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Abstract— The paper describes an identification technique
of switching system. The considered system is represented as
a weighted sum of local models. To estimate the switching
times, a change detection technique is applied. It provides the
weights associated to the local models. The Markov parameters
of these models are identified by a subspace method. This cal-
culation can yield similar local models which are merged. The
procedure of parameter identification an models merging is
repeated until convergence. The performance of the approach
is investigated on a simulation example.

Index Terms— switching system, identification, detection of
abrupt model changes, Markov parameters, subspace method

I. I NTRODUCTION

The paper focuses on switching systems modelled as a
weighted combination of linear local state space models.
The transition of a model to another is assumed to be a
jump. Consequently, the weights associated to the local
models are binary : only one model is active all the time.
The switching systems constitute an important class of non-
linear systems (especially in system analysis and control).
A detailed description of existing identification methods is
proposed in [5]. Identification of such a system involves
typically these tasks : 1) find the number of local models i.e.
the number of different dynamics of the system, 2) partition
the data into groups corresponding to the different operating
regimes (dynamics) of the system, 3) identify the parameters
of each local model. In the paper, we assume that the local
models are stable and it exists a minimal separation timeτ
between two consecutive switches. This separation time is
referred in the litterature asdwell time[1]. The estimation
of the switching instants is realised by coupling a subspace
method based on matrix projection with a statistical test.
The method gives a coarse classification of the data accor-
ding to the dynamics of the system. But, as the test leads
to a delay for detection, the data immediately before the
commutation times cannot be affected with certainty to a
particular local model : these data are dubious and are not
used to estimate the parameters of the local models. The
classification of these data is performed after the parameters
estimation. This estimation consists in determining the
Markov parameters of the previously detected dynamics and
can reveal similar local models which are merged. A new
parameter identification is performed. This imbrication of

parameters estimation and models merging is repeated until
convergence. A similar approach was proposed in [4] but
it is limited to systems without process noises and cannot
deal with the delay for detection problem, contrary to the
method presented herein.

The section II formulates the swtching system identifica-
tion problem whereas the matrix notations and definitions
are exposed in section III. The switching times detection
using a subspace method is detailed in the next section. In
section V the identification of the Markov parameters of the
local models is tackled. The section VI deals with the deter-
mination and the merging of similar local models. Finally,
the identification of a minimal and balanced realisation of
the obtained local models is presented.

II. PROBLEM FORMULATION

The output of the switching system is represented as a
weighted sum of the outputs of local models :

yk =
h

∑

s=1

ps,kys,k (1)

wherek represents the time index,yk ∈ R
ℓ the output of

the system,ys,k ∈ R
ℓ the output of local models andps,k

the weight associated toys,k. For q input-output samples,
the weights verify the following condition :

ps,k ∈ {0, 1} and
h

∑

s=1

ps,k = 1, ∀k ∈ [1, q] (2)

Each local model is supposed to be linear of orderns

and described by the state space model :

xs,k+1 = Asxs,k + Bsuk + vs,k

ys,k = Csxs,k + Dsuk + ws,k
(3)

where the process noisesvs,k ∈ R
ns and the measurement

noisesws,k ∈ R
ℓ of the sth local model are independent

gaussian white noises (E(ws,k wT
s,k) = σys

Iℓ) and uncorre-
lated with the inputsuk ∈ R

m. xs,k ∈ R
ns represents the

state vector of models. Theh local models are assumed to
be stable and active during a minimal timeτ [1].

From q samples of inputsuk and outputsyk, the aim is
the determination of : - the numberh of local models, - the
weightsps,k corresponding to each local model, - the order
ns and a realisation (As, Bs, Cs, Ds) of each local model.



III. SYSTEM MATRICES

The matrix of outputs̄yk,f of the system and the input
block-Hankel matrixUk,f ∈ R

mi×f are defined as :

ȳk,f =
(

yk yk+1 ... yk+f−1

)

∈ R
ℓ×f (4)

Uk,f =
(

u
(i)
k u

(i)
k+1 ... u

(i)
k+f−1

)

(5)

u
(i)
k =











uk−i+1

uk−i+2

...
uk











(6)

The matrix of local outputs̄ys,k,f ∈ R
ℓ×f , the matrix of

measurement noises̄ws,k,f ∈ R
ℓ×f as well as the block-

Hankel matrix of system noisesVs,k,f ∈ R
nsi×f for the

sth local model are defined similarly. The integersi andf
satisfy the constraints :

{

mi<f <q
2(ns + 1)<min(i/m, i/ℓ), 16 s6h

(7)

The latter condition means that we have a sufficient number
of Markov parameters in order to identify a realisation of
the local models (see section VII).

Remark 1
The integerf is a generic notation. In the model change

detection method using subspace method, it is replaced by
L that represents the width of the sliding window. It is equal
to j in the parameters estimation stage where it indicates
the number of samples for identifying the local models.

The matrix of the state sequencesXs,k,f ∈ R
ns×f and the

matrix of weightsPs ∈ R
f×f of the local models are :

Xs,k,f =
(

xs,k xs,k+1 ... xs,f+k−1

)

(8)

Ps,k,f =











ps,k 0 0 0
0 ps,k+1 0 0
...

...
...

...
0 0 0 ps,k+f−1











(9)

For simplicity sake, the notationsVs,f , Xs,f , Ps and Uf

will be used instead ofVs,k,f , Xs,k,f , Ps,k,f andUk,f .
The observability matrixΓi,s of local model s and its
controllability matrixCi,s are respectively defined as :

Γi,s =
(

(Cs)
T (CsAs)

T ... (CsA
i−1
s )T

)T
∈ R

ℓi×ns

(10)

Ci,s =
(

Bs AsBs · · · Ai−1
s Bs

)

∈ R
ns×mi (11)

Finally, the Markov parameter matrices of the determinist
part Hd

s,i ∈ R
ℓ×mi and the stochastic partHv

s,i ∈ R
ns×mi

of the sth local model are given by :

Hd
s,i =

(

CsA
i−2
s Bs CsA

i−3
s Bs ... CsBs Ds

)

Hv
s,i =

(

CsA
i−2
s CsA

i−3
s ... Cs 0

)

(12)

IV. ESTIMATION OF THE WEIGHTS

The determination of the weights of the local models is
achieved by a subspace technique of change detection of
system dynamics. The technique allows the estimation of
the switching times and the determination of the weights.

A. Change detection of the system dynamics

From the intput-output data, a residual vector is generated
using a matrix projection. Indeed, the outputs of thesth

local model can be expressed as a function of the Markov
parameters and the input block-Hankel matrix. The in-
fluence of the inputs is annihilated by projecting the outputs
on a space orthogonal to the inputs. The projection gives
a residual matrix whose last column is chosen as residual
vector. The mean of the residual vector is null when no
switching occurs and different from zero otherwise.

1) Matrix input-output relation: let s the active local
model ; its output can be expressed as :

ys,k = CsA
i−1
s xs,k−i + CsA

i−2
s Bsuk−i + ... + CsBsuk−1

+Dsuk + CsA
i−2
s vs,k−i + ... + Csvs,k−1 + ws,k

(13)
As the local model is assumed to be stable, the term
CsA

i−1
s xs,k−i decays for high values of “i”. This term is

considered negligible if :
∥

∥CsA
i−1
s xs,k−i

∥

∥ <
√

variance(ws,k) (14)

Thus, (13) becomes :

ys,k ≃ CsA
i−2
s Bsuk−i + ... + CsBsuk−1 + Dsuk

+CsA
i−2
s vsk−i + ... + Csvs,k−1 + wk

(15)
All the local models being active over a duration greater
than thedwell time τ , if τ ≥ i + L (L is the width of
the sliding window), we can stacki + L− 1 measurements
according to the relation (15). This yields :

ȳs,k,L ≃ Hd
s,iUL + Hv

s,iVs,L + w̄s,k,L (16)

Notice that as only the local models is active over the
interval of width i + L − 1, the output matrix̄yk,L of the
switching system is equal to the output matrixȳs,k,L of the
active local model in this interval.

2) Residual generation:the influence of the input terms
is removed from (16) by projecting the row space of the
matrix ȳs,k,L onto the space orthogonal to the row space of
the input block-Hankel matrixUL :

ȳs,k,LΠ(UL)⊥ ≃ Hv
s,iVs,LΠ(UL)⊥ + w̄s,k,LΠ(UL)⊥ (17)

The matrixΠ(UL)⊥ is an operator which realises the pro-
jection of the row space of a matrix orthogonally to the row
space of the matrixUL. It is defined as :

Π(UL)⊥ = I − U
(−)
L UL (18)

whereU
(−)
L is the Moore-Penrose pseudo-inverse of matrix

UL.



The relation (17) provides a residual matrix containing
only the noise terms. Any column of this matrix can be
chosen as residual vector. In the sequel, we select arbitrarly
the last columm as residual vector (knowning that other
choices can be made). Therefore, the residual vector is given
by the following relation :

εs,k = ȳs,k,LΠ(UL)⊥Z

εs,k = Hv
s,iVs,LΠ(UL)⊥Z + w̄s,k,LΠ(UL)⊥Z

(19)

whereZ =
(

0 ... 0 1
)T
∈R

L×1 is a selection vector.
εs,k is a zero mean white gaussian vector because it is
extracted from a linear combination of matrices of zero
mean gaussian white noisesVs,L and w̄s,k,L.

3) Sensibility of the residual vector to a model switching:
we analyse the expression of the residual vectorεs,k when
a switch occurs in order to showεs,k has not zero mean.
Under the assumption that the change occurs at the time
r−i+1, the relation (16) can also be written (by considering
one by one the columns of the matrixUL) :

ȳs,k,L ≃

r−i
∑

t=k

Hd
s,iUL(t) +

L+k
∑

t=r−i+1

H̃d
s,i(t)UL(t) + ζs (20)

with the following definitions :
– ζs = Hv

s,iVs,L + w̄s,k,L : zero mean matrix of noises,
– H̃d

s,i(t), t ∈[r − i + 1, L + k] : matrix of Markov
parameters after the change of dynamic,

– UL(t) : matrix witch tth column is equal toUL(:, t)
(tth column of the matrixUL) and zeros elsewhere

UL(t) =
(

0 ... 0 UL(:, t) 0 ... 0
)

(21)

Then, the relation (20) becomes :

ȳs,k,L ≃ Hd
s,iUL+

L+k
∑

t=r−i+1

(H̃d
s,i(t)−Hd

s,i)UL(t)+ζs (22)

and the residual vector is given by :

ȳs,k,LΠ(UL)⊥Z ≃
∑L+k

t=k−i+s(H̃
d
s,i(t)−Hd

i )UL(t)Π(UL)⊥Z + ζsΠ(UL)⊥Z
(23)

It is easy to see from (23) that the residual vector is not
zero mean vector if a model change occurs.

B. Estimation of the switching times and the weights

Previously, it was shown that the residual vectorεs,k is
a zero mean gaussian vector with variance matrixRε in
absence of model switching. If a change occurs, the mean
value ofεs,k is not null. Therefore, aχ2 test is applied to
detect these changes in the mean of the residual vector.

Let µ the mean of the residual vectorεs,k. The residual
vector being gaussian, the term̟s,k = εT

s,kR−1
ε εs,k follows

aχ2 distribution withℓ degrees of freedom. Thus, it verifies
the following test with the confidence thresholdα :

̟s,k

{

< χ2
ℓ,α, no change has occured (µ = 0)

> χ2
ℓ,α, a change has occured (µ 6= 0)

(24)

After the estimation of the switching times, the weigths
ps,k of the local models are deduced. Only one local
model (models) is active between two consecutive swit-
ching timesk1 and k2. The classification (according to
the operating regimes of the system) of the data collected
during the interval[k1, k2] is delicate because of the delay
for detection. Iftmax is the maximal delay for detection,
the data belonging to]k2 − tmax, k2[ cannot be affected
to a particular operating regime. The class of these data
corresponds either to the active local model before the
commutation (models − 1) or to the active model after
the switch (models). The classification of these dubious
data is performed after the first estimation of the Markov
parameter of the local models.

The calculation of the weights on the interval[k1, k2] is
carried out as follows :

– the weights of the supposed active local model are set
to 1 on [k1, k2−tmax[ (ps,k←1, k1 6k<k2 − tmax),

– the weights of the other local models are set to 0 on the
same interval (pr,k←0, k1 6k <k2 − tmax, ∀r 6= s),

– the weigths of all the local models are set to 0 for the
dubious data (pr,k ← 0, k2 − tmax + 1 6 k < k2, ∀r)
and the indexs of the active model is associated to
these points.

V. I DENTIFICATION OF THE MARKOV PARAMETERS OF

THE LOCAL MODELS

The determined weigths are used to estimate the Markov
parameters of the local models. This estimation relies on a
matrix input-output relation exposed in the next subsection.

A. Local input-output matrix relation

The relation allows to express the outputs of a local
model according to the inputs and its state vector.

Matrix input-output relation

ȳs,k,jPs =
CsA

i−1
s Xs,k−i,jPs + Hd

s,iUjPs + Hv
s,iVs,jPs + w̄s,k,jPs

(25)
The proof is given in appendix 1.

We recall that according to (4),f is equal toj and verifies
the condition (7). In fact, the number of data isq = j+i−1.

The estimation of the Markov parametersHd
s,i is deduced

from (25). As the relation is based on the matrix of local
outputsȳs,k,j , it is necessary to estimate this matrix.

B. Determination of the local model outputs

The weights verifying (2), the following property holds :

(pg,k)2 = pg,k andpg,k × ps,k = 0, (if g 6= s) (26)

and the local outputs are obtained from the system outputs :

pg,k yk = pg,k

h
∑

s=1

ps,kys,k = pg,k yg,k ∀k ∈ [1, q] (27)

By stacking the previous relation, we obtain :

ȳs,k,jPs = ȳk,jPs (28)



C. Identification of the Markov parameters

From the knowledge of the outputs of a local model, the
corresponding Markov parameters are estimated by least
squares. The estimation technique is summarised by the
following theorem.

Theorem 1 - Under the assumptions :
1) the local models is stable,
2) the matrixUjPshas full rank,
3) the variablei is sufficient enough such as the term

CsA
i−1
s Xs,k−i,jPs is negligible,

we have :

ȳs,k,jPsU
T
j (UjPsUj

T )−1 →
j→∞

Hd
s,i (29)

Proof : the local model s being stable, the term

CsA
i−1
s Xs,k−i,jPs in (25) is negligible for appropriate

values ofi (see section III). This gives :

ȳs,k,jPs ≃ Hd
s,iUjPs + Hv

s,iVs,jPs + w̄s,k,jPs

As the matrices of noisesVs,jPs andw̄s,k,jPs are uncorre-
lated with the inputs, an unbiased estimation of the matrix
of Markov parameterHd

s,i is obtained by least squares :

Ĥd
s,i = ȳs,k,jPsU

T
j (UjPsUj

T )−1 with ȳs,k,jPs = ȳk,jPs

�

D. Classification of dubious data

Between two consecutive switching timesk1 and k2

(k1 < k2), the data belonging to the interval]k2 − tmax, k2[
cannot be classified because of the delay for detection.
The class of the dubious data is determined now, from the
knowledge of the Markov parameters of the local models :

- if es,k 6 es−1,k ∀ k ∈ ]k2 − tmax, k2[, then the local
models is active (ps,k ← 1, pr,k ← 0 ∀r),

- if es,k > es−1,k ∀ k ∈ ]k2 − tmax, k2[, then the local
models− 1 is active (ps−1,k ← 1, pr,k ← 0 ∀r),

where er,k =
∣

∣

∣yk − Ĥd
r,iu

(i)
k

∣

∣

∣ is the equation error and
s is the index associated to the unclassified points of the
interval ]k2 − tmax, k2[

VI. M ERGING OF THE SIMILAR LOCAL MODELS

After the first estimation of the local model parameters,
we search “similar” local models. The proposed approach
consists in comparing the Markov parameter matricesHd

s,i.
Let us estimate the variance matrix (used further in the
merging algorithm) of the Markov parameters.

A. Variance of the Markov parametersHd
s,i

An unbiased estimation of the varianceσ2
y,s of the output

error of the local models is given by :

σ̂2
y,s =

trace(εsε
T
s )

i (j −mi)
, εs = ȳs,k,jPs − ŷs,k,jPs (30)

with ŷs,k,j the estimation of̄ys,k,j .
The proof is similar to the one of the lemma II.1 of [3].
The varianceΣHd

s,i
of Hd

s,i is obtained from lemma 1.

Lemma 1
An unbiased estimation of the variance matrixΣHd

s,i
is :

Σ̂Hd
s,i

= iσ̂2
y,s

[

UjPsU
T
j

]−1
(31)

B. Determination of the “similar” local models

The similarity between two local models is measured by
the distance between their Markov parameters : the distance
between two matriceŝHd

s,i and Ĥd
r,i is defined as :

d(Ĥd
s,i, Ĥ

d
r,i) = trace

(

(Ĥd
s,i − Ĥd

r,i)Σ̂
−1
Hs,r

(Ĥd
s,i − Ĥd

r,i)
T
)

(32)
with Σ̂Hs,r

= Ns

Ns+Nr
Σ̂Hd

s,i
+ Nr

Ns+Nr
Σ̂Hd

r,i
,

whereNs =
∑j

k=1 ps,k andNr =
∑j

k=1 pr,k.

Consideringβ as the threshold of aχ2 test withℓ degrees
of freedom, the similarity test is described below.

Similarity test

- d(Ĥd
s,i, Ĥ

d
r,i)≥β : the modelss and r are not similar,

- d(Ĥd
s,i, Ĥ

d
r,i)<β : the modelss and r are similar.

C. Merging of the local models

After the similarty test, the local models which are revea-
led identical are merged. The Markov parameters of the new
(merged) local models are re-estimated, followed by a new
search of similar local models. Notice that this parameter
estimation gives more accurate results because the number
of data used to estimate the parameters is increased due
to the merging. Notice also that the application of the
similarity test after the merging is useful because it is
possible that some similar models are not recognized at the
latter stage because of the inaccuracy of their parameters
due the insufficient number of data used to identify them.
The procedure alternates parameter estimation and similar
models merging and is repeated until the number of local
models converges.

The set of local models similar to the models0 is
notedEs0. In the merging algorithm, all the local models
belonging toEs0 are replaced by a new local models0∗.
The weighting function of the models0∗ is derived from :

ps0∗,k =
∑

s∈Es0

ps,k, k ∈ [1, q] (33)

The merging technique is summarised by algorithm 1.

Algorithm 1 (merging of local models)
- Step 1 (initialisation) : st← 0.
- Step 2 (estimation of the Markov parameters)
Compute the matricesHd

s,i using theorem 1.
- Step 3 (similarity test)
Apply the similarity test and build the setsEs of similar
models .



- Step 4 (calculation of the weights after merging)
For each setEs , if card(Es) > 1 then :
1) st← 1
2) ps,k ← p∗s,k ; remove the local modelsr , r ∈ Es ,
r 6= s.
- step 5 (re-organisation of the index of the remaining
local models (merged and original models))
- Step 6 (stopping test)
If st = 1 then go to step 1 otherwise stop the algorithm.

The algorithm permits the automatic determination of the
number of local models (or equivalently the number of
different dynamics) of the switching system. Let compute
now a state space realisation of each local model.

VII. I DENTIFICATION OF A REALISATION OF THE LOCAL

MODELS

The aim here is the estimation of the orderns and a
realisation (As, Bs, Cs, Ds) of the local models from the
knowledge of their Markov parameters.

The matrixDs is extracted directly from the estimation
of Hd

s,i (see 12). The Eigenvalue Realization Algorithm
(ERA) [2] is used to determine the order and a minimal
and balanced realisation.

Algorithm 2 : ERA

– Build the Hankel matricesH0
ν,s and H1

ν,s which
contain the Markov parameters and are defined by the
general relation : (withν = intg(i/2), the integer part
of i/2) :

Hγ
ν,s =











CsA
γ
sBs · · · CsA

γ+ν−1
s Bs

CsA
γ+1
s Bs · · · CsA

γ+ν
s Bs

...
...

...
CsA

γ+ν−1
s Bs · · · CsA

γ+2ν−2
s Bs











(34)
Recall that the condition (7) implies that the matrices
H0

ν,s andH1
ν,s have a dimension greater thanns.

– Perform the singular values decomposition :

H0
ν,s =

(

U1

U2

) (

S1 0
0 S2

) (

V T
1

V T
2

)

≃ U1S1V
T
1 (35)

whereS2 contains the neglected singular values.
– The order of the local model is equal to the number

of singular values inS1.
– Compute the observability matrixΓν,s = U1S

1/2
1 and

the controllability matrixCν,s = S
1/2
1 V T

1 .
– The matrixCs can be determined from the firstℓ rows

of Γν,s (see 10).
– The matrixBs can be determined from the firstm

columns ofCν,s (see 11).
– The matrixAs is given by :

As = S
−1/2
1 UT

1 H
1
ν,sV1S

−1/2
1 .

VIII. I LLUSTRATION EXAMPLE

Consider a switching system which is the sum of two
third order models. The changes of the system dynamics are
summarised as follows :s = 1 over the intervals[1, 999]
and [1800, 2499] ands = 2 over the intervals[1000, 1799]
and [2500, 3500]. The matrices of the two submodels are
defined below :

A1 =





0.32 0.31 0
-0.32 0.31 0

0 0 -0.18



 , B1 =





0.9 -0.7
0.71 -0.5
0.8 0.47





C1 =

(

-0.55 0.2 0.8
0.45 0.3 0.58

)

, D1 =

(

0.97 0.63
-0.32 0.95

)

A2 =





-0.1 -0.4 0
0.5 -0.4 0
0 0 0.26



 , B2 =





0.1 -0.6
0.32 -0.66
0.3 0.82





C2 =

(

-0.8 -0.1 0.7
0.3 0.48 0.9

)

, D2 =

(

0.5 0.3
-0.2 -0.5

)

.

The inputs uk are Pseudo-Random Binary Sequences
(PRBS) with variable amplitudes. The signal to noise
ratio of the outputs with relation to the measurement
noises is 30,3db. The process noisesvk have a covariance
var(vk) ≃ 7× 10−4I3 ; the covariance matrix of the inputs
is var(uk) ≃ 7×10−2I2. q = 3500 input-output data points
have been processed on the system.

A. First computation of the weights

The changes of the system dynamics are detected using
the procedure proposed in section IV withL = 38, i =
13 and tmax = 19 (half-width of the sliding window).
The estimations of the switching times are :1000, 1801
and 2501. The data belonging to the intervals]981, 999[,
]1782, 1801[ and ]2482, 2501[ are not classified. Therefore,
we suppose that the first model is active in the interval
[1, 981[, the second one in[1000, 1782], the third model in
[1801, 2482] and the last one in the interval[2501, 3500].
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Fig. 1. Estimation of the switching times

Using theorem 1, the Markov parameters of these four
local models are computed withi = 13. Then, the classes of
the unclassifed points are specified. The poles of each local



model are computed during 100 Monte carlo realisations.
The estimated poles are portrayed in figure 2. This figure
shows that the local models 1 and 3 and the local models
2 and 4 are similar.
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Fig. 2. Poles of the 4 local models for 100 Monte Carlo realisations

B. Merging of local models (algorithm 1)

The similarity remark is confirmed by the similarity
test. For 100 Monte carlo realisations, the following
results are obtained :d(Ĥd

1,i, Ĥ
d
2,i) ∈ [28000, 38500],

d(Ĥd
1,i, Ĥ

d
3,i) ∈ [4, 12], d(Ĥd

1,i, Ĥ
d
4,i) ∈ [27500, 38500],

d(Ĥd
2,i, Ĥ

d
4,i) ∈ [3, 13] with the thresholdβ ≃ 18, 4.

Therefore, the local models 1 and 3 are merged as well as
the models 2 and 4. The Markov parameters of the two
remaining models are computed again and their poles are
estimated. We can notice the improvment of the accuracy
of the poles for 100 Monte carlo realisations (see figure 3).
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Fig. 3. Poles of the merged local models for 100 Monte Carlo realisations

IX. CONCLUSION

A subspace identification technique of switching system
was presented in the paper. The technique estimates first
the switching times and permits an easy determination
of the weigths assoicated to the local models. Then, an
estimation of the Markov parameters of the detected models
is computed. A merging algorithm is proposed to combine
the similar local models and is based on the comparison
of the Markov parameters. The parameters of the mer-
ged models are estimated once. The procedure of models
merging and parameters estimation is repeated until the
number of models converges. Therefore, a minimal and
balanced state space realisation of the remaining models
can be determined. The overall approach is illustrated on
a simulation example with shows the feasibility of the
method. The application of the method on real process data
will be studied as a perspective of this work.
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X. A PPENDIX 1

The proof of the matrix intput-output relation is establi-
shed herein for deterministic subsystem. The extension to
a stochastic system is straigthforward. The expression of
ȳs,k,j × Ps is given by :

ȳs,k,j × Ps =
(

ps,kys,k ps,k+1ys,k+1 ... ps,k+j−1ys,k+j−1

)

ȳs,k,j × Ps =
(

ps,k(CsA
i−1
s xs,k−i + CsA

i−2
s Bsuk−i + ... + Dsuk) ...

ps,k+j−1(CsA
i−1
s xs,k+j−1−i + ... + Dsuk+j−1)

)

ȳs,k,j × Ps =
(

ps,kCsA
i−1
s xs,k−i ... ps,k+j−1CsA

i−1
s xs,k+j−1−i

)

+
(

ps,k(CsA
i−2
s Bsuk−i + ... + Dsuk) ...

ps,k+j−1(CsA
i−2
s Bsuk+j−1−i + ... + Dsuk+j−1)

)

ȳs,k,j × Ps =
CsA

i−1
s

(

ps,kxs,k−i ... ps,k+j−1xs,k+j−1−i

)

+
(

ps,k(CsA
i−2
s Bsuk−i + ... + Dsuk) ...

ps,k+j−1(CsA
i−2
s Bsuk+j−1−i + ... + Dsuk+j−1)

)

Finally, one obtains :

ȳs,k,j × Ps = CsA
i−1
s Xs,k−i,jPs + Hd

s,iUjPs (36)


