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A Weil theorem for singular curves

Yves Aubry and Marc Perret |

Abstract. We generalize Weil’s theorem on the number of rational points of smooth curves
over a finite field to singular ones.

1991 Mathematics Subject Classification: 14G10, 14H20.

1. Introduction

Throughout this paper a curve stands for a reduced absolutely irreducible projective
algebraic curve defined over the finite field F, with g elements. André Weil [6] proved
that the number #1X (IF,) of rational points over I, of any smooth curve X satisfies

| 4X(Fy) — (@ + 1) | <2g./q

where g is the genus of X. Moreover, the zeta function Zx of X is a rational function
(IT;%Z_% where Py (T) is a polynomial of degree 2g, with integer coefficients and
whose inverse roots have modulus ,/g (this is the so called “Riemann Hypothesis”).

In this paper, we first give an explicit form of the zeta function of any singular curve
X. We know by Dwork’s theorem that it is a rational function. Here again, we show
that Zx(T) = (IT’TD%Z_%, where Py (T) is a polynomial with integer coefficients
which is the product of the numerator of the zeta function of the normalization X of
X with an explicit product of cyclotomic polynomials.

Then, the study of the difference between the number of rational points of X and
of X will enable us to show that the Weil inequality still holds for X, provided that
we replace the geometric genus g of X by its arithmetic genus 7 (in fact, we give a
better estimate).

Finally, we give some applications to permutation polynomials and explicit for-
mulas.

Offprint from: Arithmetic, Geometry and Coding Theory, Eds.: Pellikaan/Perret/ Vladug
© by Walter de Gruyter & Co., Berlin - New York 1996




2 Y. Aubry and M. Perret
2. The zeta function of a singular curve

The zeta function

o0 Tn
Zx(T) = exp ( X (Fgn) )

n=1 .
of a curve X can be written as
det(1 — TF | H\(X, Q¢))
(=Tl =q4i]
where F is the Frobenius morphism on the first £-adic cohomology group with compact
support H! (X, Q) of X, and the eigenvalues of the Frobenius have modulus /g or 1
(see [1]). The purpose of this section is to give a more precise statement, using only
elementary methods. 4
We denote by X the normalization of X and by v : X —> X the normalization
map. If P is a point, we denote by dp = [F,(P) : Fy] its degree over I, (i.e. the
degree of the extension of the residue field of P over Fy).

]

Zx(T) =

Theorem 2.1. Let S be the (finite) set of singular points of X. Then

3 Px(T)
e
where .
ﬂ = (1 =T¢%)
Py (FpE Py n ( Q¢ 1I(P)TdP ;
PeS 25! \

and where Py is the numerator of the zeta function Z 3 of X.

Proof. We have

Zud ) N5 o a8
2.0 exp(—Z(uX(IFqn) nX(qun))n)

n=1

o0 Tn
=" Flexp (— Y (ap(n) = dp)duy .HT) ,

PeS =}
where §jn = 1if m | n, else dmjn = 0, and where ap (n) is the number of points of
X lying over P, that are rational over Fyn.
Thus,
Zx(T) = g
=||exp|— ) (ap(mdp)—dp) ;
But

ap(mdp) = Z dddyimdp
Qev-1(P)
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hence
00 md,,
2x® o (Mowie exp((= Yoo dobigimas Tt
= 1 a
ZAT) re 117
KtlQ
Hge-10) exP( D )
=[lpes 1—_74p
(= ngeu—l(P)(l—TdQ)
o nPGS 1—T4p
and the theorem is proved. a

The zeta function of X is thus the product of a polynomial of degree 2gx by a
polynomial of degree oh &
Ax = t{X[Fy) \ X (Fy)},

where Fq is an algebraic closure of F,. Note that the quantity Ay is well-defined, since
the set of singular points is a finite subset of X. We now have to evaluate Ay (which
can be seen as the dimension of the toric component of the generalized Jacobian of X

(see [4])). b

As in the proof of Theorem 2.1, if P € X (Fy) letap(l) = a (respectively ap(00))
be the number of rational points over [, (respectively over Fq) of X, lying over P.
Let Op be the local ring of P on X and Op its integral closure in the function field
F,(X) of the curve X. The quotient O_p/Op is a finite dimensional [F,-vector space
whose dimension is denoted by §p.

We get the following lemma.

Lemma 2.2. Let P be an F-rational point of X. Then

ap(l)—1<ép.

Proof. Let Q1, ..., Qap(co) be the points of X(]F ) lying over P (where the ﬁrst o
points are the [F, ratlonal ones), and ¢ the linear map of [F,-vector spaces

¢ B OP = an
J o B (f(Qi))lgiga
Let us show that ¢ is surjective. Let (x|, ..., x,) € F,“and fi = x; € F, C Fye(X)
fori < a. Fori > a+ 1, we set f; = 0. By the weak approximation theorem,
there exists g € F,(X) such that vo,(g — fi) = 1forl <i < ap(o0). Hence,
O )= - = xg)rand
e m OQ,. = O_P

I<i<ap(o0)
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Since f(Q1) =+ = f(Qg) for f € Op, we have that ¢ (Op) is contained in a one
dimensional vector space L C IF,”. We obtain a surjective linear map

¢:0p/Op — F,/L,

and the lemma is proved. |

Proposition 2.3.
[ #X(Fy) — 81X (Fy) = 7w —g.

Proof. Let P be a point of X and Q be a point of X lying over P. Then P is rational
over [, if Q is. With the previous notations, we get by Lemma 2.2

1XEF) —1XF)= )  lep(h-Ds > dp<m—g

PeSing X (F,) PeSing X (Fy)

L o Z Sp.

PeSing X (F,)

since

On the other hand,

Y. (@p()—1) = —tSing X (F,) > —1Sing X (F,) > —(7 — g),
PeSing X (F)

which concludes the proof. [

Thus, the numerator of the zeta function of X is a polynomial with integer coeffi-
cients of degree 2g + Ay € {2g, ..., 7 + g}, where Ax = #{X (F,) \ X (F,)}, whose
inverse roots have either modulus ,/g (for 2g of them) or modulus 1 (for Ay of them).

Corollary 2.4. Let wy, ..., wyg be the inverse roots of P)?, and By, ..., Bay be the
inverse roots of the cyclotomic part of Px. Then, foralln > 1,

2g Ax

BX(Fpr) =g"+1=3 of =) B
i=1 j=1

In particular,

| 2X(Fy) — (@ + 1) |=2¢/9+Ax <28 /9 +7m — g <2n./q,

and

dimg, H.(X, Q) = 2g + Ax. O

Using the last inequality, we get:
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Corollary 2.5. If X is anabsolutely irreducible curve which is a complete intersection
in P"*! of n hypersurfaces of degree dy, .. ., dy, and if we setd =[]}, d;, then:

| #X(Fy) — (@ + 1D |= (d - D@ —2)/q-

In particular, this inequality holds for any absolutely irreducible plane curve of
degree d.

Proof. The arithmetic genus wx of a complete intersection which is given by
ey = d(Z,’-’=l di —n—2)+2 (see [5 p.73]) is clearly at most equal to (d — 1)(d — 2).
The second assertion is obviously a particular case of the first one. Observe that the
arithmetic genus of a plane curve of degree d is equal to Sﬂ%‘ﬁz O

3. Applications

3.1. Explicit formulas

The explicit formulas given by J.-P. Serre in [5] related to the function field of a curve
over a finite field still hold in the singular case, provided that we replace the geometric
genus g of the curve by its arithmetic genus 7. Furthermore, we can replace (and it is
better) g by g + %1.

Consider a function f(6) = 1 +2) ., c,cosnf which satisfies f >> 0 (i.e.
f(@)>0foralld e Randc, > Oforalln > 1). The formula of Corollary 2.4 gives

IXEp)y=9"+1— leil B = ZJ.A:"I B} . Arguing as in [5], we get
Ax
ﬁX(Fq)Saf(g+T)+bf§afﬂ il (*)

withay =1/W(g™"?)and by =1+ (W(q'7?)/W(g~"7?)), where W (1) =), .| cat".

Furthermore, we obtain the same estimations as the ones in [5] of the maximum
number of rational points over [F, of a curve for g+ %— fixed. For example, a curve with
2k % < 6 has at most 10 rational points. These remarks have been communicated
to the authors by J.-P. Serre.

Another application of this results is the following one. Consider the number

Ny(m) = m)z(ix X (Fy)

where X runs over the curves (possibly singular!) over IF, of arithmetic genus 7. It is
of interest to study the behavior of N, () for m —> o0o. We define, in analogy with
the quantity A(g) (see [5] for example), the number A’(q) by
N, (m
A'(g) = limsup ! ).

T—00 T
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Corollary 2.5 readily implies A’(q) < 2,/g. In fact, using the previous explicit
formulas we get the following bound which is the same as that for A(g) of Drinfeld
and Vlddut (see [2]). Note that we obviously have A(g) < A’(g).

Proposition 3.1.
A(@) =g-1.
Proof. Take

3 ol
fln(g) = 1 + 22(1 = i)COSnG — _l ZethIZ
n=1 14 1 =

Thus f,, >> 0. Now, let
m
n
W (6) =) (1 — =)t".
=l [

Thus, (x) gives

1X () ~tj2y 1 1/2 —1/2
<1 /U™ )+ — (14 (Un(a") [ Unlg ™))

Since W, (t) — t/(1 — 1) form — oo and |t| < 1, we get
L e 1/(/g—1) form — oo.

Hence, for any e there exists mg such that m > mg implies

|/ ¥n(a™?) < V7 =1+ 2.

For 7 large enough, the second term of the right hand side of the inequality is less
than %, and this concludes the proof. O

3.2. Permutation polynomials and exceptional polynomials

Corollary 2.5 gives us the following explicit form of the Lemma 7.28 of [3]. This
result enables us to precise the relationship between permutation polynomials and
exceptional polynomials over F, (see [3]).

Lemma 3.2. Let ¢ € Fy[x, y] be an absolutely irreducible polynomial of degree d
and Cy the affine curve of equation ¢ (x, y) = 0. Set

T 4-11(((1 bR Bl BT By —2)2.

If g = kq, then either Cy has a rational point (a, b) with a # b or ¢ is of the form
c(x — y) for some c € F,.
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Proof.  According to the affine version of Corollary 2.5, the number N of rational
points over F,, of the (affine) curve Cy satisfies
IN—-gql|s@-1Dd-2)/g+d—1

Arguing as in the proof of Lemma 7.28 of [3], the result holds with any k4 such that
g—d—-1)d-2)/9—2d+1>0forallg > k4. O

Hence, this gives explicit forms for the Propositions 7.29 until 7.33 of [3]. For
example, any permutation polynomial of degree 2 is exceptional over Iy if g is odd.
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