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Abstract—The paper presents a novel approach, named bag-
of-bags of words (BBoW), to address the problem of Content-
Based Image Retrieval (CBIR) from image databases. The pro-
posed bag-of-bags of words model extends the classical bag-of-
words (BoW) model. An image is represented as a graph of local
features on a regular grid. Then irregular partitions of images
are built using different graph cutting methods. Each graph is
then represented by its own signature. Compared to existing
methods for image retrieval, such as Spatial Pyramid Matching
(SPM), the BBoW model does not assume that similar parts of
a scene always appear at the same location in images of the
same category. The extension of the proposed model to pyramid
gives rise to a method we name irregular pyramid matching. The
experiments demonstrate the strength of our method for image
retrieval when the partitions are stable across an image category.
The experimental results for Caltech101 benchmark show that
our method achieves comparative results as SPM, and is globally
more stable.

I. INTRODUCTION

Recent methods in Content-Based Image Retrieval (CBIR)
mostly rely on the bag-of-visual-words (BoW) model [1].
The idea, borrowed from document processing, is to build a
visual codebook from all the feature points in a training image
dataset. Each image is then represented by a signature, which
is a histogram of quantized visual features-words from the
codebook. Image features are thus considered as independent
and orderless. The traditional BoW model does not embed
spatial layout of local features in image signature. However,
those information have shown to be very useful in tasks
like image retrieval, image classification, and video indexing.
Ren et al. [2] put forward a concept of grouping pixels into
“superpixels”. Leibe et al. proposed to adopt codebooks to
vote for object position [3]. Lazebnik et al. [4] partitioned an
image into increasingly fine grids and computed histograms for
each grid cell. The resulting spatial pyramid matching method
(SPM) clearly improves the BoW representation. Nevertheless,
this method relies on the assumption that a similar part of a
scene generally appears at the same position across different
images, which is not always true.

Graphs are versatile tools to conveniently represent pat-
terns in computer vision applications and have been vastly
investigated. By representing images with graphs, measuring
the similarities between images becomes equivalent to finding
similar patterns inside series of attributed (sub)graphs repre-
senting them. Duchenne et al. [5] introduced an approximate
algorithm based on graph-matching kernel for category-level
image classification. Gibert et al. [6] proposed to apply graph
embedding in vector spaces by node attribute statistics for
classification. Bunke et al. [7] provided an overview of the

structural and statistical pattern recognition, and elaborated
some of these attempts, such as graph clustering, graph kernels
and embedding etc., towards the unification of these two
approaches.

In this paper, we present a new approach for Content-Based
Image Retrieval (CBIR) that extends the bag-of-words (BoW)
model. We aim at embedding color homogeneity and limited
spatial information through irregular partitioning of an image
into a set of pre-defined number of graphs. Each partition
results from the use of graph partitioning methods, the node
of the initial graph being positioned on a dense regular grid of
pixels. We compare two graph partitioning methods, namely
Graph Cuts [8] and Normalized Cuts [9]. The BoW approach
is next applied to each of graph partition independently. An
image is then represented by a set of graph signatures (BoWs),
leading to our new representation called bag-of-bags of words
(BBoW). As in the spatial pyramid matching approach [4], we
also consider a pyramidal representation of our images. BBoW
models are therefore computed at different resolutions, i.e. with
different number of graphs. More precisely, a different number
of (sub)graphs are considered at each level of the pyramid. The
comparison of images in a CBIR paradigm is then achieved via
comparison of the irregular pyramidal partitions. We call this
pyramidal approach Irregular Pyramid Matching (IPM). Hence
in this paper, we try to address a challenging question: will
an irregular, segmentation-like partition of images outperform
a regular partition (SPM)? Intuitively, it is invariant to the
rotation and reasonable shift transformations of image plane.
Nevertheless, what can be its resistance to the noise and
occlusions? How will it compete with SPM when embedded
into pyramidal paradigm?

The remainder of the paper is organized as follows. In
section II we briefly introduce the notations and prerequisites.
The proposed bag-of-bags of words model is discussed in
section III and the irregular pyramid matching in section IV.
Section V presents the experimental results and we conclude
in section VI

II. TERMINOLOGY

The input database Q@ = (I,V) is composed of N RGB
images I = {I,...,In} and of a visual codebook V =
{V1,...,Vg} of length B. The codebook is built using k-
means over the SIFT [10] descriptor of all the dense grid
points from the database. Let us denote by G; = (V;,E&;, W)
an undirected weighted graph constructed on the image I;.
The set V of vertices contains a regularly sampled subset of
pixels P of the image and at the limit can contain all of
them. The graph edges £ connect these vertices with a 8-
connected neighbourhood system. The adjacency matrix W



of size |V| x |V| is defined as:
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where w,, represents the edge-based similarity between two
vertices p and q. For each image I; in the database, we aim to
partition the graph G into K dlSJOlnt subgraphs {g] yoon i K,
such that Vk # I,g¥ Ngl = 0 and G; = Uk L 9. We denote
this K-way partitioning by I'l = {gJ,...,gj 1.

The graph partitioning problem can be recast as a labeling
problem. Given a set of vertices )V and a finite set of labels
L =1{1,2,...,K}, for all node p € V, we are looking for
the optimal label I, € L, such that the joint labeling £ =
{li,...,ly} € LIVI satisfies a specified objective function.

III. BAG-OF-BAGS OF WORDS MODEL

Our BBoW model has been inspired by bag-of-words
model [1] for image description and the idea that an irregular
partition into a fixed number of graphs is a step in-between an
arbitrary regular partition as in [4], and a segmentation of an
image plane which can be strongly redundant. The imperfec-
tions of this intermediate partition should be compensated by
a statistical nature of the original BoW model for each graph
in the partition. Furthermore, we embed BBoW into multi-
resolution schemes as spatial pyramid matching [4] for using
image partitions in coarse to fine manner. For each image,
construction of a bag-of-bags of words (see figure 1) can be
decomposed into four main steps:

1) Select a reduced number of pixels V from the whole image.
2) Build an initial graph G.

3) Partition the graph G into K subgraphs.

4) Compute a signature for each subgraph.

The signature of a subgraph is a histogram obtained by
assigning each feature of this subgraph to the closest visual
word in the codebook. Hence, an image being composed of
K subgraphs is characterized by a set of K histograms. In the
following, we detail each step of the method.
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Fig. 1: Bag-of-bags of words pipeline
A. Graph nodes selection

We adopt a dense sampling strategy, i.e. sample the image
at regular grid points. All the areas contribute equally to the
final image representation. We choose 8-pixels spacing and
16-pixels patch size for the SIFT [10] features, called Bag-of-
Features Grid SIFT (BF-GSIFT) [11].

B. Construct initial weighted graph

The set of nodes V of our initial graph G contains all
the points resulting from the dense sampling. The edges £ are
obtained by linking these points with a 8-connected neighbour-
hood system. As mentioned in the introduction, we have tested
two different methods to achieve graph partitioning, namely

Graph Cuts and Normalized Cuts. For both, the same weights
on the edges are used:

Wpg = €Xp (—)\ (Cp—Cy) xt (Cp — éq)T) ) ey
where C), accounts for the mean color vector over a nxn patch
centred on point p. We use the YUV color space that has inde-
pendent color channels and allows to better deal with changes
in lightning conditions. We denote Y, = Y (z,y) (respectively
U, =Ul(z,y) and V, = V(x, y)) as the color channel value
at point p = (x,y) in the whole image coordinate system. The

mean color vector becomes C, = (Y,,U,, V,) where:
1 n n
Yp:ﬁ Z ZY(:chu,erv).

U=—nNv=—"mn

The covariance matrix

is diagonal because of channels’ independence. As in [12], the
covariance is defined for each channel as:

o ={(Y, — Y)?)

where (.) denotes the expectation over all the edges (p, q) € £
of the graph G.

C. Graph Partitioning

Let us now present how the initial graph G is partitioned
into K subgraphs. We investigated two different algorithms for
that purpose. In the following, the details for both of them:
Normalized Cuts and Graph Cuts are given.

1) Partitioning with Normalized Cuts: Normalized Cuts [9]
is a well known method in data clustering and image analysis.
The principle is to divide the graphs into subgraphs such that
the similarity between nodes within a subgraph is greater
than the similarity between nodes in separated subgraphs.
The algorithm then optimizes two criteria measuring the total
dissimilarity between the different partitions as well as the
similarity within each partition. The Normalized Cuts method
can directly be applied to partition a weighted graph G. In
practice, we used the code from [9], [13].

2) Partitioning with Graph Cuts: Graph Cuts is another
very famous method for graph partitioning in the computer
vision community. Graph Cuts [8], [14], [15] are based on min-
cut/max-flow optimization and are used to minimize energy
functions containing a data term and a smoothness term. In
our case, the energy reads:

E(ﬁ) Edata(ﬁ) + Esmooth (£)
Z Ed(p, lp) + Z Es (pa Q)

peEV (p,q)€E

= ZEd(lp)“F Z Es(p7Q)'

peS (p,q)€E

The first term is the data term. It is only applied to seed points
p € S, where S = {s1,...sk} is the set of seeds. Seed points
are nodes that we select in the following way. The image is
divided into K regular cells, K being the number of partitions
we are looking for. The seed points are then the nodes that are



Fig. 2: Seed points. In red: the nodes of the graphs. In other
colors: the seed points

the closest to the barycentres of these cells (figure 2). The goal
of the data term is to fix the label of the seed points. The seed
points are then used to impose hard constrains on Graph Cuts.
For instance, the seed point s; must end up with label ¢ after
the energy minimization process. This idea can be formulated
as in [16]:

o ifp=s&ly=1
Ba(lp) = { oo otherwise.

The smoothness term on the other hand, is directly linked to
the weights of the graph, as defined in equation (1) :

Ee(p ) = 2o (1= 6, 10)). ©)

@

where 0(.) is the Kronecker function.

D. Signature of subgraphs

As in the standard BoW approach, the signature of each
subgraph g;,j = 1... K is a histogram H;. It is obtained by
assigning the SIFT descriptor of each of its nodes p € V; to the
closest word in the codebook computed on the whole database.
As mentioned before, the codebook is computed from all the
dense grid points in a training image dataset. In other words,
we do not rely on our graph partitions to construct the visual
dictionary.

IV. IPMK: IRREGULAR PYRAMID MATCHING KERNEL

In this section, we explain how our bag-of-bags of words
model can be used in an image retrieval system to match
images.

Our strategy directly follows the one from Spatial Pyramid
Matching [4]. Let us assume that we compute a sequence of
subgraphs at different resolutions » = 1... R of an image. For
each image I;, we end up with a set H = {H/,..., H] ;. }
of K, histograms at each resolution . Example of subgraphs
and their histograms are visible in figure 3. As with SPM, at
each resolution the number of partitions is given by K, = 2%".
In order to compare two images I; and I;, we use the histogram
intersection function [17]:

B
I(H}y, Hj) = min (H] . (b), Hj (b)) , )
b=1

where B in the codebook size.

In our method we cannot directly apply this function to
match histograms of a pair of images. At the end of the
partitions  steps, for two images, the two histograms H;
and H7, may not correspond one to the other. Indeed, after
applying a graph partitioning method, the subgraph attributed
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Fig. 3: A schematic illustration of the bag-of-bags of words
representation at each resolution of the pyramid. At level
0, the decomposition consists of just a single label, and the
representation is equivalent to the classical bag-of-words.
At level 1, the image is subdivided into four partitions,
leading four features histograms, and so on.

to label k can be at any position in the image or represent any
object of the image. The spatial arrangement is lost if an image
in a database undergoes rotation for instance. To overcome this
issue, we first need to reorganize the labels of our histograms.
For this purpose, we reorganize the labels between the two
sets of histograms {H[,k}kzlw,m and {H;’k}kzlw,m. We
call this step bipartite subgraphs matching.

To rearrange the labels, we are facing an assignment prob-
lem which requires the use of combinatorial algorithm. In our
method, we rely on the Hungarian algorithm to minimize the
discrete optimal transport between the two set of histograms.
The cost matrix D; ; between the pair of images /; and I; at
level r reads: ’

iy ... dihr

Di;= : . 5)
g

where

B
it =" [H]k(b) — Hj (b))
b=1

is the Ly distance between H; ;. and H, which is equivalent
to the histogram intersection kernel. The Hungarian algorithm
finds the minimum cost assignment by associating each label
k in image I; to one label k' = f;(k,r) in image I; thus the
pairs of histograms to compare are identified.

Now that bipartite subgraphs matching has been achieved,
we can directly apply the Spatial Pyramid Matching scheme
by using the pyramid match kernel:

1

R—1
w1 1) = T(HS%Hjw)+ A (T -1
r=0

R

1 1

= —2RI(H21,H£1)+E WI( zr,hH;,k’)
r=1



The weight QR%T before the histogram intersection function,
which is proportional to number of subgraphs, allows to give
more influence to penalize higher resolutions, reflecting the
fact that higher levels (i.e. smaller resolutions) localize the
features more precisely.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation on
Caltech101 benchmark [18] and the people-playing-musical-
instrument (PPMI) ! dataset [19].

The Caltech101 dataset includes 101 distinct object such as
faces, watches, ants, pianos, etc... and a background category
for a total of 102 categories. This benchmark acts as a common
standard for comparison of different algorithms without bias
due to different datasets. We follow the same setting as in [4].
We use exactly the same grid points as generated from the code
provided by the authors of [4] to build the initial graphs. The
dictionary is built over 30 images per class and the retrieval
is run on the rest of the images.

The PPMI dataset emphasizes on understanding subtle
interactions between humans and objects. For twelve musical
instruments, it contains images of people either playing or just
holding the instrument. The twelve binary classes are used
in our experiments. For each class, 100 normalized PPMI+
images are randomly selected for training and the remaining
100 images for testing.

A. Parameters evaluation

We start by testing the parameters’ influence of our method
for image retrieval. Two parameters have been evaluated:
the patch size n defined in section III-B and the parameter
A from the edges weight (equation 1). The mean average
precisions on the two datasets are presented in tables I and II.
For efficiency, these experiments were conducted on smaller
databases containing only 4 test images per category. These
results highlight that these parameters do not have much
influence on the quality of results using either Graph Cuts (GC)
or Normalized Cuts (NC). For the following experiments, we
therefore decided to use n =5 and A = 5.

TABLE I: Influence of parameter A (equation 1) on image
retrieval. For each value, the mean average precision is given.
For this experiment, the patch size is set to n = 5.

Mean Average Precision for the IMPK approach with 3 levels
A=0 5 20 100
NC | 0.386079 | 0.389737 | 0.386185 0.380554
GC | 0.373073 | 0.382115 | 0.377872 0.375660

TABLE II: Influence of parameter n (section III-B) on image
retrieval. For each value, the mean average precision is given.
For this experiment, A = 5.

Mean Average Precision for the IMPK approach with 3 levels
7 9

n=3 5
NC | 0.380546 | 0.388987 | 0.389456 0.388229
GC | 0.379723 | 0.382115 | 0.377215 0.375741

B. Image retrieval evaluation

The performance of our algorithm is measured by com-
puting the mean Average Precision (mAP) for each category,
as described in TREC-style evaluation’. We also add the
computation of the mAP and the standard deviation for the
whole dataset. We compare with SPM [4] and with the bag-
of-words approach which simply corresponds to the results
at level 0. Tables III and IV present this global mAP for
the two datasets at each level of the pyramid. SPM globally
outperforms our method, but we outperform BoW (level 0)
both with Graph Cuts (GC) and Normalized Cut (NC). When
looking closer to the results, we can nevertheless observe that
the pyramidal approach is of no need for SPM on the dataset
used. Indeed, the results at level 2 are better than the ones
with the pyramid approach. These results have been obtained
with the codes from the authors of SPM. On the contrary,
the pyramidal approach is a good strategy in our case, as it
improves the retrieval performance.

TABLE III: Retrieval performance (mAP and standard devia-
tion) on Caltech-101 dataset.

Level 0 (BoW) Level 1 Level 2 Pyramid
NC 0.117 £0.18 0.107 £0.16 | 0.125 +0.19 | 0.129 £0.20
GC 0.117 £0.18 0.099 +0.15 0.114 £0.18 0.122 +0.18
SPM 0.117 £0.18 0.144 £0.21 0.162 £0.23 | 0.157 +0.22

TABLE IV: Retrieval performance (mAP and standard devia-

tion) on PPMI dataset.

Level 0 (BoW) Level 1 Level 2 Pyramid
NC 0.109 £0.031 0.104 £0.022 | 0.106 £0.025 | 0.108 £0.027
GC 0.109 £0.031 0.104 £0.022 | 0.106 £0.024 | 0.108 £0.027
SPM | 0.109 +0.031 0.115 £0.036 | 0.121 £0.043 | 0.118 £0.041

We now propose to look into more details to the results
for certain categories. A comparison of the mAP on sixteen
categories from Caltech-101 dataset is presented on figure
4. The result highlights the fact that for a few number of
categories SPM has a much higher retrieval performance than
our method. These categories explain the importance difference
in the global performance on all the database (as described
previously). Nevertheless for most of the categories, we are as
good or better than SPM with either Graph Cuts or Normalized
Cuts. In order to give a deeper understanding on why our
method suits for some catagories and not for the others, let us
now look at the graph partitions obtained by the graph cutting
methods. Figure 5 presents the results of the partitioning at
level 2 (16 partitions) with either Normalized Cuts (NC) or
Graph Cuts (GC). The first two lines show images from two
different categories for which our method clearly outperforms
SPM. For the minaret category, IPMK with Normalized Cuts
gives the best results. As can be seen on the first row of figure
5, our method is able to represent the minaret with only one
or two partitions. The other partitions in the background are
stable in the sense that almost the same partitions can be found
in each image. The second row presents the Graph Cuts results
on four images from the beaver category. Once again, it can
be observed that the partitions are stable. The four last rows
on the other hand represents two categories for which our

Thttp://ai.stanford.edu/ bangpeng/ppmi.html

Zhttp://trec.nist.gov/
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Fig. 4: The mean Average Precision for 16 typical categories in Caltech101

method fails. The partitions obtained almost do not exhibit [51
any consistency across the images from the same category. The
resulting histograms are therefore each time very different and (6]
we can obviously not expect any good retrieval.
VI. CONCLUSION AND PERSPECTIVES 7l
In this paper, the bag-of-bags of words model over irregular
image partition with graph cut methods and its pyramidal
extension, the irregular pyramid matching kernel have been
introduced. Graph cuts methods are used to separate an image 9]
graph which is a dense grid of points into several subgraphs,
each then being described by a bag-of-words model. Our
approach incorporates color and limited spatial information [10]
into image representation for image retrieval. The obtained
results are encouraging, especially when the partitions obtained ~ [!1]
are stable across all the images from the same category. [12]
Nevertheless, this stability is not always insured with this
preliminary work. We will now be focusing on improving the
weights of the graph in order to reach more stability.

(8]
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Fig. 5: Graph partioning with K = 16 results on several images from the Caltech-101 benchmark. GC: Graph Cuts, NC:
Normalized Cuts.



