a bias term b ∈ R to
be learned along with w. The latter is critical for RBF
kernels as their range is R

+. With this view we now
consider the four different kernels. For each, we give the
expression for the kernel which we use with Eq. 14 and
derive the analytical expressions for the subgradients
that will be used to learn the classifier by means of
a stochastic gradient descent algorithm. As we shall
see, defining some of these kernels with the traditional
distances leads however to some technical problems.
We remedy them by introducing shifted versions of the
distances.

Histogram intersection kernel. The generalized HI ker-
nel is given by

kh(x, y) =

D∑

d=1

xdyd
|xdyd|

min(|xd|, |yd|), (HI kernel)

where the subscript denotes the coordinates of the vector,
i.e.,

x = (x1, . . . , xD). (15)
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RBF-Euclidean (kre) Histogram intersection (kh) χ2 (kc) RBF-χ2 (krc)

f(x;w) = k(w, x) exp
(

1
γ

∑D
d=1 xdwd

)
∑D

d=1
xdwd

|xdwd|
min(|xd|, |wd|)

∑D
d=1

2xdwd

|xd|+|wd|
exp

(
1
γ

∑D
d=1

2xdwd

|xd|+|wd|

)

∇wd
f(x;w) xd

γ
kre(w, x) 1 if |wd| < xd, 0 ow 2xd|xd|

(|xd|+|wd|)2
2xd|xd|

γ(|xd|+|wd|)2
krc(w, x)

R(w) = k(w,w) exp( 1
γ
||w||22) ||w||1 ||w||1 exp( 1

γ
||w||1)

∇wd
R(w) 2wd

γ
exp( 1

γ
||w||22)

wd

|wd|
wd

|wd|
wd

γ|wd|
exp( 1

γ
||w||1)

TABLE 1

The score and regularization functions with their derivatives for four important popular computer vision kernels. Note

that RBF-Euclidean kernel kre, χ
2 kernel kc and RBF-χ2 kernel krc are defined in a slightly unusual form, assuming

that input vectors x are ℓ2 (resp. ℓ1) normalized for the former (resp. the two others). See text for details.

The subgradients for the regularization and scoring func-
tion are given by

∇wd
kh(w,w) = ∇wd

||w||1 =
wd

|wd|
, (16)

∇wd
kh(w, x) =

{
1 if |wd| < xd,
0 otherwise,

(17)

where we have used the fact that we are working with
histograms, i.e., xd ≥ 0 ∀, d = 1, . . . , D.

χ2 kernel. The traditional χ2 kernel is based on the χ2

distance and is given by

kc̄(x, y) = c−
1

2

D∑

d=1

(xd − yd)
2

|xd|+ |yd|
, (18)

where c is a fixed constant. However, using this form of
the kernel leads to no regularization as kc̄(w,w) = c is
independent of w. When the vectors x, y are ℓ1 normal-
ized,

kc̄(x, y) = (c− 1) +

D∑

d=1

2xdyd
|xd|+ |yd|

, (19)

which suggests to define instead a generalized χ2 kernel
as

kc(x, y) =

D∑

d=1

2xdyd
|xd|+ |yd|

. (χ2 kernel)

With this definition, the required subgradients are given
by (with xd ≥ 0)

∇wd
kc(w,w) =

wd

|wd|
, (20)

∇wd
kc(w, x) =

2xd|xd|

(|xd|+ |wd|)2
. (21)

RBF-Euclidean kernel. The usual definition of radial
basis function (RBF) kernels is given by

k(x, y) = exp

(

−
1

γ
D2(x, y)

)

, (22)

where D(·) is the corresponding distance function. Sim-
ilar to the χ2 kernel above, if we define the kernel this
way the regularizer comes out to be R(w) = k(w,w) =
exp(0) = 1, independent of w, i.e., no regularization. For
the Euclidean distance we have,

D2
E(x, y) = ||x− y||2 = 2− 2x⊤y (23)

if the vectors are ℓ2 normalized. Hence we define the
RBF-Euclidean kernels as

kre(x, y) = exp

(
1

γ
x⊤y

)

. (RBF-Euclidean kernel)

The required subgradients are then given by

∇wd
kre(w,w) =

2wd

γ
exp

(
1

γ
||w||22

)

, (24)

∇wd
kre(w, x) =

xd

γ
exp

(
1

γ
w⊤x

)

. (25)

RBF-χ2 kernel. Similarly to previous construct, we de-
fine the generalized RBF-χ2 kernel as

krc(x, y) = exp

(

1

γ

D∑

d=1

2xdyd
|xd|+ |yd|

)

. (RBF-χ2 kernel)

The required subgradients are then given by

∇wd
krc(w,w) =

wd

γ|wd|
exp

(
1

γ
||w||1

)

, (26)

∇wd
krc(w, x) =

2xd|xd|

γ(|xd|+ |wd|)2
krc(w, x). (27)

2.2 Linear decision function as a convex relaxation

for histogram intersection kernel

The optimization problem (14) is a non-convex problem
and to gain some insight on the nature of the problem
and the feasibility of finding a resonable solution, we
present a possible method to solving it.

A common approach to deal with non-convex opti-
mization is to resort to approximation and solve a convex
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x

1x t

  w
 
x / t, w 

 
≤ t

  w tan{θ(t–x)/(1-x)},w > t
f(w) = 

θ = arctan(x)

w

Relaxation to linear decision 
function by varying parameter t

t 

t = 1
Linear

t = x
Intersection

f(w) = min(x, w)

f(w) = w
 
x

Fig. 2. The linear decision function (green) can be

seen as a convex relaxation of the histogram intersection

like decision function (blue). If we introduce a parameter

t ∈ [x, 1], we can construct a series of relaxations of

the intersection like decision function converging to the

convex linear decision function as t varies from x to 1,

shown in red in here. Only the first quadrant is shown,

the graphs in the third quadrant are obtained by mirroring

about the two axes i.e. all functions are odd functions with

f(−x) = −f(x).

relaxation of the objective instead. Fig. 2 shows how a se-
ries of relaxations of the generalized histogram intersec-
tion kernel based decision function can be constructed,
with final convergence to linear, and hence, convex
decision function (convex optimization problem). An
algorithm could, thus, be designed to solve the nonlinear
optimization by successive smoothing. The algorithm
would proceed by first solving a highly smoothed con-
vex problem (corresponding to linear decision function)
and then iteratively solving less smoothed versions, of
the objective, initialized with the solution of previous
ones.

The intersection decision function (for single dimen-
sional feature x ∈ R) could be relaxed with the following
function, parametrized by t,

ft(w, x) =

{
wx
t

if w ≤ t,

w tan
{

tan−1(x). t−x
1−x

}

otherwise,
(28)

for x ∈ R+ (the function is odd, i.e., f(w) =
−f(−w), ∀w ∈ R−). The parameter t ∈ [x, 1] (x ≤ 1 as it
is a component of ℓ1 normalized BoF histogram) controls
the amount of smoothness on the objective function. Fig.
2 illustrates the smoothed versions of the function for
one dimensional w. We have no smoothing when t = x,
while t = 1 leads to heavily smoothed linear decision
function. When the decision function is linear, i.e., t = 1,
the optimization problem becomes convex.

When using this function for the sum of hinge losses
for all d dimensional examples (i.e., many different x ∈

R
D) t is replaced with max(t, xd) for each dimension of

each example. The discussion above, pertaining to the
convex relaxation of the objective, changes accordingly.

Similar relaxations could also be constructed for the
other kernels and used to solve the optimization with
successive relaxations initialized with the solutions to the
previous ones.

However, we show below that it is not necessary to
use this relaxation based framework as more practical
solutions are possible (see section 2.4). The rationale
for the above discussion is to give an insight into why
gradient descent can work despite the problem is not
convex.

2.3 Relation with pre-image and reduced set kernel

methods

While many of the current method take the ‘forward’
path of approximately mapping the features into higher
dimensional spaces where the dot products approximate
the kernel evaluated in the input space [19], [21], [22],
we propose a ‘backward’ path of mapping the non-linear
classification boundary back in to the input space. Our
method is thus reminiscent of the reduced set and pre-
image problems in kernel methods [29], [35], [59] where
the set of support vectors for SVM (or the input vectors
for kernel PCA) is reduced to a set with significantly
smaller number of vectors such that the relevant calcula-
tions are well approximated. Hence, an important moti-
vation for the proposed method can be given as follows.
The present scenario could be formulated alternatively
as an extreme reduced set problem, where the kernel
SVM was first solved obtaining the support vectors and
then this set of support vectors were reduced to a single
vector (similar to the proposed) w, i.e., optimize for w
such that

N∑

i=1

yiαik(xi, x) ≈ k(w, x), ∀ x ∈ R
D, (29)

where the αi’s are the optimal dual variables, which
are strictly positive only for the Ns support vectors
among training vectors. However, this would involve
solving two optimization problems, one for obtaining the
support vectors (and optimal dual variables) and then
second for solving the reduced (singleton) set problem.
Also, since we are eventually interested in the primal
objective (and the kernel SVM is usually solved in the
dual) it is known that there is no guarantee that an
approximate dual solution will give a good approximate
primal solution and, hence, solving the primal directly
is beneficial [62]. Hence we propose instead to integrate
approximations motivated by reduced set formulations
directly into the original optimization of regularized loss
minimization.

2.4 Learning using SGD

We learn the non-linear SVM (nSVM) directly, without
the kernel trick, by optimizing the primal (14) w.r.t.
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Algorithm 1 SGD based learning of nSVM

1: Input: (xi, yi)i=1:N , λ, m and k ∈ {kh, kc, kre, krc}
2: Initialize: w, b and r
3: for iter = 1, . . . , 100 do
4: σ ← random shuffle(J1, NK)
5: for j = 1, . . . , N do
6: i = σ(j)
7: if yi(k(w, xi) + b) < m then
8: wd ← wd + ryi∇wd

k(w, xi), ∀ d
9: b← b+ ryi

10: end if
11: wd ←

wd

|wd|
max[0, |wd| − rλ∇wd

k(w,w)], ∀ d
12: end for
13: if iter = 50 do r ← r/10 end if
14: end for

(w, b) ∈ R
D+1. We follow [23] and use stochastic gradient

descent (SGD). The required gradients for the regular-
ization and score functions are summarized in Table
1. Following previous works [60], we use a small but
constant learning rate r, which we reduce by a factor
of 10 in the mid iteration as it leads to a smoother
convergence due to annealing (Fig. 6). In the present
paper, since we work with bag-of-features histograms,
the training examples are non-negative (xd ≥ 0, ∀ d),
while w in general is not. When making the update, we
do not allow zero-crossing since the regularization term
is in general not differentiable at zero. The full learning
algorithm used to train models in the present paper is
given in Algorithm 1.

3 EXPERIMENTAL RESULTS

We use the following publicly available datasets to eval-
uate the various aspects of the proposed method. Fig.
3 gives some examples of the kind of images the test
databases contains.

Flickr Materials dataset2 [26] is a challenging dataset
with 10 material categories, e.g. glass, leather, fabric. The
dataset was created manually by downloading images
from Flick.com while ensuring large variations e.g. in
illumination, color, composition and texture, making the
dataset very challenging. The evaluation is done with 50
images per class for training and 50 for testing.

MIT indoor scenes dataset3 [4] contains 67 indoor scene
categories, e.g. inside airport, inside church, kitchen.
There are a total of 15620 images with each class con-
taining at least 100 images. The evaluation is done using
80 training images and 20 test images per class.

Human Attributes (HAT) dataset4 [27] contains 9344
images of humans with 27 different attributes, e.g. small
kid, running, wearing jeans, crouching. The dataset was

2. http://people.csail.mit.edu/celiu/CVPR2010/FMD/
3. http://web.mit.edu/torralba/www/indoor.html
4. https://jurie.users.greyc.fr/datasets/hat.html

constructed by automatically downloading images based
on manually specified human centered queries and then
running a state-of-the-art human detector [32] and hav-
ing the false positives manually pruned. The evaluation
is done using the provided split of 7000 training and
validation images and 2344 test images.

Pascal VOC 2007 dataset5 [5] is composed of images
containing 20 different categories of objects, e.g. horse,
airplane, bottle, cow. The images were downloaded from
the internet and annotated for the objects. It has been
a standard benchmark dataset for image classification,
segmentation and object detection. It has 5011 images
for training and validation and 4952 images for testing.
We report results on the image classification task.

Performance measure. For each dataset, we train a one
vs. all binary classifier for each class and report the
performance as the average precisions (AP) for each
class and the mean average precision (mAP) over all the
classes.

Implementation details. We use dense SIFT features
extracted at 8 scales separated by a factor of 1.2, with
step size 3 pixels. We use two types of bag-of-features
[12], one based on gray SIFT [63] and other based on
opponent SIFT, which has been shown to be a good color
descriptor [25]. We use k-means to learn a codebook of
size 4096 (unless otherwise specified) and do approxi-
mate nearest neighbor based hard quantization. We do a
three level SPM with 1×1, 2×2 and 3×1 partitions. We
use vlfeat library [64] for SIFT, k-means and ANN.
We fixed the parameters to λ = 10−4,m = 0.05, and
initialize w = 0, b = −1 for the RBF kernels and b = 0
for others, for all the experiments. The Fisher Vector is
our implementation of [7] (following [24]) in C++ and
is called via the mex interface of MATLAB. All times
reported are for the computations only, i.e., with all
required data completely in memory, and are on a single
core/thread of a workstation with an Intel Xeon X5650
2.67 GHz processor running GNU-linux.

In the following, we denote the proposed nonlinear
SVM as nSVM and use subscripts ‘h’, ‘c’, ‘rc’, ‘re’ (with
k) for Histogram intersection, χ2, RBF-χ2 and RBF-
Euclidean kernels respectively.

3.1 Free parameter m and sensitivity to m and λ

In the proposed optimization Eq. 14 we introduced a
free parameter m instead of the usual unit margin.
The motivation for doing so was as follows. Consider
Histogram Intersection kernel for instance. Since the
scoring function(s) is defined as kh(w, x), the maximum
(minimum) score achievable is 1 (-1) in the case when
w = x (w = −x) (as the vectors x are ℓ1 normalized).
Hence almost all the vectors will have absolute scores
less than 1, i.e., all of them will be inside margin for
the usual case of m = 1. It is highly unlikely (even

5. http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/

http://people.csail.mit.edu/celiu/CVPR2010/FMD/
http://web.mit.edu/torralba/www/indoor.html
https://jurie.users.greyc.fr/datasets/hat.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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Fig. 3. Example labeled images from the datasets used for experimental evaluation.
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Fig. 4. The loss function as a function of w for different values of m, corresponding to χ2 kernel for synthetic 1-D

examples generated randomly from two normal distributions N (0.65, 0.1) vs. N (0.35, 0.1). The leftmost figure plots

(x,y) for the randomly sampled points and the next three figures plot the loss function for m = 0.1, 0.5, 1.0. See § 3.1

for discussion.

for linear SVM) that all of the training examples are
support vectors (being inside the margin). Empirically
we found in preliminary experiments that with m = 1
the method doesn’t work. Changing m changes the
optimization function and we visualized this in 1-D
by generating 100 points randomly from two normal
distributionsN (0.65, 0.1) vs.N (0.35, 0.1) and visualizing
the loss function, shown in Fig. 4 (for χ2 kernel). We
see that the loss function changes as we vary m, since
the learning focuses in different sets of ‘hard examples’
which are more likely to become support vectors. On
real image data, we expected the learning to focus on
harder examples with m ≪ 1 (as in higher dimensional
space, high overlap between w and all x is unlikely) and
found empirically that smaller values of m work better.
The method is not very sensitive to m, once we were
in a good range (by preliminary experiment on smaller
subset of training set) we could fix m for all experiments.

Fig. 6 shows t ypical test average precision (AP) vs.

iterations curves for the proposed learning algorithm
with different settings of the two free parameters m
and λ. The method converges for a range of λ and
m parameters. We found that having a higher rate r
initially and then annealing by decreasing the learning
rate midway was helpful for convergence, notice the
convergence before and after iteration 50.

3.2 Comparison with kernel SVM and explicit feature
maps

Tab. 2 gives the performance of the proposed nSVM
along with that of the traditional kernel SVM classifier
on the Pascal VOC 2007 [5] dataset, for the different
kernels. We use libsvm library [65] with precomputed
kernels for the kernel SVM results. We see that the
proposed method achieves slightly lower results as the
kernel SVM. For reference, linear SVM obtains 40.1 mAP
here. However, the test times for the proposed method
is orders of magnitude faster. Instead of comparing test
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kh kc krc kre

Kernel SVM (libsvm) 54.9 55.0 55.5 42.7

nSVM (present) 54.2 53.9 55.2 40.9

TABLE 2

Performance (mAP) of the proposed nonlinear SVM and

of kernel SVM on the Pascal VOC 2007 [5] dataset with

Histogram intersection (kh), χ2 (kc), RBF-χ2 (krc) and

RBF-Euclidean (kre) kernels. The performance of linear

SVM in same settings is 40.1 mAP.

times with kernel SVM we compare them with compet-
ing methods in the following section.

We compare with a closely related, recently proposed
method of explicit feature mapping (FM) by Vedaldi
and Zisserman [22] which computes a finite dimensional
map approximating the kernel. Such mappings thus
enable us to compute linear classifiers in the mapped
space. It was shown by Vedaldi and Zisserman [22] that
this feature mapping obtains better results that the one
by Maji and Berg [20].

We use vlfeat library [64] to compute the FM cor-
responding to Vedaldi and Zisserman’s method [22]
for the histogram intersection and χ2 kernels. We use
liblinear [44] (with ℓ2 regularized ℓ1 loss option) to
learn SVM with the feature mapped vectors. FM was
shown to be more than three orders faster than the kernel
SVM (there are O(103) support vectors and the scoring
a new image/vector requires computing the kernel with
each of them). We use the parameter values which gave
the best performance for FM i.e., map the original d
dimensional BoF vectors to 7d dimensional feature space
and do classification there. Since we did the experiments
using all the features in memory, limited by the RAM of
the system, we used a codebook size of 1024 (instead of
4096 as everywhere else) for all three methods.

Fig. 5 shows the per class performances of our method
vs. kernel SVM (using libsvm [65] with precomputed
kernels) and FM [22], on the Pascal VOC 2007 [5] and
Human Attributes (HAT) [27] datasets. We get similar
performance, on average, compared to FM for both the
datasets and both histogram intersection and χ2 kernels.
We conclude that our method for learning a classifier
directly in original space achieves essentially similar
performance as the explicit feature maps method of
Vedaldi and Zisserman [22].

Tab. 3 summarizes the test time and memory usage
comparisons. While our method performs a linear scan
on the d-dimensional features to calculate the test score
(by computing the kernel between w and the test vector),
for explicit feature maps we have to, first, compute the
mapping to 7d space and then compute a dot product
in that space. Hence the model is 7× bigger for explicit
feature map compared to our method and (empirically)
our method is about 19× faster than explicit feature
maps with linear SVM (the time is only due to classi-

Time Memory

Secs Speedup Kb Reduction

Feature maps [22] 3.8 1 (ref) 448 1 (ref)

nSVM (present) 0.2 19× 64 7×

TABLE 3

Testing time, for the test set (with about 5000 images) of

Pascal VOC 2007 dataset [5] (with a typical class model,

averaged over 10 runs) and memory usage (for keeping

model in memory) for the proposed method and the

explicit feature maps method of Vedaldi and Zisserman

[22] (with Histogram intersection kernel).

fier score computations and excludes the bag-of-features
construction time for both methods). The training is also
fast, e.g. it takes about 45 secs to train a model for
one class of Pascal VOC 2007 dataset. We resorted to a
conservative training strategy with multiple passes over
the data and our training time can be arguably improved
quite a bit.

3.3 Performance vs. complexity trade-off

As the RBF-χ2 kernel usually performs the best among
all kernels (see for instance Tab. 2), we report results
based on RBF-χ2 kernel in the following. We denote
‘nSVM’ the corresponding non-linear SVM learnt with
the proposed method, with suffix ‘GRAY’ or ‘COL’ based
on the type of SIFT, gray or color, that is used. When we
combine two methods, denoted by ‘+’, we do so by a
simple late fusion (averaging) of the confidence scores
of the individual classifiers.

Table 4 shows the performances of nSVMs with RBF-
χ2 kernel trained on bag-of-features based on gray SIFT
and opponent SIFT features [25], along with those of
Fisher Vectors [7] and the various combinations of the
methods using late fusion on the four datasets: Flickr
Materials [26], Human Attributes [27], Indoor Scenes [4],
and Pascal VOC 2007 [5].

The fastest method, nSVM with gray SIFT features,
achieves competitive performance on the four datasets,
i.e., 89%, 85%, 89% and 90% respectively of the perfor-
mance of state-of-the-art FV method [7] while being 34×
(75×) faster in testing (encoding) times and at least 10×
more space efficient (this is more in practice as, while
FVs were negligibly sparse, BoFs with spatial pyramids
had up to 40% zeros). We emphasize that efficiency
comparisons based only on encoding are equally, if not
more, relevant as the local feature extraction is likely to
be implemented on fast or even dedicated hardware in
many consumer devices, and hence is likely to become
relatively negligible for all the methods.

Although nSVM with color features performs rela-
tively poorly alone, when combined with nSVM with
gray features it achieves significantly more than either
at 102%, 93%, 96% and 95% of the performance of
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Fig. 5. The average precisions for different classes (and the mean AP) of the Human Attributes (HAT) dataset [27]

and Pascal VOC 2007 [5] dataset (image classification task) for (i) Kernel SVM (libsvm [65]), (ii) the explicit feature

mapping of Vedaldi and Zisserman [22] (iii) the proposed method (nSVM), for histogram intersection and χ2 kernels.
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Fig. 6. The average precisions for different values of (left) regularization parameter λ and (right) hinge loss parameter

m, for a typical convergence of the proposed method.

nSVMGRAY nSVMCOL nSVMGRAY

+nSVMCOL

Fisher Vector Fisher Vector
+nSVMGRAY

Fisher Vector
+nSVMGRAY

+nSVMCOL

Flickr Materials [26] 50.2 51.9 57.3 56.1 56.7 59.7

MIT Scenes [4] 53.5 50.5 58.0 62.7 63.3 64.6

Human Attributes [27] 57.2 59.2 61.5 64.2 65.0 65.6

Pascal VOC 2007 [5] 55.2 50.8 58.6 61.4 62.4 63.6

Feature dimension 32,768 32,768 65,536 327,680 360,448 393,216

Memory reduction∗ 10× 10× 5× 1 (ref) 0.91× 0.83×

Encoding time 0.27s 0.34s 0.61s 20.16s 20.43s 21.04s

Speed-up 75× 59× 33× 1 (ref) 0.99× 0.96×

Full test time 0.60s 1.31s 1.92s 20.49s 20.76s 22.68s

Speed-up 34× 16× 11× 1 (ref) 0.99× 0.90×

TABLE 4

The performances and the test time complexities of the proposed method with RBF-χ2 kernel (denoted as nSVM)

with BoF based on gray (subscript GRAY) or color (subscript COL) SIFT features and the Fisher Vector [7] method.

The ‘+’ signifies combination of the classifiers by late fusion of their individual scores. The times are for a typical

image with about 44k SIFT features on a single core/thread of an Intel Xeon X5650, 2.67Ghz processor. ‘Full test

time’ amounts to the complete chain, SIFT extraction, encoding/pooling and final classification, while ‘Encoding time’

refers to encoding step only, after SIFT features have been extracted (∗The space complexity comparison does not

take into account the sparsities of the representations, usually BoF are much sparser than Fisher Vectors).

Fisher Vectors while being 11× (33×) faster in testing
(encoding) times and at least 5× more space efficient.
The full test time, as reported in Tab. 4, is the end-to-
end time i.e., from raw image as input to its test score.
It includes computation of all types of features (for the
respective methods), their encoding/pooling and finally
the test score computation. Hence while the proposed
method pays additional cost of computing multiple fea-
tures, due to inexpensive simple encoding combined
with proposed efficient nonlinear classification, it is
much faster overall. This shows that simple statistics of
complementary features when used with nSVM lead to
highly competitive performance on a budget.

On higher time complexities, adding the gray and

color features based nSVM to the Fisher Vector consis-
tently leads to improvements of up to 3.6 absolute mAP
points. Combining nSVM with just gray features with
the Fisher Vectors (‘Fisher Vec. + nSVMGRAY ’ in Table
4) only brings a modest improvement (0.6 to 1.0 absolute
mAP points); this is in contrast with results in [7], where
zeroth order statistics (equivalent to BoFs) did not add
anything to the higher order statistics (Fisher Vectors)
with linear classifiers. Although this small improvement
is not very attractive in practice, recall that adding both
gray and color features based nSVMs to FV does lead
to consistently important improvements w.r.t. FV alone,
over all four datasets, at a small cost in time and space
complexities.
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3.4 Comparison with the state-of-the-art

Tables 5, 6, 7 and 8 compare the best performing ver-
sion of our method with existing methods on the four
datasets (see Table 4 for the other versions of our ap-
proach).

On the Pascal VOC 2007 dataset [5] (Tables 4 and 5),
in the original image classification challenge the winning
entry used many different features with RBF-χ2 kernels
achieving 59.4 mAP. The kernels for the different features
were combined with learnt weights for each class. Sim-
ilarly, many other works have combined many features
using, e.g. multiple kernel learning [66]. We achieve sim-
ilar performance as Harzallah et al. [6], who used object
detection, in addition, to improve the classification score,
leading to a high performing but very slow method.
Recently, Sanchez et al. [7] reported an mAP of 63.9
which is slightly better than our best result of 63.6. They
use Fisher Vectors on both gray and color features and
thus would be expected to be about 2× slower than us.
Also, note that the performance of FV on color features
(52.6 mAP), as reported in [7], is comparable to the
performance of proposed RBF-χ2 nSVM with color SIFT
features (50.8 mAP) and significantly lower than nSVM
with both gray and color SIFT features (58.6 mAP), while
being about an order of magnitude slower (Table 4).

On the Indoor Scenes dataset [4] (Tables 4 and 8),
nSVM with gray SIFT BoF performs (53.5 mAP) similar
to more complex locality constrained linear coding (LLC)
with max pooling [18] (53.0 mAP). Our best result (64.6
mAP) is better than that of a recent method which learns
discriminative parts and combines them with Fisher
Vectors [3] (63.2 mAP).

On the Human Attributes dataset [27] (Tables 4 and
6), nSVM with gray SIFT BoF performs competitively
at 57.2 mAP w.r.t. current methods learning adaptive
spatial partitions [27] (53.8 mAP), and learning class-
wise or global part dictionaries, i.e., [10] (58.7 mAP) and
[9] (59.3 mAP). Color SIFT BoF works slightly better
with nSVM for this dataset (59.2) while the best result
obtained clearly outperforms all of the existing methods
with 65.6 mAP.

On the Flickr Materials dataset [26] (Tables 4 and 7),
previous works report mean class accuracy (mAcc), and
we do a simple winner-takes-all voting, on confidence
scores for the binary classifiers for each class, to calculate
mAcc for the proposed method. At 57.6 mAcc (corre-
sponding to our best 59.7 mAP in Table 4) we outperform
methods based on different features (48.2 mAcc [67]),
descriptors (54.0 mAcc [68]) and classification methods
(55.8 [69] and 44.6 [70] mAcc).

4 CONCLUSION

Making non-linear classification efficient is advanta-
geous for many applications specially with large number
of images and categories, e.g. large scale classification,
and with limited computing resources, e.g. in consumer
devices like cameras or smart phones.

In the present paper we proposed a method for learn-
ing non-linear SVM, corresponding to the four kernels
popular in computer vision, directly in the original
space, i.e., without using the kernel trick or mapping
the features explicitly to high dimensional space corre-
sponding to the kernel. We formulated the non-linear
optimization in the original space which corresponds to
the linear optimization problem in the high dimensional
feature space. We showed experimentally that a stochas-
tic algorithm with subgradients works well in practice.
Compared to a recent method for making non linear
classification efficient, the proposed method is 19× faster
and requires 7× less memory.

We analysed empirically the trade-off between en-
coder and classifier complexity and strength. While, on
one hand we have simple counting/histogram statistics
of local features, namely bag-of-features (BoF), with non-
linear SVM (nSVM), on the other, we have complex state-
of-the-art Fisher vector (FV) encoding with linear SVM.
We showed that BoF based on gray SIFT features with
the proposed nSVM leads to very fast classifier which
can achieve up to 90% of the performance of state-
of-the-art FV encoding method while being 34× (75×)
faster in testing (encoding) times and more than 10×
more memory efficient. Further, adding color based BoF
with nSVM leads to up to 96% performance of FV while
being 11× (33×) faster in testing (encoding) times and
more than 5× more memory efficient. At last, combining
the nSVM based system with FV leads to significant
improvements (up to 3.6 absolute mAP points) at small
space and computation costs.

Finally, we would like to point out that the BoF we
used here is the simplest. The large body of existing
works that improve BoF, e.g. by learning better quan-
tizers [71], [72], [73], should increase the performance of
our nSVM based systems further. We hope to explore
this in the future.
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