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Abstract

By using the Neutron Larmor Diffraction method and a setup based on the improved Neutron Resonant Spin Echo option ZETA
recently installed on the three-axis spectrometer IN22 (CRG beam line at the ILL), we have determined the precise relative evolution
of the inter- and intra-chain lattice constants of the paradigmatic spin-Peierls compound CuGeO3 as a function of temperature. Our
results are consistent with previous results obtained by conventionnal high-resolution diffraction. This method also allows to retrieve
independently the sample mosaicities, as well as the widths of various lattice-spacings distributions, thus offering an evaluation of
the intrinsic sample quality. In spite of the good definition of the spin-Peierls transition at TS P = 14.1(1)K in our sample, we observe
a large distribution of lattice constants (∆d/d ≃ 3×10−3), while the mosaicity of the sample appears to be quite reasonnable (. 20′).
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1. Introduction

Neutron Larmor Diffraction (NLD) is a very powerful tech-
nique which was introducted more than one decade ago by
M.Th. Rekveldt et al. [1]. As in classical F. Mezei’s Neu-

tron Spin Echo (NSE) [2], the key is to make use of the spin
degree of freedom and the Larmor precession to label the neu-
tron velocity (Larmor encoding). The aim is to relax the usu-
ally tight compromise between intensity and accuracy, and to
achieve high-resolution diffraction measurement while work-
ing with quite modest collimation. As we will see in the next
section, the NLD technique (in our case a by-product of the
Neutron Resonance Spin Echo (NRSE) technique [3]), allows
the precise determination of lattice parameters and their dis-
tributions, from measurements of the neutron polarization as a
function of the total neutron Larmor phase. In this paper, we
will report on the Larmor diffraction option recently installed
on the thermal three-axis spectrometer IN22 (CRG beam line at
the ILL), which is based on an improved version of the ZETA
NRSE option [4]. As first application, the NLD technique has
been used for the accurate determination of the relative de-
pendences of lattice parameters b and c versus temperature in
the inorganic spin-Peierls (SP) compound CuGeO3, in which
strong spin-lattice interactions are at the origin of a lattice in-
stability below a characteristic temperature TS P ≈ 14.1 K, the
so-called spin-Peierls transition temperature [5]. Such an insta-
bility should significantly affect the lattice constants.
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2. The basics of Neutron Larmor Diffraction

The configuration that we will first consider is sketched in
Fig.1a). Basically, the sample is surrounded by two homoge-
neous magnetic field regions of thickness L. A polarized neu-
tron beam with polarization direction perpendicular to ~B is pro-
duced by reflexion of the primary beam on an Heusler crystal.
Before being elastically scattered by the sample, neutrons travel
through the first magnetic field region and, by virtue of the Lar-
mor precession, they accumulate a phase ϕi = γn| ~B|L/v

i
⊥, where

γn = 2.916 kHz.G−1 is the neutron gyromagnetic ratio and vi
⊥ is

the component of the neutron velocity perpendicular to the field
boundary. In the same way, an additionnal precession angle ϕ f

is undergone after scattering so that the total phase, measured
by means of a polarization analyzer, can be written as:

ϕtot = ϕi + ϕ f = ωLL
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where ωL = γn| ~B| is the Larmor pulsation. Bragg’s law stip-
ulates that all neutrons must have the same velocity component
perpendicular to the lattice planes generating diffraction (i.e.

vi
⊥ = v

f
⊥ =

πmn

~d
). If the field boundaries are parallel to the lat-

tice planes, it is easy to show from Eq.1 that the total phase is
proportionnal to the lattice spacing d [1]:

ϕtot =
2mnωLL

π~
d (2)

As a consquence, any change in d will lead to a correspond-
ing modification of the total Larmor phase:

∆ϕtot =
∆d

d
· ϕtot (3)
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ϕtot is independent of the incoming beam monochromaticity
and unavoidable slight misalignment of the setup at first order,
but a special care has to be taken when working with large phase
values. The data of Section 3 have been corrected from the
effects of higher-order terms.

a)

b)

L

~B ~B

~G/2

d

θB

ϕtot

ζ = π

2
− θB

~B − ~B

αθB + αθB − α

Figure 1: Sketch of a typical Neutron Larmor Diffraction setup. a) ”Symmetric

configuration”: Total Larmor phase is proportionnal to lattice spacing d. Each
neutron, whatever its velocity or divergence with respect to the main beam axis,
participates in the same way to ϕtot . If there is a distribution of lattice plane
distances, final polarization which is the statistical average of the individual
spin phases over the beam, will be reduced as a function of ϕtot . b) ”Anti-

symmetric configuration”: In this case, the final polarization is sensitive to
lattice planes misalignement at first order. Measurement of P as a function
of ϕtot yields the mosaicity of the sample along selected direction.

It is worth noting that, in practice, we use a configuration
with four pairs of thin radio-frequency (RF) resonance π-flipper
coils, separated by zero field regions of length L, to simulate
the extended field region (the so-called Bootstrap technique
[3],[6]). In addition of offering a spectacular increase by a fac-
tor of 4 in field-integral ωLL (which can be as high as 1.5× 107

rad.m.s−1 with the present ZETA set-up), these devices can be
easily rotated by an angle ζ = ±70◦ with respect to the mean
beam axis, thus allowing to fulfill the prerequisites for NLD.
Furthermore, in this case ωL is the pulsation of RF fields and
is controlled with high accuracy. Equation (3) has two major
consequences which are exploited in order to conduct high res-
olution diffraction experiments:

i) The Larmor phase ϕtot can reach ≈ 104 radians. Given
the accuracy on the measurement of precession-region lengths,
we can discriminate relative phase changes of the order of 2 ×
10−6 and thus evaluate the d-spacing evolution with very high
precision,

ii) If we consider the case of an unperfect crystal showing
lattice-parameter fluctuations, the polarization at the analyzer
(which is defined as the average of the spin projection of the
whole neutron beam) is reduced as each d-spacing produces a
different phase. This reduction of polarization can be measured
as a function of the total phase ϕtot, yielding the width δ of
the d-distribution. Assuming that this distribution is a sum of
gaussian functions, we can write [7]:

P = P0 〈cosϕ(∆d/d)〉

= P0
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where P0 is the spectrometer intrinsic polarization (≈ 0.90,
value essentially controled by the Heusler-based polarizer and
analyser), w j are the stastiscial weight corresponding to dis-
tributions of width δi. This capability is very important as it
allows to evaluate a possible phase mixing over the sample vol-
ume.

On the other hand, a real single crystal usually shows a finite
mosaicity. If we work within the ”anti-symmetric” configura-
tion (Fig.1b)) for which the field directions are opposite before
and after the sample, flight-path lengths are slightly different on
each side for neutrons diffracted by misaligned blocks, thus in-
ducing depolarization when considering the whole beam. If we
calculate and expand to first order the residual phase induced
by a misalignement α of lattice planes, we find [7]:

ϕ(α) =
ωLL

v
·

(

cos ζ
cos(ζ + α)

−
cos ζ

cos(ζ − α)

)

∼
2ωLL

v
tan ζ · α (5)

In the following we will call f (α) the distribution of lattice-
planes orientations. We see that within this configuration the
phase is sensitive to α at first order. From the latter relation,
taking into account the resolution function R( ~Q) of the host
spectrometer, we can express the final polarization at the an-
alyzer as:

P = P0 〈cosϕ(α)〉

= P0

∫

R( ~Q(0) − ~Q(α)) f (α) cos (ϕ(α)) dα (6)

Thus, measuring P as a function of the total Larmor phase
ϕtot yields the width of the distribution f (α) through:

P = P0 exp
(

−
ϕ2

tot tan2 ζ

16 ln 2(1/δω2 + 1/η2)

)

, (7)

where ζ = π/2−θB is the flipper-coils tilt angle, θB the Bragg
angle, δω the width (FWHM) of the rocking curve across the
Bragg peak and η the mosaicity of the sample.

3. Experimental

To perform our experiment, we have used our Neutron Reso-

nant Spin Echo (NRSE) option ZETA installed on its host ther-
mal triple-axis spectrometer IN22. Thanks to the optimized
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double µ-metal shielding, a high field homogeneity, a power-
ful cooling system of the static and RF coils, and the possibility
to rotate them by angles as large as 70◦, high resolution NLD
experiments can be easily conducted, although ZETA was orig-
inally designed to perform structural and magnetic excitation-
lifetimes measurements. A picture of the coil setup is shown in
Fig.2.

Figure 2: View of the first ”arm” of ZETA in the absence of the double µ-metal
shielding. The two pairs of RF flipper coils are tilted w.r.t. the beam axis by an
angle of 70◦, showing the high flexibility of the setup.

Turning to CuGeO3, this compound crystallizes within the
orthorhombic space group Pbmm with cell parameters a = 4.81
Å, b = 8.47 Å, and c = 2.94 Å. We used a single crystal of
volume 0.4 cm3, synthetized by traveling floating zone method
with an image furnace. Our sample displays a sharp spin-
Peierls transition at TS P = 14.1(1) K. On the phenomenological
point of view, the 3D lattice of atoms, subjected via the spin-
lattice couplings to the strong low-energy quantum fluctuations
of the spin-1/2 linear chain sub-system, can undergo a dimer-
ization associated with tiny out-of-phase displacements of Cu2+

ions (∼ 0.006 Å) along the (0,0,1) chain direction. This struc-
tural distortion is induced by an alternating rotation of GeO4

tetrahedras around the c-axis [8]. This has a strong effect on
the super-exchange mediated by Cu-O-Cu bondings and, obvi-
ously, on the evolution of the inter-chain constant b [9]. Deeper
informations about the physics of CuGeO3 can be found in [5].

Long ago, the inter-chain (b) and intra-chain (c) lattice con-
stants have been measured by means of conventional diffrac-
tion as a function of temperature [8]. For this determination,
the authors have used a triple-axis spectrometer with two differ-
ent (wavelength and horizontal-collimation) configurations, λ =
3.31 Å (2.36 Å) and 10’-10’-10’-10’ (10’-20’-10’-10’), for the
(0,6,0)((0,0,2)) reflexion, respectively1. We have repeated this
kind of measurement by using NLD on the (0,4,0) and (0,0,1)
Bragg peaks, employing a wavelength of λ = 2.36 Å and nat-
ural collimations 30’-40’-40’-110’. The tilt angles of the π-

1Collimations are given here in the usual order i.e. before monochromator -
sample - analyzer - detector.

flipper coils were ζ(0,4,0) = ±55.7◦ and ζ(0,0,1) = ±66.2◦. Our
results agree very well with those of K. Hirota et al. within
the error bars (see Fig.3). NLD error bars, which are mainly
of statistical origin, are smaller than the size of points. The
major improvement is the rather precise definition of the sharp
spontaneous thermal contraction occuring along the b-axis at
TS P. Below 14.2 K, the relative evolution of parameter b can
be fitted to a single power-law of the form (1 − T/TS P)β with
β ≈ 0.5, in agreement with previous determinations [9]. The
intra-chain parameter c seems to be less affected by the spin-
Peierls transtion, though one can clearly observe a break in the
curve slope. An intriguing new feature is seen in the decrease
of c below T ∼ 5 K but we cannot conclude on the reality of
this sudden change as we couldn’t reach smaller temperature to
confirm this observation. Above TS P, the data are best repro-
duced from the functional aT 2+bT 4, at least up to temperatures
of the order of 65 K. If the quartic term is rather general2, the
quadratic term is a pure signature of the quasi-1D antiferro-
magnetic correlations, which leave an imprint on the structural
properties at temperatures larger than TS P, through the spin-
lattice couplings.
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Figure 3: Lattice spacing evolutions as a function of temperature. Black closed
triangles correspond to the inter-chain parameter b, which shows a well-defined
contraction at TS P. Red closed circles represent the evolution of the intra-chain
constant c, which is less affected by the spin-Peierls transition. For sake of
comparison, we have also reproduced the results of K. Hirota et al., extracted
from [8] (open symbols).

As a complementary measurement, we wanted to check
whether the quality of this peculiar sample could be affected
by successive heating/cooling cycles. Thus, we used ZETA in
the ”symmetric” and ”antisymmetric” mode to determine lattice
spacings spread along both b- and c-axis as well as its intrinsic
mosaicity. In the first case, we have used Eq.4 to fit the data of
Fig.4, with j = 2 and the following parameters:

2In a Debye model, assuming that Grüneisen parameters are constant, ther-
mal expansivity coefficient of a given material is expected to follow the same
law as specific heat (i.e. ∝ T3) for T not much higher than θD. This implies a
T4 dependence for the relative evolution of lattice constants ([10]).
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Axis δ1(10−3) w1 δ2(10−4) w2

b 2.9(1) 0.73(2) 3.0(3) 0.26(1)
c 2.1(1) 0.79(3) 2.9(5) 0.22(3)

It is surprising to note that the relative-distribution widths,
δ1, are much larger than the thermal expansivity of the material,
∆d/d. This result can be understood if d(T ) ≈ d(0)(1 + F(T ))
over the whole parameter range, where F(T) is a function only
depending on T, but obviously material-dependent. Apparently,
the rather poor definition of parameters b and c do not af-
fect much the occurence in our sample of a well-defined spin-
Peierls transition. Another matter of thinking is the fact that
the data are better reproduced if we invoke the presence of two
d-distributions. The one with the highest stastistical weight is
of the order of 10−3, while the other present widths one order
of magnitude smaller. It is not clear so far if both distributions
are really present within the sample or if this result is only a
measurement artifact. However, such a two-scale distribution
has also been reported in other materials [7]. In any case, the
largest value gives the right estimate of the disorder within the
sample.
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Figure 4: Polarization as function of the total Larmor phase measured at ~Q =
(0, 4, 0) and ~Q = (0, 0, 1) in the ”symmetric” configuration. The data have
been recorded at T = 66K and corrected from higher-order effects of the beam
divergence, as ϕtot reach ∼ 104 radian and we worked with natural collimations
(see section 3).

The sample mosaicity was measured in the ”anti-symmetric”

mode. A rapid decay of the polarization is observed as a func-
tion of ϕtot, as documented from Fig.5. A fit of experimental
data to Eq.7 gives the following values, where δω is the width
(FWHM) of the corresponding rocking curve:

Axis ηFWHM(′) δωFWHM(′)
b 17.7(9) 35.4(6)
c 15.2(2) 36.9(4)

The values of mosaic spreads which have been extracted for
the b and c directions are found far below the widths of the
corresponding rocking scans and reflect better the intrinsic mo-
saicity of the sample. The precise knowledge of η is crucial

when considering, e.g., the design of innovative materials or
data correction of NRSE experiments.
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Figure 5: Polarization as a function of ϕtot in the ”anti-symmetric” mode at T
= 66 K. The decay is interpreted as the effect of the intrinsic sample mosaicity
convoluted with the host spectrometer resolution function (see section 2).

4. Conclusion

By means of Neutron Larmor Diffraction, we have carried
out a thorough study of a single-crystalline sample of the spin-
Peierls compound CuGeO3. Our results tend to show that this
technique is reliable and will most probably become in a close
future a method of choice for a better characterization of a
large variety of samples, in particular systems showing struc-
tural phase transitions. Technical limitations restrict the pre-
cision of such measurements to values far below what can be
obtained in dilatometry experiments, but the unique feature of
Larmor diffraction is to allow an evaluation of the sample qual-
ity with the same setup and over its full volume.
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