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Analytical solution of a neutral model of biodiversity

M. Vallade, B. Houchmandzadeh
Laboratoire de Spectroméirie Physique (CNRS), UMR 5588,
Université Joseph Fourier, BP 87,38402 Saint Martin d’Heéres Cedex, France

The unified neutral model of biodiversity proposed by S. Hubbell is solved analytically: The
distributions of species abundance in the metacommunity and in a local community are calculated
exactly as a function of speciation and migration rates and of the size of the community. In the
limit of large population sizes the densities of species of given relative abundance are found to be
given by universal functions depending only on two parameters.

Pacs numbers: 87.23.-n, 87.10.+¢, 02.50.Cw

One of the major goals of biodiversity theories is to
explain the distribution of relative species abundance
in ecological communities. Recently S. Hubbell has
given an extensive description of a unified neutral theory
of biodiversity[1] relevant for the description of taxons
where trophically similar species such as trees in forests
or benthic marine invertebrates communities are com-
peting for resources. In this framework the population
dynamics obeys a zero-sum game: large landscapes are
essentially biotically saturated with individuals and ev-
ery death is rapidly followed by the birth of an individual
belonging to the same or to a different species. The time
dependence of relative species abundance in a given com-
munity (an “island”) is then the result of both internal
competition and immigration from outside (the “meta-
community”). The second major Hubbell’s hypothesis is
that the game rules obey a principle of neutrality: all the
species are equal competitors with the same per capita
chances of dying and reproducing ( the plausibility of
such an assumption relies on the fact that bad competi-
tors have been eliminated by Darwinian selection). For
such a neutral theory, population dynamics is essentially
a stochastic process and is expected to obey universal
laws depending only on a few number of parameters in-
dependent of specific properties of the species involved.
This is at variance with the so called “ ecological niche
theories” for which the particular fitness of a given species
to a particular environment is the predominant feature.
The neutral model provides a “null-hypothesis” to which
actual data can be compared and the influence of other
parameters can be assessed. In this respect, various as-
pects of neutral models have been reviewed by Bell[2].
Since its apparition, this model has generated consider-
able debate (see for example a critical review by Riklefs
[3] Hubbell’s reply[4], and [5] and references therein).

In addition to immigration, the species evolution de-
pends also on speciation. Mutations, although being rare
events, drive the long term drift of large communities.
In Hubbell’s theory they are considered as the funda-
mental process in determining the equilibrium distribu-
tion of species abundance in the metacommunity. He
introduced a dimensionless parameter 6 (the "fundamen-
tal biodiversity number”) proportional to the product of
the mutation rate v with the total number of individuals
in the metacommunity Jys (the time scale being fixed by

the average lifetime of individuals).The relative species
abundance in a local community depends essentially on
its size J, the immigration rate from the metacommunity
m and the mutation rate v (through ). The Hubbell’s
formulation of the problem can only be solved through
numerical calculations. The purpose of the present pa-
per is to report on an exact analytical solution of the
model which gives directly the equilibrium distributions
of species abundances both in the metacommunity and
in the local community.

Let us first consider the metacommunity dynamics un-
der the influence of mutations.We assume that the death
of an individual in a metacommunity of size Jys is imme-
diately followed by the birth of another one.The lifetimes
and the mutation rates are assumed to be the same for
all the species according to the neutral and the zero sum
rules of the Hubbell’s model. In the continuous time
limit, the probability Pg(t) that & individuals belonging
to the same species are present at time ¢ obeys a simple
master equation:

dPy/dt = Ag—1Py—1 + Crt1Pet1 — (A + Cx) Py (1)

where the coefficients Ay and C}, are respectively the in-
crease and decrease rates of a species of abundance k ,

expressed in units of individual lifetime. These coeffi-

cients are readily found to be given by [1]:
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The increase rate Ay for example is proportional to the
probability of death of an individual which does not be-
long to the considered species (Jpy — k)/Jar , times the
probability of birth of an individual which belongs to the
considered species k/(Jy — 1), times the probability of
no mutation (1 —v).

Let (¢x(t)),,designate the average number of species
of abundance k. In the long time limit, the species which
contribute to (¢x(t)),, are those which have appeared by
mutation at an earlier time (¢ — u) and have reached the
size k at time ¢t . As all species are assumed to be equiv-
alent, they have the same probability p(u)du = vdu to



appear between times u and u + du . The time evolution
of (¢r(t)),,is then simply given by :

<mwM=A&ﬁﬂwww=gAmwm (4)

where Py (t) is the solution of eq. 1 with initial condition
Py (0) = 01 . Using Laplace transformation, the equilib-
rium distribution of the number of species with a given
abundance is then found to be (see Appendix ):

QF(JM + 1)F(JM +6— k)

where 6 is defined by:
o (JM — 1)1/
0= T (6)

This definition of 6 coincides (within a factor 2) with
Hubbell’s universal biodiversity number in the limit
Ju > 1 and v < 1. One can easily check that (¢r),,
agrees exactly with the expression calculated at small Jys
by the Hubbell’s method. The total average number of

species (S),, = Ziﬁl (¢) ), can be put under the form

Jm—1

<S>M = Z /(6 +1) (7)

in agreement with [6]. Typical distributions correspond-
ing to Eq.5 are shown in fig. 1 using Preston plots
(histogram of the number of species per octave of abun-
dance).They are in perfect agreement with our numerical
simulations of the problem.

For large Jy and finite 0, gy (w) =
limjy,—oodn (Pr), which represents the density
of species of relative abundance w = k/Jy; , reads:

0(1 — w)?=1
gm (w) = o (8)

This last result could have been obtained directly from
the continuous reformulation of the evolution equation of
Py (t) (Fokker—Planck equation), analog to the approach
taken by Malécot[7].

Let us now consider the distribution of species in a
local community of size J in contact with the above de-
scribed metacommunity. If J < Jj; mutations within
the community can be neglected and the equilibrium dis-
tribution in the metacommunity is negligibly modified by
migrations from or towards the community. Let us now
consider the probability P, (¢;w) of finding a given species
with abundance n in the community knowing that this
species has relative abundance w = k/Jy; in the meta-
community. Because of the large size of the metacom-
munity compared to the community, w can be considered
constant over time scales relevant for the evolution of the

community. Thus P, (t;w) obeys a differential equation
similar to Eq 1 but with coefficients A,, and C), given by:

An:(J;n)(Jil(l—m)—i-mw) (9)
n,J—n
n:j(J_l(lfm)wLm(l—w)) (10)

The equilibrium solution P, (w) can be calculated (see
Appendix) and it takes a concise form by introducing
a re-scaled immigration parameter p defined in a way
similar to 6:

(T () (p(l —w))s—n
P = () S 12

In this expression is the binomial coefficient and

(a)n, =T(a+n)/T(a) is the Pochhammer coefficient|§] .
Note that P, (w) is a polynomial of degree J in w which
can be conveniently written:

J—1
Palw) =w Y fua(1 = )" (13)
k=1

where the coefficients f,; depend on J and u.

The important point is now that eq. 5 and eq. 12 can
be combined to give the distribution of species (¢y,) in
the local community:

Jm
(D) =D Palk/In) (1) s (14)
k=1
This equation is the main result of the present paper. It
expresses the way the internal population dynamics of an
island is modified by immigration from the environment.
In the extreme cases, if m = 1, (¢n) = (Px),, (complete
“thermalisation”) and if m = 0, the isolated community
undergoes total dominance by a single specie as will be
discussed below.

The proof of this statement can be derived in the
following way. Let Pjc(n) be the probability that a
given specie j has an abundance n in the community
and Pjpr(k) the probability that this same specie has an
abundance k in the metacommunity . Since P, (w) has
the meaning of a conditional probability, one has:

Jnm
Pic(n) = Pu(k/Jar) Pjae (k)
k=1

so that, if s is the total number of species:

<Y bnn, o= Y_Pic(n)
j=1 j=1

I S Jm

> Pu(k/In) Y Piaa(k) = Pu(k/Jar) (0k)
k=1 Jj=1

<¢n>C

j= k=1



In the limit Jy; — 00, (¢n) can be computed using
eqs. 8 and 13:

J-1

(bn)e = / Py (@)gnt

(15)

Preston plots corresponding to this result are shown
in Fig.2 . Our analytical results are again in very good
agreement with numerical simulations. The existence of
a maximum in these curves is a feature often observed
in nature. It corresponds to an intermediate situation
between full dominance of a single species in absence of
immigration (¢ = 0 ) and full equilibrium with the meta-
community ( 4 = oo ). Typical ecosystems for which
the distribution of species abundance has been exper-
imentally measured and can be well described by the
present model are closed canopy forests ( in Malaysia
and Panama) [9] as cited in [1] .

The average total number of species in the local com-
munity (S). can be put in a form which generalizes eq.
7

:Z 9+z

where «; are the coefficients of the polynomial expan-

Z a; (16)
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sion of the Pochhammer coefficient (u); = ijl a;jp?
For large J , the density of species geo(w) =
limj—oed (én) o in the continuum limit (w =n/J ) is:

1
go(w) = ,u@/ ( K ) (1 — w)ru=tur=w=1y0q, (17)
o \ HU

In this equation p =~ mJ is considered as finite when
J— o0

This equation describes the asymptotic behavior of
large local communities, as a function of only two pa-
rameters 6 and p . Fig.3 shows wge(w) for several values
of p. This function which is normalized to 1, represents
the probability density of finding an individual belonging
to a species of relative abundance w . This figure clearly
shows the crossover from dominance at small p to diver-
sity at large p . When p increases at constant 0, wge(w)
approaches continuously wgps(w) . This is the full “ther-
malisation” of the community with the metacommunity
when the immigration rate m approaches unity.

Eq.17 however must be used cautiously. Our numerical
simulations show that species distribution depends criti-
cally on the ratio J/Jy; when both J and Jy, are large .
This emphasizes the importance of discrete formula (eq.
14).

To conclude we have derived an analytical solution
of the Hubbell’s “unified” model of biodiversity: exact
expressions for the equilibrium distributions of species
abundance and for the total number of species have been
found for a community and a metacommunity of finite
sizes. In the limit of large population sizes we have shown
that the equilibrium distributions of species are described

Ydw =" furb/(0+k)  (n < J-1)

by universal functions depending only on two scaling pa-
rameters, 6 and pu, related respectively to the mutation
and migration rates. The model discussed above is es-
sentially “zero dimensional”, which means that no spa-
tial inhomogeneous distribution of the species has been
considered. There is an obvious interest in extending
the present results to 1 and 2 dimensional systems : im-
portant results have been obtained for the probability of
sampling the same species at two different locations as a
function of their separation, both theoretically[7, 10] and
from field measurements|[11]. The present work opens the
way to further analytical results in that direction, spe-
cially for deriving the full species distribution similar to
eq. 14.

Appendix
The set of master equations (1) can be written under
a matrix form:
dP/dt =H.P

with P a (J + 1) dimensional vector corresponding to
P,(t) (n=0to J ) and H a matrix defined by:

—Ap Ch
Ay —(A1+Cp) Cy
H= Aq .
. Cy
Ay —Cy

Using the Laplace transformation Q(F) = L[P(t)] and
defining the matrix G(E) = (ET — H)~! one has:

P(t) = L [G(E)].P(0)

The long time behavior of P(¢) is obtained by consid-
ering the limit £ — 0 of G(E).

A1l -Metacommunity:

The probability Py () that a specie which has appeared
at time ¢ = 0 has an abundance k at time ¢ is given by :

Pi(t) = LG (E)]

According to eq. 2, Ag = 0. Using a recurrence method
one finds that, when £ — 0 :

Goi(E) = 1/E+0(1)
Gu(E) = 1/C1+O(E)
I1=1 4
G (E) = ——+0(E) (1<k<Ju)

H_] IC

Therefore, when t — oo, Py(t) — 00 : every specie
disappears by mutation. However, as new species ap-
pear continuously, the population distribution goes to a



well-defined stationary value which can be calculated by
taking the Laplace transform of eq.4:

< ¢x >u=vL ' Gy1(E)/E]lp=0

and one gets:

<¢1>m = v/Ch

k—1
L=y
<¢k >y = V%

Hj:l Cj

Using the definition of 6 (eq.6) , the coefficients C; in
eq.2 can be written:

(1<k§JM)

_iUm—j+0)

I (I — 1) 1-v)

so that one gets:

with:

0<n<J)

J
My = J]¢;
j=1
J—-1
M; = HAj
j=0

Introducing p as defined in eq.11 into the coefficients A,,
and C,, given in eq.9 and 10, one gets:

m

A, = J—M(an)(nwLuw)
C, = Jﬂun(anJru(lfw))

O T(Jpr + 1)I(Jpr + 0 — kWhen t — oo the probability P, (t;w) goes to a stationary

<¢ > Qﬁ —
kM= ] (v —j+0)  kT(Jay + 0D (I + 1 — kyalue Py(w) given by:

which is eq.5. One can easily check that this distribution
satisfies correctly the sum rule:

Jm

Z kE<¢r >u=Ju
k=1

Using this relation, the total average number of species
in the metacommunity < S(Jy) >u= Y, < ¢r >um
can be shown to obey the recurrence relation:

1 —
<S(JM+ )>M <S(JM) >M+9+JM

Using < S(1) >p=1, one gets eq. 7

A2- Community:

In this case Ag # 0. In the limit £ — 0 one then finds
that:

M,

Pn(w) = Zizo M,

The denominator of this expression is found to be to be
independent of w and the probability P,(w) can be writ-
ten:

1520 (J =) + ) T 1 3 (T = 5 + p(1 — w))

P,(w) = J=0 T
) 120 (J =) +n)

which finally leads to eq.12. P, (w) is a polynomial of
degree J which can be written:

P (w)=w

J n—1 . J—n—1 .
() & Ti-nti-w) I s +i)

j=1

which is of the form eq.13 and defines the coefficients fx
in that equation.
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Figure Captions.

Fig. 1 Preston plot (binned by octave) of meta-
community species distribution obtained by Monte—Carlo

simulation : at each time step, an individual is removed
from the community and replaced, with probability v by
a new mutant or, with probability (1 — v) by an existing
individual replicate. Jyp; = 1024. Solid lines represent
theoretical species distribution, as given by eq.8.

Fig. 2 Preston plot of local community species dis-
tribution obtained by Monte—Carlo simulation for Jy; =
1024 , J = 128 and 2 values of u and 6. Dashed lines rep-
resent theoretical species distribution, as given by eq.14

Fig. 8 Probability density of finding an individual in
a species of relative abundance w in the local community
for J — oo (eq.17). 6 = 5, and various values of
as indicated on each curve. p = oo corresponds to the
metacommunity distribution.



