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Abstract : In this paper, the input-state
linearization problem for a class of single-input
nonlinear time-delay systems is studied for the
first time. The problem is solved by searching a
linearizing output with full relative degree. Necessary
and sufficient conditions are given for the existence
of such an output which yields a solution to the
linearization problem.
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I. INTODUCTION

Nonlinear time-delay models have to be considered
for real systems for example in telecommunications
and teleoperation [1].

Despite the remarkable development on the theory
of linear time-delay systems which has been widely
studied and some general results are now available
([2], [3]), there is virtually no general theory for
nonlinear time-delay systems. This has motivated
the research for this class of systems ([4], [5], [6]).

In this paper, we solve the input-state linearization
problem for a class of single-input nonlinear
time-delay systems. It is a control technique which
allows to use methods available for linear time-delay
systems. Our trick consists on the search of a
dummy output with full relative degree and to
compute an input-output linearizing feedback. To
solve completely this problem, some necessary and
sufficient conditions are derived for the first time
ever in this work. They are used in the search of
a state feedback control and a change of variables
which linearize the full dynamics ([7], [8], [9], [10]).

In the case of linear systems without delays, this

problem reduces to the search of a controllable
canonical form or the form of Brunovsky. However,
for nonlinear time-delay systems, the transformation
is difficult to obtain, additional conditions are
required.

This paper is organized as follows. In section II,
we present the problem statement of the input-state
linearization problem for a class of single-input
nonlinear time-delay systems. Section III will show
the solution of the problem, start by solving some
subproblems which considered like special cases, and
finishing by some Lemmas and the main theorem
which solve the problem. Finally, the conclusion is
presented in section IV.

II. PROBLEM STATEMENT

Consider the following class of single-input nonli-
near time-delay systems, with the assumption that
the delays are commensurable :

ẋ(t) = f(x(.)) + g(x(.))u(t) (1)

where x(.) = (x(t), x(t − 1), ..., x(t − k))

we want to find a state feedback control u(t) and a
change of variables z(t) :

{

u(t) = α((x(.), v(.))

z(t) = ϕ(x(.))
(2)

with

x(t) = ϕ−1(z(.)) (3)

such that, the closed-loop system reads

ż(t) = A(δ)z + B(δ)v (4)
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where, the state x ∈ Rn, the control input u ∈
R, the entries of f, g, α and ϕ are meromorphic
functions of their arguments, A(δ) and B(δ) are
polynomial matrices with the assumption that the
pair (A(δ), B(δ)) is weakly controllable, v(.) is the
new control input, δ represents the backward time-
shift operator and

{

v(.) = (v(t), v(t − 1), ..., v(t − k))
z(.) = (z(t), z(t − 1), ..., z(t − k))

To solve our problem we are interested in the
question of the existence of a state feedback control
and a change of variables which has to be invertible.

The problem consists in deriving some necessary and
sufficient conditions, which proof the existence of
this linearizing output.

We start by the following motivating example.

Example 1 : Consider the system (5)

Σ :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ1 = x2(t − 1) + x1(t − 1)u(t)

ẋ2 = x1(t − 2)u(t − 1) + x3(t)

ẋ3 = x1(t) − x1(t − 1)u(t)

(5)

The problem is solved as follows :

We search a state feedback control

u(t) =
v(t)

x1(t − 1)
(6)

the closed-loop of the system is

Σe :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ1 = x2(t − 1) + v(t)

ẋ2 = x3(t) + v(t − 1)

ẋ3 = x1(t) − v(t)

(7)

We search the matrices A(δ) and B(δ)

A(δ) =

⎡

⎢

⎣

0 δ 0
0 0 1
1 0 0

⎤

⎥

⎦

B(δ) =

⎡

⎢

⎣

1
δ

−1

⎤

⎥

⎦

where

rank[B(δ), A(δ)B(δ)] = rank

⎡

⎢

⎣

1 δ2

δ −1
−1 1

⎤

⎥

⎦
= 2.

Which implies that the pair (A(δ), B(δ)) is weakly
controllable.

The static state feedback input-state linearization
problem for the system (5) is solvable, if there exists
a linearizing output with full relative degree.

We can find a linearizing output y with full relative
degree n = 3 for the system (5) as follows

y = [B(δ), A(δ)B(δ)]⊥ =
[

1 − δ 1 + δ2 1 + δ3
]

y = x1(t)−x1(t−1)+x2(t)+x2(t−2)+x3(t)+x3(t−3)

To find the change of variables, we take
⎧

⎪

⎪

⎨

⎪

⎪

⎩

z1(t) = x1(t)

z2(t) = x2(t)

z3(t) = x3(t)

Finally, the description of the system in the new
coordinates is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ż1 = z2(t − 1) + v(t)

ż2 = z3(t) + v(t − 1)

ż3 = z1(t) − v(t)

(8)

III. SOLUTION OF THE PROBLEM

To solve our problem we start by solving these
different subproblems. First, we start by searching
all h(x(.)) with relative degree ≥ 2. After, we search
all h(x(.)) with relative degree ≥ 3 until arrive to the
general case where the relative degree of h(x(.) ≥ n.

By solving these subproblems, we can find some
necessary and sufficient conditions for the existence
of a linearizing output h(x(.)), which yields a
solution to the linearizing problem.

To find the relative degree, we differentiate the
output y = h(x(.)) until u appears in one of the
equations.

Subproblem 1 : (Relative degree ≥ 2)
Consider the system described by

ẋ(t) = f(x(t), x(t − 1)) + g(x(t), x(t − 1))u(t)

Find all h(x(.)) with relative degree ≥ 2.

The condition to find h(x(.)) is :

∂ḣ(x(.))

∂u(t)
= 0 (9)
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After differentiating the equation (9) , we obtain

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂h
∂x(t)g(.) = 0
∂h

∂x(t−1)g−(.) = 0
...

where g−(.) = δ g(.) is the function g shifted.

From this result, we can conclude :

1.1/ Find h(x(t)) with relative degree ≥ 2

The condition to find h(x(t)) is

dh ∈ g2
e

⊥

where g2
e

⊥

is defined as follows

g2
e

⊥

=

[

g(.) ∅
∅ Id

]⊥

The number of elements in the left kernel is

2n − dimg2
e

1.2/ Find h(x(t),x(t-1)) with relative degree ≥ 2

The condition to find h(x(t),x(t-1)) is

dh ∈ g3
e

⊥

where g3
e

⊥

is defined by

g3
e

⊥

=

⎡

⎢

⎣

g(.) ∅ ∅
∅ g−(.) ∅
∅ ∅ Id

⎤

⎥

⎦

⊥

The number of elements in the left kernel is

3n − dimg3
e

1.3/ Find h(x(.)) with relative degree ≥ 2

The condition to find h(x(.)) is

∀ k ∈ N : dh ∈ gk
e

⊥

where gk
e

⊥

is defined as

gk
e

⊥

=

⎛

⎜

⎜

⎜

⎜

⎝

g(.) ∅ · · · ∅
∅ g−(.) · · · · · ·
...

...
. . .

...
∅ ∅ · · · Id

⎞

⎟

⎟

⎟

⎟

⎠

⊥

The number of elements in the left kernel (the
maximum) is

kn − dimgk
e

Example 2 : Consider the system (10)

Σ : ẋ(t) = f(.) +

⎡

⎢

⎣

x2(t − 1)
x3(t)

1

⎤

⎥

⎦
u(t) (10)

Find all h(x(t)) with relative degree ≥ 2.

The problem can be solved as follows :

The new extended system associated with the
original system is :

Σe :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ(t) = f(.) +

⎡

⎢

⎣

x2(t − 1)
x3(t)

1

⎤

⎥

⎦
u(t)

ẋ(t − 1) =

⎡

⎢

⎣

v1

v2

v3

⎤

⎥

⎦
u(t)

we form the following matrix :

g2
e =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2(t − 1) 0 0 0
x3(t) 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The involutive closure of g2
e gives the following

distribution :

g2
e =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2(t − 1) 0 0 0 1
x3(t) 0 0 0 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

the number of elements in the left kernel is :
(2n − dimg2

e = dimg2
e

⊥

= 1)

with g2
e

⊥

=
(

0 1 −x3(t) 0 0 0
)

Finally, we find h(x(t)) with relative degree ≥ 2 :

h(x(t)) = x2(t) −
x2

3(t)

2

Subproblem 2 : (Relative degree ≥ 3)
Consider the system described by

ẋ(t) = f(x(t), x(t − 1)) + g(x(t), x(t − 1))u(t)
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Find all h(x(t)) with relative degree ≥ 3.

The condition to find h(x(t)) is

dh ∈

[

g(.) ∅ [f, g] [f, Id]
∅ Id ∅ ∅

]⊥

where [f, g] is the Lie bracket of f and g.
(

[f, g]
∅

)

= [

(

f

∅

)

,

(

g

∅

)

]

(

[f, Id]
∅

)

= [

(

f

∅

)

,

(

∅
Id

)

]

More generally, we search all h(x(.)) with relative
degree ≥ n.

From these results, necessary and sufficient
conditions for the existence of a solution by input-
state linearization can be obtained.

Lemma 1 :
∃ h(x(.)) with relative degree n if and only if, ∃ k

such that :
(i) {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e } involutive

(ii) dim{gk
e , [fk

e , gk
e ], ...adn−1

fk
e

gk
e } = nk

where

fk
e =

⎛

⎜

⎜

⎜

⎜

⎝

f

∅
...
∅

⎞

⎟

⎟

⎟

⎟

⎠

nk

condition (ii) ensures the controllability.

Proof :
• Sufficiency
We have ∃k | {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e } involutive
which means that is completely integrable.
So, there exists a linearizing output h(x(.)) with
dh ∈ {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e }⊥

To find the relative degree, we differentiate the
output y = h(x(.)) until u appears in one of the
equations.
y = h(x(.))

ẏ = ḣ(x(.)) = ∂h(x(.))
∂x(.) ẋ(.) = ∂h(x(.))

∂x(.) (fk
e + gk

e u) =
Lfk

e
h + Lgk

e
hu = Lfk

e
h

with (Lgk
e
hu = 0 because dh ⊥ gk

e )

y(2) =
∂L

fk
e

h

∂x(.) ẋ(.) =
∂L

fk
e

h

∂x(.) (fk
e + gk

e u) =

L2
fk

e
h + Lgk

e
Lfk

e
hu = L2

fk
e
h

with (Lgk
e
Lfk

e
hu = 0 because dh ⊥ [fk

e , gk
e ])

...
y(n−1) = Ln−1

fk
e

h

with (Lgk
e
Ln−2

fk
e

hu = 0 because dh ⊥ adn−2
fk

e
gk

e )

y(n) =
∂Ln−1

fk
e

h

∂x(.) ẋ(.) =
∂Lf hn−1

∂x(.) (fk
e + gk

e u) =

Ln
fk

e
h + Lgk

e
Ln−1

fk
e

hu

with (Lgk
e
Ln−1

fk
e

hu �= 0). which means that we have a

relative degree ≥ n but with condition (ii) :

∃k | dim{gk
e , [fk

e , gk
e ], ...adn−1

fk
e

gk
e } = nk

the relative degree equals n.

• Necessity
We will proof the necessity by contradiction.
We have ∃ h(x(.)) with relative degree n.
Assume :
(i1) ∃k | {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e } not involutive

(ii) ∃k | dim{gk
e , [fk

e , gk
e ], ...adn−1

fk
e

gk
e } = nk which

proof that all the vectors are independent and
dim{gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e } = nk − 1

As a consequence of the condition (i1)
dh �∈ {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e }⊥

Which means that the relative degree of h(x(.)) < n

and it is not equal to n (contradiction).
Which implies the necessity of the conditions of
Lemma 1.

To solve completely the input-state linearization
problem, we have to solve also the input-output
linearization problem which will be used in the final
Theorem.

Lemma 2 :
Given y = h(x(.)) with relative degree n.

y(n) = h(n)(x(.)) = a(x(.)) +
k

∑

i=0

bi(x(.))u(t − i)

the input-output linearization problem is solvable if :
(i) ∃ i | bi �= 0 and bj = 0 ∀j �= i

(ii) ∀j < i | ∂h(n)(.)
∂x(t−j) = 0

(iii) ∂
∂x(.)

⎛

⎜

⎜

⎜

⎜

⎝

y

ẏ
...

y(n−1)

⎞

⎟

⎟

⎟

⎟

⎠

unimodular

Proof :
The solution of the problem can be found as follows :
if the conditions of Lemma 2 are satisfied, so
y(n) = v(t) and we find :

u(t) =
−a(x(.)) + v(t)

bi(x(.))

After remplacing u(t) in the system, we can find
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the linearizing state z(t) by solving the closed-loop
of the system. This change of variables has to be
invertible.

Remark 1 :
The condition (ii) of Lemma 2 ensures the causality
of u(t) which means that the system don’t depend
on future input .
Condition (iii) ensures that the change of variables
is invertible.

The conditions of Lemma 2 are not necessary as it
is shown in the following example.

Example 3 : Consider the system (11)
{

ẋ1 = x2(t − 1) + x2
1(t − 1) + u(t)

ẋ2 = −u(t)
(11)

y = x1(t) + x2(t).

We compute y(2) :
y = x1(t) + x2(t)
ẏ = x2(t − 1) + x2

1(t − 1)
y(2) = 2x1(t − 1)[x2(t − 2) + x2

1(t − 2)] + [2x1(t −
1) − 1]u(t − 1)

We verify the conditions of Lemma 2 :
(i) b1 = 2x1(t − 1) − 1 �= 0 (condition (i) is satisfied)

(ii) ∀j < 1 | ∂y(2)

∂x(t−j) = 0 (condition (ii) is satisfied)

(iii) ∂
∂x(.)

(

y

ẏ

)

=

(

1 1
2x1(t − 1)δ δ

)

not unimodular (condition (iii) is not satisfied).

So, the change of variables is not invertible, thus the
conditions of Lemma 2 are not fulfilled. Nevertheless
the state feedback linearizes the input-output
relation is :

u(t) =
v(t) − 2x1(t)[x2(t − 1) + x2

1(t − 1)]

2x1(t) − 1

with (2x1(t) − 1 �= 0)

From these results, sufficient conditions to solve
the input-state linearization problem for a class of
single-input nonlinear time-delay systems can be
obtained.

Theorem : Given system (1)
The input-state linearization problem is solvable if,
∃ k such that :
(i) {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e } involutive

(ii) dim{gk
e , [fk

e , gk
e ], ...adn−1

fk
e

gk
e } = nk

(iii) y = h(x(.)) satisfies Lemma 2, where
dh ∈ {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e }⊥

Proof :
If we have h(x(.)) with relative degree n satisfies
lemma 1, where dh ∈ {gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e }⊥

By using lemma 2, we can find a state feedback
control u(t) = −a(x(.))+v(t)

bi(x(.)) that can solve the
input-state linearization problem.

Now, we only have to prove that condition (iii)
does not depend on the choice of h(x(.)).

Remark 2 :
Consider two functions h(x(.)) and h̃(x(.)), both
have relative degree n.
from condition (i) of the Theorem, we have
dim{gk

e , [fk
e , gk

e ], ...adn−2
fk

e
gk

e } = nk − 1, so there exists
one solution in the left kernel and we can write
d h(x(.)) = λ dh̃(x(.))
so, h̃(x(.)) = Φ(h(x(.)))
by differentiation the equation we find
h̃(n)(x(.)) = ã(x(.))h(n)(x(.)) + b̃(x(.))
where ã(x(.)) = dΦ

dh
and there is no u(.) in b̃(x(.)).

So, if h(x(.)) satisfies Lemma 2, then h̃(x(.)) satisfies
Lemma 2 as well.
Which implies that condition (iii) of the Theorem
does not depend on the choice of h(x(.)).

The conditions of the Theorem are illustrated by
the following example.

Example 4 : Consider the system (12)
{

ẋ1 = x2(t)

ẋ2 = sin(x3
1(t − 1)) + x2(t − 1)u(t)

(12)

where n = 2 and k = 2.

We will prove that the system (12), can be linearized
by static state feedback, by showing that the
conditions of the Theorem are satisfied.

Let,

f2
e =

⎡

⎢

⎢

⎢

⎣

x2(t)
sin(x3

1(t − 1))
0
0

⎤

⎥

⎥

⎥

⎦

, g2
e =

⎡

⎢

⎢

⎢

⎣

0 0 0
x2(t − 1) 0 0

0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎦

dim{g2
e} = nk − 1 = 3, {g2

e} is involutive (condition
(i) of the Theorem is satisfied)
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dim{g2
e , [f2

e , g2
e ]} = dim

⎡

⎢

⎢

⎢

⎣

0 0 0 x2(t − 1)
x2(t − 1) 0 0 0

0 1 0 0
0 0 1 0

⎤

⎥

⎥

⎥

⎦

dim{g2
e , [f2

e , g2
e ]} = nk = 4 (condition (ii) of the

Theorem is satisfied).

We search the linearizing output

y = (g2
e)⊥ =

[

1 0 0 0
]

we find y = x1(t).

We compute y(2)

y = x1(t)
ẏ = x2(t)
y(2) = sin(x3

1(t − 1)) + x2(t − 1)u(t) = v(t)

We verify the condition (iii) of the Theorem :
(i) b1 = x2(t − 1) �= 0 (satisfied)

(ii) ∀j < 0 | ∂y(2)

∂x(t−j) = 0 (satisfied)

(iii) ∂
∂x(.)

(

y

ẏ

)

=

(

1 0
0 1

)

unimodular (satisfied).

So, condition (iii) of the Theorem is satisfied.

The state feedback control is

u(t) =
v(t) − sin(x3

1(t − 1))

x2(t − 1)

with x2(t − 1) �= 0

The change of variables is
{

z1 = x1(t)

z2 = x2(t)
(13)

Finally, the closed-loop of the system reads
{

ż1 = z2(t)

ż2 = v(t)
(14)

Which means that the input-state linearization
problem of the system (12) is solved by the Theorem.

IV. CONCLUSION

Necessary and sufficient conditions for the
existence of a linearizing output with full relative
degree have been obtained in this work.They have
been used as sufficient conditions to solve the
input-state linearization problem for a class of
single-input nonlinear time-delay systems.

Future work has to be done to search some
necessary conditions to solve the input-state

linearization problem for this class of systems.
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