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Abstract

Multiaxial and heterogeneous mechanical experiments, by means of the diametral com-

pression test (Brazilian test), were carried out on Zr-based Bulk Metallic Glass. Atten-

tion was notably focused on obtaining the displacement field in the area of interest (large

strains) employing a Digital Image Correlation device, in addition to the measurement of the

usual global load–displacement curve. In order to reproduce the behaviour of the BMG at

stake, several constitutive equations were considered with growing complexity: von Mises,

Drucker-Prager (pressure dependence), free volume based model as well as a viscoplastic

Coulomb-Mohr type model. The two latter were implemented as user-material in a Finite

Element computation code. The results of these investigations including experiments and

computational simulations are discussed.
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1. Introduction

Bulk metallic glasses (BMG) are a quite recent class of materials that exhibit exceptional

mechanical properties including strength, resilience, hardness or fracture toughness as well

as large yield strains [1, 2, 3]. The mechanisms of deformation, damage and failure of

these materials must be fully identified for designing compositions of metallic glasses even

more resistant and ductile. The numerical prediction of the mechanical resistance for these

new materials requires an advanced modelling of their behaviour. A better understanding

of the plastic deformation (in terms of localised thin shear bands), the consideration of

temperature, viscosity and pressure effects are necessary parameters.

Obtained via a rapid solidification from the liquid state, BMG belong to the class of

amorphous alloys characterized by the absence of structural long range ordering. Their

macroscopic mechanisms of plasticity mainly proceed from the propagation and interaction

of very thin shear bands. From the microscopic viewpoint, BMG plasticity does not result
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from the accumulation and motion of dislocations, as it is the case for crystalline alloys, but

may be depicted, depending on the authors, by the theories of shear transformation zones

(STZ) [4] or free volume (FV) [5]. Starting from the aforementioned models (STZ and FV),

several authors have tried to describe the macroscopic response of BMG to various loading

cases, see e.g. Schuh et al. [1] and Gao [6] (FV model), respectively. Following another

way, Anand and Su (AS model) [7] developed a Coulomb-Mohr type constitutive theory to

reproduce the elastic-viscoplastic behaviour of BMG.

The present work aims at investigating in a first step the mechanical behaviour on Zr-

based BMG by means of a multiaxial and heterogeneous test. BMG exhibiting an apparent

brittle behaviour in tension as well as in compression at room temperature, the information,

namely plasticity, provided by the usual tension or compression tests on these materials

are de facto far from being suitable. To get some insight on plasticity mechanisms, the

indentation test is commonly carried out [8, 9, 10, 11], so are bending [12] or constrained

tests [13]. There exist other tests, though being less known for this type of material, which

may also be of particular interest. Among them is diametral compression tests [14], also

called Brazilian test, which is extensively used on brittle materials like concrete,. It allows

one to generate a tensile loading in the sample section transversally to the compression axis;

it also generates heterogeneous mechanical fields in the sample, some parts of the sample

remaining almost free of loading. The present approach differs from previous indentation

studies since it allows to record extensive plastic fields during the test in addition to the

mean response (the load-displacement curve) and it creates multiaxial stress states different

from those underneath an indenter. For the indentation test, they are highly compressive

and localised underneath the indenter tip, while for the Brazilian test, they are compressive

close to the loading conditions, tensile close to the free boundaries and close to pure shear

at the centre.

In a second step, computational simulations employing the engineering Finite Element

computation code Abaqus are conducted, involving configurations with different BMG con-

stitutive models. The models which do not belong to the standard model library of the com-

putation code were implemented as user materials. The numerical results are commented

and compared to experimental ones.

The material and experimental procedures are displayed in Sect. 2. with the correspond-

ing results. The constitutive models and the numerical procedures are presented in Sect. 3.

The given results are then compared to experiments in Sect. 4.

2. Materials and experiments

2.1. Materials and samples

The Zr55Cu30Al10Ni5 (at. %) BMG is studied in this paper. By a very careful tilt-casting

process and with highly purified (50 ppm of oxygen) iodine refining processed Zr, specimens

with less than 300 ppm of oxygen and no micrometric crystalline defects are prepared (see

[15] for details). The material is supplied in the form of 60 mm long and 8 mm diameter

rods. The samples used are cut and polished to obtain 6 or 15 mm long cylinders.

Experiments were carried out at room temperature and atmospheric pressure employing

a hydraulic tension-compression machine (INSTRON 8803) equipped with a 500 kN capacity

load cell with a 8 N resolution. A 0.8 µm resolution mechanical extensometer was used to

measure the global displacement between the compression anvils, and two cameras were
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installed to monitor the displacement (with a 0.25 mm resolution) of a cloud of dots sprayed

on a side of the sample (see Figure 1), and further derived the related strain field using a

Digital Image Correlation (DIC) software [16] (Aramis). The tests were carried out at a

displacement rate of 0.05 mm.min−1. For questions of reproducibility, the same test was

made on four different samples times from the same batch. The load-displacement curves

were the same within less than 5%.

An equivalent shear strain used in this paper is defined as :

ǫeq =

r

2

3
e
∼

: e
∼

(1)

Where e
∼

is the deviatoric part of the strain tensor ǫ
∼

and ":" denotes the doubley contracted

product.

2.2. Experimental results

The load-displacement (P-u) curve is presented in Fig. 2. The carried out test is a se-

quence of two successive loadings: the first one on a 15 mm sample, and the second one

on the same sample cut to 6 mm long, after unloading of the former, to be able to reach

fracture without damaging the compression anvils (100 kN limit load). Therefore P stands

for a load per unit length. On Fig. 2 one can clearly distinguish two distinctive steps dur-

ing the deformation process, a stiff part followed by a more compliant one. The numerical

results presented in section 4 provide an explanation to this phenomenon. A higher magnifi-

cation of the last part of the plot displays the presence of regularly spaced serrations, already

reported elsewhere for different tests [13, 17]. They are assumed to be the consequences

of the sequential formation and emergence of shear bands inside and at the surface of the

sample.

DIC allows one to capture the deformation pattern of the sample (see Fig. 3). During the

first part of the loading (below ∼ 11 kN/mm) it concentrates in a column underneath the

load with a maximum equivalent strain of ∼ 0.2 close to the anvil (indentation-like feature)

and at the centre of the sample (Brazilian-like feature). At the end of the second loading,

before fracture, most of the deformation fields are localised in a cross with a maximum

intensity reached in its centre. The equivalent strain in this cross is more than 0.3, while

in the centre the deformation is higher than 0.6. These strains are average values since the

shear bands thickness is 10 to 100 nm [18] while the DIC’s resolution is 0.25 mm. Much

larger strains are expected inside the shear bands.

3. Constitutive modelling and numerical simulations

3.1. Principles of the different approaches

Metallic glasses are often compared to polycrystalline metallic alloys for their chemical

composition and atomic bonds, with polymers for their behaviour at high temperature [19]

and with ceramics for their brittleness [20]. Some models exist aiming at describing each of

these materials behaviour, yet for amorphous metals their number is much smaller because

there remain many unknowns in the understanding of the mechanisms governing their de-

formation. One can quote two specific theories proposed in the late seventies and which

are references in metallic glasses behaviour: Spaepen’s theory of free volume [5] and Ar-

gon’s theory of shear transformation zones [4]. Depending on the underlying mechanisms
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assumed to be at the origin of the BMG deformation and on the final application, different

state variables have to be accounted for in the constitutive modelling. For this reason, our

modelling approach consisted in starting from very simple models and progressively increase

their complexity. The constitutive models used in the following are accordingly: von Mises

(VM) plasticity model involving the deviatoric stress; Drucker-Prager (DP) model involving

the pressure in addition to the latter (some indentation studies found this model to be quite

suitable [21, 10, 11]); the FV theory described by Gao [6] and AS model [7]. There exist

several other models that have not been considered here [22, 23, 24].

3.2. Constitutive equations

The main equations describing each model are presented here. Let consider beforehand

the decomposition of the total strain rate ǫ̇
∼

into a reversible part, namely ǫ̇
∼

e, and an inelastic

part, namely ǫ̇
∼

p. In the small strains assumption :

ǫ̇
∼
= ǫ̇
∼

e + ǫ̇
∼

p (2)

In the context of linear isotropic elasticity, the following relationship holds:

ǫ̇
∼

e =
1+ ν

E
σ̇
∼
−
ν

E

�

tr σ̇
∼

�

δ
∼

(3)

where σ
∼

represents the second order stress tensor. Note that σ
∼
= s
∼
− pδ

∼
, with s

∼
being

the deviatoric part of σ
∼

, p the pressure and δ
∼

the second order identity tensor. E and ν are

the Young’s modulus and Poisson’s ratio, respectively. The absence of strain hardening [1]

lead us to use DP and VM as elastic perfectly plastic models (associated flow). This effect

may be described using von Mises yield criterion which is written as:

fM (σeq) = σeq −σ0 ≤ 0 (4)

where σeq =
Æ

3

2
s
∼

: s
∼

represent the equivalent shear stress, σ0 being the tensile yield

strength. The asymmetry observed on BMG behaviour between yield strengths in tension

and compression before failure may be described using the pressure dependent DP model

widely used in soils mechanics:

fDP(σeq, p) = σeq − p tanϕ−σ0 ≤ 0 (5)

where ϕ is the internal friction angle.

The next two models are specifically dedicated to amorphous materials with the purpose

of representing inhomogeneous deformation under the form of localised shear bands. These

works are inspired from two theories born in the late seventies. They argued that the specific

behaviour of amorphous metals founds its origins at the atomic scale. Spaepen [5] assumed

that the deformation is intimately related to the evolution of the free volume appearing dur-

ing the cooling process leading to the formation of the amorphous metal. The free volume

is frequently defined as the difference in volume between a crystalline alloy and its amor-

phous equivalent. The theory proposed by Argon [4] states that the deformation occurs by

local shearing of clusters of atoms. According to his theory, tens of atoms slip on each other

leading to local intense shearing. This phenomenon was reproduced using computational

simulations aiming at describing interactions at the atomistic scale [25]. The two models
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presented hereafter have no yield criteria, the plastic strain is always present, but negligible

during the so-called elastic part of the deformation.

For the FV model [6], the inelastic strain rate is written as:

ε̇
∼

p = exp

�

−
1

vf

�

sinh

�

σeq

σre f

�

s
∼

σeq

(6)

where vf represents the free volume whose evolution law is given by:

v̇f =
1

α
exp

�

−
1

vf

�¨

3(1− ν)

E

�

σre f

χ vf

��

cosh

�

σeq

σre f

�

− 1

�

−
1

nD

«

(7)

where σre f is the reference stress, α is a geometrical factor, χ is a constant and nD is the

number of atomic jumps needed to annihilate a free volume.

The last model considered in the present work is proposed by Anand and Su [7]. It aims

at reproducing the elastic-viscoplastic response of pressure-sensitive and plastically-dilatant

isotropic materials. The slip systems (m(α) and g(α) are the normal to the αth slip plane and

its slip direction, respectively) are assumed to be related to the principal directions of stress,

giving six of them in an isotropic material. The slip directions also depend on the angle of

internal friction. The inelastic strain rate takes the form:

ε̇
∼

p =

6
∑

α=1

γ̇(α)
¦

G
∼

(α) + βM
∼

(α)
©

G
∼

(α) = s ym
h

g(α) ⊗m(α)
i

M
∼

(α) = m(α)⊗m(α)

(8)

Where α represents one of the slip systems considered (⊗ is the dyadic tensor product).

β is the dilatancy parameter that controls the plastic flow direction:

β = g0

�

1−
η

ηcv

�p

(9)

The initial value of β is g0 thus the inelastic strain is a combination of plastic slip and

dilatation; and tends to zero when the plastic volumetric strain η (Eq. 10) reaches its limit

ηcv (the maximum density reduction as a result of plastic deformation) leading to plastic

slip without dilatation. g0 is a parameter that allows to dissociate the tension (g0t ) and

compression (g0c) behaviour. The plastic volumetric strain rate (η̇) reads (γ̇ is the total

shearing rate):

η̇= βγ̇ (10)

Let γ̇(α) be the shearing rate on the slip system α. It is expressed via a viscoplastic

Norton-like law with a Mohr-Coulomb type resistance coefficient:

γ̇(α) = γ̇0

�

τ(α)

c +µσ(α)

�1/m

> 0

γ̇=

6
∑

α=1

γ̇(α)

(11)
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Where τ(α) = σ
∼

: G
∼

(α) and σ(α) = −σ
∼

: M
∼

(α) represent the resolved shear stress and

the normal stress on the slip system α, respectively. The quantity γ̇0 is a reference shearing

rate. m is the strain-rate sensitivity, taken small for a nearly rate independent response. The

constant µ is the internal friction coefficient. The evolution law of the cohesion c is taken in

the form:

c = ccv + b

�

1−
η

ηcv

�q

c(0) = ccv + b

(12)

Where c(0) is the initial cohesion, composed of the final cohesion ccv with an overshoot

b. The parameters q and p are positive material constants of order unity.

3.3. Numerical procedures

The engineering Finite Element computation code Abaqus was used to conduct the com-

putational simulations. VM and DP models belong to the material library of the code. FV and

AS models (see Sec. 3) were implemented as user-material in Abaqus. The calculation is first

made in the corotational framework via equations presented in Sec. 3.2, then the software

takes into account the finite strains. Taking advantage of the symmetries of the boundary

value problem, the sample is modelled by a quarter of circle composed with 4-nodes finite

elements with reduced integration and assuming plane strain conditions (CPE4R). The com-

pression anvil is modelled using an analytical rigid part and is submitted to a displacement

at constant velocity with a frictionless contact.

The different coefficients used for the simulations are given in Tab. 1-4. The elastic

constants have been determined using ultra-sound techniques [26]. For DP model, the yield

strengths were chosen corresponding to the material’s behaviour [27]. For VM model, the

mean value of the two was used. Those two are elastic perfectly plastic models since there

is no strain hardening in the material. For FV and AS models, the coefficients are taken from

literature [6, 7] and correspond to a Zr-based BMG.

3.4. Identification of material parameters

With the aim of obtaining a better match between experimental and numerical results,

an automated material parameters identification procedure based on the hybrid method

(Levenberg-Marquardt, gradient and Newton-Raphson algorithms) [28, 29] is used. In do-

ing so, only a fraction of the parameters (see Tab. 1-4) has been allowed to vary. Namely

for DP model: the compressive and tensile yield stresses, σ0c and σ0t respectively; for AS

model: the cohesion and the internal friction, c and µ respectively.

4. Computational results and discussion

The computational simulation offers the possibility to observe the inner stress fields,

unavailable experimentally. The origin of the inflection point (Fig. 2 at ∼ 7 kN.mm−1) can

then be linked to the coalescence of the high stress fields up and down the sample (Fig. 4).

The fields of plastic strain developed at the contact join, forming a constant vertical field.

Besides, one can notice the von Mises stress decreasing from the centre to the sides which

are almost free of loading. That is why the shear bands do not propagate in this area (as we

can observe numerically on Fig. 5).
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The equivalent strain map obtained with FV (see Fig. 5) or AS models localise the strain

in fine numerical shear bands [30]. Note that the simulations were conducted with a very

fine meshing (120.000 elements) using a variable free volume for FV model and a variable

cohesion for AS model. The shear bands directions obtained numerically correspond to

those observed experimentally, their number and intensity obviously depend on the mesh

size. Corresponding to each serration, one can notice (not shown here) on the deformation

pattern the creation of a new band with high deformation. The magnitude of the serrations

is closely related to the mesh size. The finer the latter, the smoother the former. This the

drawback of models with softening like AS and FV: local fields depend on the mesh size and

therefore can not be compared one-to-one to experiments. Let us point out finally that the

computational simulations were made in plane strain conditions while the experimental data

gave a plane stress condition map. Nevertheless, it appears that the most intense numerical

shear band is one branch of the pattern observed experimentally (Fig. 3). The resolution

obtained with the DIC device does not allow us to observe thin shear bands like in the

numerical results, but a semi-local map of the deformation process.

The superposition of the experimental and numerical overall load-displacement curves

are plotted in Fig. 6. From a qualitative point of view, the curves obtained with the VM

and DP models follow an evolution similar to the experiment. Before the inflection point

VM and DP models have a slope very close to the experimental one, while the amorphous

dedicated models overestimate it. After this point, the slopes of the remaining curve are the

same at the beginning, except for FV model. The latter exhibits a plateau which does not

exist experimentally. For higher deformations, the experimental load grows faster than the

numerical ones.

Optimizing the plasticity coefficients for DP and AS models (they have proven to be much

better than the other models studied) has given interesting results (Fig. 7). The first part

of the curve (label 1) is well described by DP, and the slope is a little overestimated by

AS. For the second part (label 2), the slopes obtained are the same, the reloading is well

described by the two models. On the third part (label 3) one can notice that the slopes

of the two models slightly underestimate the experiments. The results obtained with those

models give a possible set of plasticity coefficients presented in Tab. 5. The simulations

not taking into account the stiffness of the compression anvils, the coefficients obtained

are probably underestimated, and so represent a first approach before the use of a more

accurate numerical procedure. As for DP model the parameters differ from those obtained

by indentation techniques [21].

In terms of local information, and this is a key point of this paper, it is highlighted in Fig.

5 that two models that predict load-displacement curves very similar (see Fig. 2 give very

different deformation fields.

5. Concluding remarks

In this study, we have carried out diametral compression or Brazilian tests on a Zr-based

BMG. This test allows us to get an insight on the plastic behaviour of the material, unlike

conventional tests (tension, compression) because of the brittleness of the material. The

present approach differs from previous constrained tests studies such as indentation since it

allows to record in situ extensive plastic fields during the test, via Digital Image Correlation

techniques (local information), in addition to the mean response (the load-displacement

curve, global information). Besides, for the indentation test, the stress fields are highly
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compressive and localised underneath the indenter tip, while for the Brazilian test, they are

compressive close to the loading conditions, tensile close to the free boundaries and close

to pure at the centre. Intense plasticity was found to develop in the sample, first like in an

indentation test, then localised in a cross-like pattern. Values of the equivalent strain, prior

to failure, was as high as more than 0.8, in the centre of this cross.

Through the use of constitutive models with growing complexity, we have observed that

all models may reproduce the global information (load-displacement curve) with identified

material parameters. However, they predict different contrasted levels of the local informa-

tion (equivalent strain).

The search for a relevant model able to describe the plasticity of metallic glasses under

various mechanical loadings will therefore require to take into account this local information,

as well as other constrained tests like indentation or scratching [31] and uniaxial tests (yield

strengths).
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Figure 1: Schematics of the experimental set-up and its instrumentation.
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Figure 2: Diametral compression results - Plot of load per unit length vs displacement - Magnification of the

serrations at the end of the curve.
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Map of equivalent strain (logarithmic measure) obtained by Digital Image Correlation on

the Zr55Cu30Al10Ni5 under diametral compression (Brazilian disk) ; at the end of the first

loading (∼ 11 kN.mm−1, top) and at the end of the second loading up to fracture (bottom,

strain reinitialised to zero)

Figure 3: Map of equivalent strain (logarithmic measure log(1+ǫeq)) obtained by DIC ; at the end of the first

loading (∼ 11 kN.mm−1, top) and at the end of the second loading up to fracture (bottom, strain reinitialised to

zero). 12



Figure 4: Mises stress fields obtained numerically below the inflection point of the curve in Fig. 2 with VM model.
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Figure 5: Map of equivalent strain obtained for a 2 mm displacement: DP model (left) and FV model (right). In

this latter case, the whole sample was meshed. The material parameters used are presented in Tab. 1-4. Note that

a similar colormap was used for comparing.
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Figure 6: Comparison between experimental and numerical results using the material parameters presented in Tab.

1-4.
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E (MPa) ν (-) σ0 (MPa)

85000 0.37 1700

Table 1: Materials parameters used for VM model.
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E (MPa) ν (-) σ0t (MPa) σ0c (MPa)

85000 0.37 1600 1800

Table 2: Materials parameters used for DP model.
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E (MPa) ν (-) σre f (MPa) nD (-) α (-) χ (-)

85000 0.37 100 3 0.15 1

Table 3: Materials parameters for FV model.
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E (MPa) ν (-) µ (-) γ̇0 (s−1) m (-) g0c (-)

85000 0.37 0.04 0.001 0.005 0.04

g0t (-) ηcv (-) p (-) c0 (MPa) b (MPa) q (-)

0.4 0.005 0.8 960 300 1.2

Table 4: Materials parameters used for AS model.
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Drucker Prager Anand

σy t (MPa) σyc (MPa) c (MPa) µ (-)

1300 1760 1080 0.057

Table 5: Materials parameters obtained after identification.
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