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We prove t h a t  if f : Y ~ X is a finite fiat m o r p h i s m  be tween  

two r educed  absolute ly  i rreducible algebraic pro jec t ive  curves 

defined over t he  finite field Fq, t h e n  

I - 2( y - 

where  ~rc is t he  a r i t hme t i c  genus of a curve C. As appl icat ion,  

we give some charac ter  sum  es t ima t ion  on s ingular  curves. 
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In this paper, the word curve stands for a reduced abso- 

lutely irreducible algebraic projective curve defined over the 

finite field I~q with q elements. If X is a smooth curve, it has 

been shown by Weil in [6] that  the number of Fq-rational points 

of X, denoted by ~X(Fq), is related to the geometric genus gx  

by : 

[ ~X(Yq) - (q + 1)]< 2gxx/q  (1) 

(with an improvement of Serre using the integral part, see [5]). 

In fact, Weil's statement, involving the zeta function of X, 

is more precise. It implies that  if there is a finite morphism 

f : Y ~ X between two smooth curves X and Y having 

(geometric) genus gx  and gv respectively, then (see for instance 

[2], proposition 6) 

I - 2(g .  - g x ) v %  (2) 

When X is the projective line, this is exactly Weil's bound for 

Y. 

On the other hand, the authors proved in [1] that  if X is a 

singular curve, then Weil's inequality (1) holds if one replaces 

the geometric genus gx  of X by its arithmetic genus ~rx. The 

aim of this paper is to give a generalization of both (2) and 

(1) for singular curves. Namely, if f : Y ~ X is a finite flat 

morphism between two singular curves, then 

[ ~Y(Fq)-  ~X(Fq)1_< 2(Try-  7rx)v~ (3) 

holds. 

We will prove (3) in the third section. The proof goes as 

follows. Inequality (2) can be applied to the finite morphism 

f : 1~ ~ )(  induced by f on the smooth models of X and 

Y respectively. Furthermore the number of l~q-rational points 

of a curve is related to the number of Fq-rational points of 

its smooth model (first section). Unfortunately, this is not 

sufficient to prove (3). One has to introduce (in the second 

section) the auxiliary curve Z = )~ x x Y, birational to Y. 
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Finally, we apply this result in a fifth section to obtain 

some character sum estimations. 

1. A l e m m a  

The following lemma relates the number of Fq-rational 

points of a curve and that  of its smooth model. It is given 

in [1], but in order to be self contained, we give here its short 

proof. If P is a Fq-rational point of a curve X, we denote 

by c~p (respectively ap(OC)) the number of Fq-rational points 

(respectively of Fq-rational points, where Fq stands for an 

algebraic closure of Fq) of )(, lying over P in the normalization 

map Yx : )~ ~ X. Let Op be the local ring of X at P,  and 

Op its integral closure in the function field Fq(X) of X. The 

quotient Op/Op is a Fq-vector space of finite length : let 5p 

be its dimension. 

L e m m a  1. Let X be a reduced absolutely irreducible projec- 

tive algebraic curve defined over Fq. Then 

I ~:((~q) - ~X(~q) t -  < Y~ l a g - X  I_<~x - g x  �9 

PEX(Fq) 

Proof. Let us first prove that  if P is a Fq-rational singular point 

of X, then c~p- 1 < 5p. Let Q1 , . . . ,  Q~p(~) be the Fq-rational 

points of )~ lying over P (the ap first beeing the Fq-rational 

ones), and r the Fq-linear map 

r  Op ) ]~qCtp 

f , ,  

We prove that  r is onto : let (X l , . . . , x~p )  E Fq ~v and 

fi = xi E Fq C Fq(X) if i < ap .  For i _> a g  + 1, let 

fi = 0. Then by the weak approximation theorem, there exists 

g C Fq(X) such that  vQ~(g-fi) >_ 1 for 1 < i < ag(Oe). Hence, 

r  : ( X l , . . .  ,Xap) and 

g E N OQ~ : OF. 

l<i<ap(~) 
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Since f (Q1)  . . . .  = f(Q,~e) for f e Op, it follows that  r  

is contained in the vector-line L C Fq~e spanned by (1, ..., 1). 

One obtains a surjective linear map 

r Op/Op ) ~q~P/L. 

Taking dimensions, we obtain that ap  - 1 <_ 5p. 

Now, Lemma 1 follows from the formulas 

7rx -- gx = E ~P 

PeSing X(Fq) 

and 

-  x(Fq) = - 1). 

P~X(Fq) 

[] 

2. A n  aux i l i a ry  cu rve  

Let X and Y be two curves, and f : Y ) X be a finite 

flat morphism. In order to give an estimate for the difference 

between the numbers of Fq-rational points of X and Y, it is 

convenient to consider the fibre product Z = )(  x x Y. 

L e m m a  2. Z is a reduced absolutely irreducible projective 

curve. 

Proof. The map f beeing finite, the map Z ) P( is finite and 

onto, which implies that  dim Z = dimP( = 1, and Z is a curve. 

In order to prove that Z is absolutely integral, one has 

to prove that given an affine open set SpecA(Xi) of X, the 

ring A = A(X~) ~A(Xi) A(Y~) is an integral domain, where 

stands for the integral closure of a ring A, and A(Yi) is defined 

by SpecA(Y~) = f - l ( S p e c A ( X i ) ) .  Denote by Frac(A) the 

quotient field of a domain A. By the flatness hypothesis, 

0 , A(X~) , Frac(A(X~)) 
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induce 

0 , A , Frac(A(Xi))  | A(Yi). 

Then,  the  injective map 

Frac(A(X~)) | A(Yi) ~-* Frac(A(Yi)) 

proves tha t  A is an integral domain, as a subring of a field. 

Finally, Z is projective. Indeed, f is proper since it is 

finite, and Z , ) (  is also proper, so that  the composite mor- 

phism Z , ) (  ) Spec]Fq is proper since ) (  is complete. 

Hence, Z is projective as a complete curve. [] 

By the  universal properties of the fibre product  and of 

normalizat ion maps, one can write the following diagram, where 

all triangles and squares are commutative,  and all morphisms 

are finite : 

? 

/ 

z , 

I 
Y , X 

The  sheaf of Ox-modu les  f .  OF is coherent because f is 

finite. It is then  locally free since f is flat. After localization, 

the stalks (f.Oy)p are Ox,g-module of finite type, whose rank 

doesn ' t  depend  on P since X is connected. Let 
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r = dim~q(p)( f .Oy)p | Fq(P)  

= ~ dim~q(p)(Oy, Q |  Fq(P))  

Q e I - I ( P )  

be this rank,  where  Fq(P) denotes the residue field of the  point 

P .  Note  tha t  if r = 1, then  f - l ( p )  = {Q} contains only one 

e lement  for any P c X ,  and f induces a morphism of local 

rings (.gy, Q ~ (9x,p, so tha t  f is an isomorphism. Hence, one 

can suppose r _> 2. 

Proposit ion 3. (i) Z is birational to Y.  

g z  = g Y .  

(ii) The arithmetic genus of Z is given by 

~ z  = ~Y - r ( ~ x  - gx ) .  

In particular, 

Proof. (i) This is tr ivial  since there  are dominan t  morphisms 

I~ , Z and Z ~ Y. 

(ii) Since both  a r i thmet ic  and geometric  genus of a curve C 

and  of C x~q Fq = C are the same, it is sufficient to compute  

7r g.  To simplify notat ions,  we continue to denote  by X ,  Y and 

Z the  curves X ,  Y and Z respectively. The  exact sequence of 

O x - m o d u l e  sheaves 

0 , O x  , y x , , O  x , ( u x , , O 2 ) / O x  , 0  

tensorized by the  fiat O x - m o d u l e  f . O y ,  gives the exact  se- 

quence 

0 , f ,  Oy ~ (ux ,*02) |  f ,  O r  

, |  y . o y  , o (4) 

f rom which we deduce  a long exact  sequence of cohomology. 

Let  us scrut inize its different terms. 
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Since Hi(X,  f ,(gV) ~ Hi(Y, �9 and Y is projective, then we 

have dim~qH~ = 1 and dim~ H l ( X , f . O y )  = ~rv. 

In the same way, 

and 

dim~ H~ | f ,  O r ) =  1 

dim~q H i ( x ,  (z,x, .02) | f .Oy )  = rcz. 

Furthermore, the sheaf (z ,x , .O2)/Ox is a sum of skyscraper 

sheaves on the singular points of X. Hence, this is also the case 

for ((Z,x, .O2)/Ox) | f .Oy ,  and this prove the vanishing of 

its H 1. Finally, 

dim~q H~ X, ( (Yx , .O2) /Ox)  | f .Oy )  

= E dim~q ((Ox,e/Ox,e)@Ox.p ( f .Ov)e )  = 

PESingX(Fq) 

E dim~ ( (Ox,v /Ox,p)  (g~ (Fq | ( f .Ov)p))  

PESing X ('Fq) 

= E dimTq ((Ox,p/Ox,p)N~q (~q)r) 

P6SingX(~q) 

: E dim~ (Ox,p/Ox,p)r 
PESingX(~q) 

= r( rx - g x ) .  

The nullity of the alternating sum of the Fq-dimensions of the 

different terms of the long exact sequence of cohomology given 

by (4) gives: 

1 - 1 + r(rrx - 9x) - try + fez - 0 = O, 

which was to be proved. [] 
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3 .  T h e  m a i n  t h e o r e m  

T h e o r e m  4. Let X and Y be two reduced absolutely irre- 

ducible projective algebraic curves defined over Fq, with re- 

spective arithmetic genus rrx and try, and let f : Y ~ X be 

a finite fiat morphism defined over Fq. Then 

The  proof  depends on the following lemma. 

L e m m a  5 .  

] (~Z(Fq) - ~2(Fq))  - (~Y(Fq) - ~X(Fq)) l< (r - 1)(rrx - gx)  

(recall that r = dimFq(p)( f .Oy)p | ~'q(P))" 

Pro@ If P C X(Fq),  let 

and  

~p = ~{P e 2 ( ~ )  I . x ( P )  = P} 

/ 3 p = ~ { Q c Y ( F q )  I f ( Q ) = P } .  

Then  

1 < 

Qe/-l(P) 

Moreover, 

Z(Fq) = {(/5, Q) e X(Fq) x Y(Fq) 

hence 

and  

- E dimt%(p) (Oy, Q | Fq(P))  = r 

Qef-~(P) 

I ~x(P)= f(Q)} 

PEX(Fq) PCX(Fq) 

= E ~p( /~p -- 1), 

PEX(Fq) 

PeX(~) PeX(F~) 

= ~ (~-I). 
PeX(Fq) 

O~p 
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By l emma 1, and since r > 2, we obtain 

[ (~Z(IFq) -- ~X(]Fq))-(~Y(]Fq) - ~X(]Fq))1~ 

P6X(Fq) 

<_ ( r - 1 ) ( T r x - g x ) .  

[] 

The theorem follows easily from the  preceding and the  trian- 

gular inequali ty 

I ~Y(~q) - ~x(~q) I<l ~ ? ( ~ )  - ~ z ( ~ )  I 

+ I ( ~ z ( ~ )  - ~ ( F ~ ) )  - (~Y(Fq) - ~ Z ( ~ ) )  I 

+ I ~ X ( ~ ) -  ~ ? ( ~ )  I 

4. R e m a r k s  

4.1. The  proof of theorem 4 gives a be t ter  upper bound, namely 

[ ~Y(Fq)-~X(Fq)I_< (~y-gy)-(~x-gx)+(gy-gx)[2v~. 

See l emma 4.1 of [3] for the reason of the  integer part  [2v~ ] of 

2v~. 

4.2. It couldn' t  be expected theorem 4 to be true for any 

finite morphism f : Y ~ X. For instance, this is false for 

the normalizat ion map of a singular curve. Here is another  

example : let X be the  plane curve Y 2 Z  = X 3. This is a 

singular cubic curve, its ar i thmetic genus is 7rx = 1, and for 

any integer n, we have ~X(F2~) = 2 n + 1. Let us consider the  

morphism 

: ~1 ) X 

( u : v )  , , (u2v :~3 :~3 )  

Suppose theorem 4 would be true for any finite morphism f ,  

and let C be any smooth  curve of genus gc,  defined over F2. 
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There  is a finite morphism ~v ~ : C ) Ii ~1 , hence by composit ion 

a finite morphism f = ~ o ~r : C ~ X,  and theorem 4 would 

imply  tha t  for q = 2 n, 

I  c(Fq) - (q + 1) J< 2(gc  - 1)v , 

which is false : one can consider for instance the smooth  curve 

C given by X 3 + y 3  ~ Z 3 ___ 0, which has 9 rat ional  points over 

Fa and  genus gc = 1. 

4.3.  If X is smooth  (in part icular  if X is the  projective line), 

then  any finite morphism Y ~ X is fiat. Indeed, if f(Q) = P, 

then  the  local r ing (gy, Q is a finitely generated (9x,p-module 

wi thout  torsion element. But  Ox,p is a principal  ideal domain 

since X is supposed to be smooth,  so tha t  (gy, Q is a flat (gx,p- 

module. This  shows tha t  theorem 4 contains all known results 

(1) and  (2) of the  introduction.  

Note tha t  there  are many other  s i tuat ions where Y ) X 

is fiat. This  is the  case for instance if X = Y/G, where G is a 

finite group of au tomorphisms of Y (see [4]), or (by s tabi l i ty  of 

flatness by base change) if f is the reduct ion modulo a prime 

ideal of a flat morphism between two curves defined over a 

number  field, or (also by base change, see section 5 below) if f 

is a Kummer ,  or an Artin-Schreier morphism. 

5. A p p l i c a t i o n  t o  e x p o n e n t i a l  s u m s  

Let X be a curve over a finite field Fq of odd characterist ic 

and f E Fq(X) a function on X.  W h e n  X is smooth,  there  

is an extensive l i terature  on es t imat ions  of the  character  sums 

~PeX(Fq)  (f--~qP)), where ( q ) i s  the  Legendre symbol on Fq 

( w i t h t h e c o n v e n t i o n t h a t  ( f q -~ )  = 0 i f P i s a z e r o o r a p o l e  

of f ) .  In  fact, this  character  sum equals to ~Y(Fq) - ~X(Fq), 

where Y is the  Zariski closure of the  curve {(P, y) E X • p1 I 

y2 = f ( p ) }  in the  surface X x p1. Indeed, there are exactly 

1 + ( L ~ q  P ) points  in Y(Fq) above a given point  P E X(Fq). 
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The geometric genus gy  of Y is given from g x  by Hurwitz 

formula, and its arithmetic genus is given by the following 

lemma, whose proof is a standard and tedious calculation using 

Cech cohomology. 

L e m m a  6. Let  Y be the Zariski closure of {(P, y) E X • P 1 I 

y~ = f (P)} .  Then,  Try = nzrx + ( n -  1)(deg(f )o  - 1), where 

( f )o  denotes  the  divisors o f  zeroes o f  f . 

Since the squaring map P 1 ~ ~1, y,  > y2 is fiat, then by 

base change Y = X • p1 ~ X is also fiat. Hence, theorem 

4 applies, so that  the following holds : 

T h e o r e m  7. 

PeX(Fq)  

( f - ~ )  [_< 2(n - 1)(~x + deg( f )o  - l ) v / - q .  

Of course, one can give a better upper bound using remark 

4.1., and one can study additive character sums via Artin- 

Schreier coverings. 
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