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Summary

The present work is dedicated to the simulation of compressible two-phase flows with phase change for pool
boiling type problems. The model we are concerned with involves scales that allow to distinguish the interface
between both phases. The mass transfer is driven by assuming local and instantaneous equilibria with respect
to phasic pressures, temperatures and chemical potentials, which enables dynamic generation of two-phase
interfaces within a pure phase. We present a general numerical solver that allows to cope with any type of EOS
and preliminary numerical results of nucleation with transition towards film boiling.
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1. Phenomenon

The simulation of liquid-vapor phase change in pool boiling type flows concerns various engineering fields such
as the study of pressurized water reactors in the nuclear industry. Indeed, understanding the triggering of boiling
crisis is a critical safety issue for the nuclear industry: when the transition occurs from nucleate boiling to film
boiling in the vicinity of heating wall, the vapor acts as a thermal insulator and the wall temperature raises
suddendly. If this phenomenon occurs, it may cause serious damages to the facility.

2. Two-Phase Model

We assume that we are far from the critical point, thus the vapor (resp. liquid) phase can be considered as a
compressible fluid governed by an Equation of State (EOS) given by (τα, εα) 7→ sα, α=v, (resp. α= l), where
τα, εα, sα are respectively the specific volume, internal energy and entropy of the phase α. Let Tα, Pα and gα

denote respectively the temperature, the pressure and the chemical potential of phase α. The mass fraction of
the vapor (resp. liquid) is noted yv =y (resp. yl =1− y). We suppose that the specific volume τ and the internal
energy ε of the medium are defined by τ =1/̺=yvτv+ylτl and ε=yvεv+ylεl. We also assume that for α=v, l
the Hessian matrix of (τα, εα) 7→ sα is negative definite, which is a classic thermodynamical assumption [5].

Using the lines of [2, 3, 6–8, 10, 11] we equip the two-phase material with an EOS defined thanks to the
following entropy function

(τ, ε) 7→ seq(τ, ε) = sup
{

ysv(τv, εv) + (1 − y)sl(τl, εl)
∣∣∣ (τ, ε) = y(τv, εv) + (1 − y)(τl, εl)

}
. (1)

This equilibrium entropy postulate defines the equilibrium between both phases within the material [5, 6, 10].
Indeed, for regions where both phases are present, one can see that the definition of seq implies the triple
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equilibrium relations

(τ, ε) = y(τv, εv) + (1 − y)(τl, εl), (Pv, gv, Tv)(τv, εv) = (Pl, gl, Tl)(τl, εl) = (P, T, g) (2)

0 < y < 1. (3)

Let us now recall that, according to standard thermodynamics [5], when one considers solution of (2)-(3),
the phasic variables τl, εl, τv, εv, y are said to be “at saturation” and they can be parametrized by a single
thermodynamical variable such as P or T . It is then common to define the coexistence curve T 7→ P sat(T ) [5,
6].

We now suppose that both phases have the same velocity u. If we neglect the dissipative effects, capillar-
ity and gravity, the two-phase medium is governed by the compressible Euler equations with an equilibrium
pressure law given by P eq = (∂seq/∂τ)ε/(∂seq/∂ε)τ . For a one-dimensional problem we thus have

Wt + F(W)x = 0 (4)

with W = [̺, ̺u, ̺ε+̺u2/2]T and F(W) = [̺u, ̺u2 +P eq, (̺ε+̺u2/2+P eq)u]T. Mathematical properties
of this model have been examined in [2, 6, 12, 14, 15]. In particular, the system (4) is strictly hyperbolic [2],
provided that (τα, εα) 7→ sα, α = v, l verifies standard concavity properties [2, 5].

3. A Relaxation Numerical Solver

In order to discretize the system (4), we implement a two-step relaxation approach [9] following the lines
of [8, 11]. This method allows to decouple the computation of the convection from the computation of the
equilibrium for the thermodynamical parameters by confining it within the projection step. We consider an
augmented system based on the five-equation system of [1] that is an off-equilibrium version of (4). For one-
dimensional problems the system reads






Wt + G(W, y, z)x =0,
(̺y)t + (̺yu)x =λQ(W, y, z),

zt + uzx =µR(W, y, z),
(5)

with G(W, y, z) = [̺u, ̺u2 + π, (̺ε + ̺u2/2 + π)]T, Q(W, y, z) = gl−gv

T , R(W, y, z) = Pv−Pl

T , where the
volume fraction z verifies z = τv̺y, the pressure π verifies π = zPv + (1 − z)Pl and the temperature T is
obtained through the closure relation T = Tl = Tv. We see that the assumptions of equilibrium with respect to
the partial pressures and the chemical potentials of system (4) are relaxed in (5). However, these equilibria are
formally restored when µ, λ → +∞ as it implies that R(W, y, z) = Q(W, y, z) = 0. Another consequence is
that the entropy of the augmented system defined by ysv + (1 − ysl) tends to the equilibrium entropy seq (see
[11]) as µ, λ → +∞

Let (W, ̺y, z)n be the discretized augmented variable at instant n. The discretization strategy reads:
Step I Update (W, ̺y, z)n to (W, ̺y, z)n+1/2 by solving (5) without source terms, i.e. with R = Q = 0.
Step II Perform an approximate projection of (W, ̺y, z)n+1/2 onto the equilibrium defined by µ, λ → +∞

by approaching the solution of R(W, y, z) = Q(W, y, z) = 0. This task is achieved by seeking the equilib-
rium value T̂ of the temperature as the solution of the non-linear equation (8) (specified in section 4.) with a
dichotomy algorithm. Then update (W, ̺y, z) by setting

W
n+1 = W

n+1/2, Tn+1 = T̂ , yn+1 = Y (T̂ ), zn+1 =






0 if yn+1 = 0

τn+1
v ̺n+1yn+1 if 0 < yn+1 < 1

1 if yn+1 = 1

. (6)

One can see in the lines above that the mass fraction is updated by the projection step (6). This means that
the mass transfer is driven by the two-phase equilibrium. Moreover, the model intrinsically accounts for phase
appearance and phase disappearance.



4. Approximation of the Equilibrium: Phase Change Equation

While the equilibrium EOS (τ, ε) 7→ seq is unambiguously defined, computing its value in practice is a difficult
task. Indeed, for a given couple (τ, ε) this computation requires to seek the values y∗, τ∗

v , τ∗

l , ε∗v and ε∗l that
maximize ysv(τv, εv) + (1− y)sl(τl, εl) under the constraint (τ, ε) = y(τv, εv) + (1− y)(τl, εl). Nevertheless,
this procedure boils down to the following alternative:
(a) Two-Phase Equilibrium: if y∗, τ∗

v , τ∗

l , ε∗v, ε∗l verify both (2) and (3) then
τ∗

l < τ < τ∗

v , y∗ = (τ − τ∗

l )(τv − τ∗

l )−1, and we set P eq = Pv(τ
∗

v , ε∗v) = Pl(τ
∗

l , ε∗l ),
(b) Pure Phase: otherwise, if sv(τ, ε) > sl(τ, ε) (resp. sv(τ, ε) < sl(τ, ε)) then

we set y∗ = 1 (resp. y∗ = 0) and P eq = Pv(τ, ε) (resp. P eq = Pl(τ, ε)).
However, we can then see that settling between the case (a) and the case (b) requires first to solve the non-linear
system (2) which is a difficult step, especially when one deals with tabulated or complex thermodynamical
laws. Let us mention that even for general stiffened gas laws, there is no explicit solution for (2). We propose
a method that allows to bypass this difficulty. We note T 7→ (τ sat

α , εsat
α )(T ) = (τα, εα)(T, P sat(T )), which are

functions that are commonly available for a wide range of material in thermodynamical tables (see e.g. http:
//webbook.nist.gov). Given a fixed couple (τ, ε), we remark that solving the system (2) is equivalent to
determine T as the solution of the non-linear “Phase Change Equation”

[τA(T ) − 1][B(T ) − 1]−1 = [εC(T ) − 1][D(T ) − 1]−1, (7)

where (A, B,C, D)(T ) = (1/τ sat
v , τ sat

l /τ sat
v , 1/εsat

v , εsat
l /εsat

v )(T ) [6, 8]. The corresponding value of the mass
fraction y for the two-phase saturation state at temperature T then reads y = 1 − [τA(T ) − 1)][(B(T ) − 1]−1.
Instead of solving the phase change equation (7), we propose to solve for T an approximate phase change
equation

[τÂ(T ) − 1][B̂(T ) − 1]−1 = [εĈ(T ) − 1][D̂(T ) − 1]−1, (8)

where T 7→ (Â, B̂, Ĉ, D̂) are convenient approximations of the laws T 7→ (A, B,C, D). Example of such
approximations obtained by means of least square approximation techniques for water and dodecane can be
found in [6]. This then leads to define the following function Y (T̂ )=1−[τÂ(T̂ )−1][B̂(T̂ )−1]−1, that provides
the approximate value of the mass fraction as a function of the temperature for a two-phase saturated state.

5. Numerical Results

We present thereafter preliminary simulation results of nucleation phenomena for pool boiling type conditions.
This test involves additional physical effects: gravity, surface tension and thermal diffusion. The overall numer-
ical strategy consists in the following fractional step approach:
Step 1. Solve the off-equilibrium hydrodynamics system (5) using the Roe-type solver proposed in [1],
Step 2. Compute gravity related terms by means of a centered discretization,
Step 3. Compute surface tension related terms using the classic CSF approach of [4] with the z variable,
Step 4. Project onto the approximate equilibrium thanks to (8),
Step 5. Compute thermal diffusion related terms thanks to a classic implicit Finite-Volume scheme.

For the sake of computational time we used in this test two fictitious EOS that mimic the liquid-vapor water
properties. At the initial instant the domain is filled with liquid at saturation. The boundary condition for the
temperature at the bottom is a fixed sinusoidal temperature profile. We can see in figure 1 that vapor bubbles
appear at the boundary located where the temperature reaches its local maxima. Then the bubbles depart from
the bottom towards lower temperature regions. The bubbles recondensate as their temperature decreases. The
nucleation sites quickly start to form a film that covers the bottom of the domain.

An implementation of our algorithm for the case of two stiffened gas fitted together with the properties of
liquid-vapor water following the lines of [13] was proposed in [8] for phase change phenomenon induced by
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Figure 1: Profiles of the (a) mass fraction, (b) density and (c) temperature for the nucleation test.

pressure waves. An extension for general tabulated thermodynamical laws is proposed in [6, 7]. Future work
will involve the use of more realistic thermodynamical laws and boundary conditions.
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