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Abstract— The paper describes an identification technique parameters estimation and models merging is repeated until
of switching system. The considered system is represented asconvergence. A similar approach was proposed in [4] but
a weighted sum of local models. To estimate the switching j 5 |imited to systems without process noises and cannot

times, a change detection technique is applied. It provides the . .
weights associated to the local models. The Markov parameters deal with the delay for detection problem, contrary to the

of these models are identified by a subspace method. This cal- Method presented herein.
culation can yield similar local models which are merged. The The section Il formulates the swtching system identifica-
procedure of parameter identification an models merging is tion problem whereas the matrix notations and definitions
repeated until convergence. The performance of the approach 4re exposed in section Ill. The switching times detection
is investigated on a simulation example. : . . . .
Index Terms— switching system, identification, detection of US'”Q a SUbSpace .meth,Od is detailed in the next section. In
abrupt model changes, Markov parameters, subspace method Section V the identification of the Markov parameters of the
local models is tackled. The section VI deals with the deter-
mination and the merging of similar local models. Finally,
l. INTRODUCTION the identification of a minimal and balanced realisation of
The paper focuses on switching systems modelled astlze obtained local models is presented.
weighted combination of linear local state space models.
The transition of a model to another is assumed to be a o i
jump. Consequently, the weights associated to the local The output of the switching system is represented as a
models are binary : only one model is active all the timeVeighted sum of the outputs of local models :
The switching systems constitute an important class of non- h
linear systems (especially in system analysis and control) Yk = Zps,kys,k- (1)
A detailed description of existing identification methods i s=1
proposed in [5]. Identification of such a system involvesvhere k represents the time indey; € R’ the output of
typically these tasks : 1) find the number of local models i.ehe systemy; ; € R’ the output of local mode$ andp;
the number of different dynamics of the system, 2) partitioghe weight associated tg, .. For ¢ input-output samples,
the data into groups corresponding to the different opsgati the weights verify the following condition :
regimes (dynamics) of the system, 3) identify the pararseter A
of each local model. In the paper, we assume that the local pex € {0,1} and Zps,k =1, Vke[l,qd (2
models are stable and it exists a minimal separation time —1
between_two cqnsecutive switch_es. This separa_tion _time ISEach local model is supposed to be linear of order
referred in the Il'Fterature.aﬂ;weI! time[1]. The_ estimation 5,4 described by the state space model :
of the switching instants is realised by coupling a subspace
method based on matrix projection with a statistical test. Ts ki1 = Asts k + Bsug + 05 1 ©)
The method gives a coarse classification of the data accor- Ysk = Css k + Dsug + ws
ding to the dynamics of the system. But, as the test leadghere the process noises;, € R "+ and the measurement
to a delay for detection, the data immediately before theoisesw, ; € R’ of the s** local model are independent
commutation times cannot be affected with certainty to gaussian white noise&(w; j wik) = oy, 1) and uncorre-
particular local model : these data are dubious and are niated with the inputsy, € R™. z,;, € R™ represents the
used to estimate the parameters of the local models. Theate vector of moded. The h local models are assumed to
classification of these data is performed after the parasetéoe stable and active during a minimal timg1].
estimation. This estimation consists in determining the From ¢ samples of inputs,; and outputsy, the aim is
Markov parameters of the previously detected dynamics arlde determination of : - the numbérof local models, - the
can reveal similar local models which are merged. A newveightsp; ;. corresponding to each local model, - the order
parameter identification is performed. This imbrication ofi, and a realisation4,, B, Cs, D,) of each local model.

Il. PROBLEM FORMULATION



Ill. SYSTEM MATRICES IV. ESTIMATION OF THE WEIGHTS

The matrix of outputsy,,; of the system and the input  The determination of the weights of the local models is
block-Hankel matrixUy ; € R ™/ are defined as : achieved by a subspace technique of change detection of

S B c RS 4 system dy_nam.ics. The technique a]lovys the estima_tion of

Yk.f ( Yk Ykt Ykts-1 ) @) the switching times and the determination of the weights.

Uk, = ( OO N C) ) (5)
’ k bl TRt Sl A. Change detection of the system dynamics
Up; From the intput-output data, a residual vector is generated
—i+1 . . T
' Wp—iso using a matrix projection. Indeed, the outputs of #i&

u§;> = ) (6) local model can be expressed as a function of the Markov

: parameters and the input block-Hankel matrix. The in-

Uk fluence of the inputs is annihilated by projecting the owput

The matrix of local outputg, , s € R ¢xf the matrix of On a space orthogonal to the inputs. The projection gives
measurement noises, , ; € R “*/ as well as the block- & residual matrix whose last column is chosen as residual

Hankel matrix of system noise, , ; € R ™«*f for the ~Vvector. The mean of the residual vector is null when no
s™ local model are defined similarly. The integérand f ~ SWitching occurs and different from zero otherwise.

satisfy the constraints : 1) Matrix input-output relation: let s the active local
{ mi< f<q @) model ; its output can be expressed as :
2(ns +1) <min(i/m,i/l), 1< s<h Yor = CeA zp i+ Co AT 2Boug i + .. + CoBoug 1
The latter condition means that we have a sufficient number ~ +Dsuj, + Cs AL 20, s + ... + Covg o1 + Ws i
of Markov parameters in order to identify a realisation of (13)
the local models (see section VII). As the local model is assumed to be stable, the term

CsAi=1z, ., decays for high values ofi*. This term is

Remark 1 : SN
The integerf is a generic notation. In the model changeconSldered negligible if
detection method using subspace method, it is replaced by HCsAi_lxs,kfiH < yJvariance(w, ;) (14)

L that represents the width of the sliding window. It is equal
to j in the parameters estimation stage where it indicateshus, (13) becomes :

the number of samples for identifying the local models. Yo ~ Cs A2 B g + ...+ CsByup— + Dauy,

The matrix of the state sequenc&s ; s € R"*/ and the +Cs AT 2055 + oo + Csvg -1 + wy
matrix of weightsP, € R/*f of the local models are : (15)
X _ g All the local models being active over a duration greater
s = (Tak Toppr o Taperor ) @) panthedwell tmer, if 7 > i+ L (L is the width of

the sliding window), we can stackt L — 1 measurements

Ds k 0 0 0 according to the relation (15). This yields :

0 psr+1 O 0

Psk,p = : : : ; ) Usoor = HE UL + HY Vi + W e, (16)
0 0 0 Pskt+fo1 Notice that as only the local model is active over the
For simplicity sake, the notationk, ;, X, ¢, P, and U; intgrvgl of width: + L1 the output matrix?th of the
will be used instead oV, s s, X, s, Poy.s andUy ;. SW|_tCh|ng system is equ_al_to the output matgix, ; of the
The observability matrix’; , of local model s and its active local model in this interval.
controllability matrixC; s are respectively defined as : 2) Residual generationthe influence of the input terms
o T T i1t T vixn. 1S removed from (16) by projecting the row space of the
Lis= ( ()" (CeAs)™ o (GAT) ) €R 10 matrix s . onto the space orthogonal to the row space of
(10) the input block-Hankel matriX/y, :
C’i,S = ( BS ASBS . Ai_lBS ) c RTLSXTTLi (11) gs,k;,LH(UL)l ~ Hx:j7iV§1LH(UL)J‘ + ILD&]Q’LH(UL)L (17)

Finally, the Markov parameter matrices of the deterministne matrixII;; ,. is an operator which realises the pro-
part H%, ¢ R®*™ and the stochastic paff?, € R™=*™i  jection of the row space of a matrix orthogonally to the row

of the st local model are given by : space of the matrit/;. It is defined as :
HY, = ( CLAT?B, C.AT*B, .. C.B. D) My, =1-U U (18)
HY;=( C,AT? C A3 .. Co 0 WhereUf) is the Moore-Penrose pseudo-inverse of matrix

(12) U;.



The relation (17) provides a residual matrix containing After the estimation of the switching times, the weigths
only the noise terms. Any column of this matrix can bep,; of the local models are deduced. Only one local
chosen as residual vector. In the sequel, we select alpitramodel (models) is active between two consecutive swit-
the last columm as residual vector (knowning that otherhing timesk; and k;. The classification (according to
choices can be made). Therefore, the residual vector isigivehe operating regimes of the system) of the data collected
by the following relation : during the intervalk,, k2] is delicate because of the delay

for detection. Ift,,,. is the maximal delay for detection,
(19) the data belonging tdks — tmax, k2| cannot be affected

to a particular operating regime. The class of these data
whereZ=( 0 .. 0 ) cRL*1 js a selection vector. corresponds either to the active local model before the

£s, IS @ zero mean white gaussian vector because it @@mmutation (modek — 1) or to the active model after

extracted from a linear combination of matrices of zerghe switch (models). The classification of these dubious
mean gaussian white nois&s ;, and w; ;.. . data is performed after the first estimation of the Markov

parameter of the local models.
The calculation of the weights on the interJal, ko] is

sk = Us,k, oy )1 Z
Esk = H:7i‘/;,LH(UL)LZ + wsy]{;’LH(UL)J_Z

3) Sensibility of the residual vector to a model switching.
we analyse the expression of the residual veetqr when carried out as follows
a switch occurs in order to show ;. has not zero mean. — _ o \yeights of the supposed active local model are set
Under the assumption that the change occurs at the time to 1 on [k, ks — [ (os 1, by <k <k —
r—i+1, the relation (16) can also be written (by considering f2 = tmaz! s, I
one by one the columns of the mattik) :

m ax)

— the weights of the other local models are set to 0 on the
same interval g, <0, k1 <k <k — tmax, Vr # s),
Ltk — the weigths of all the local models are set to 0 for the
Ys koL = Z HLUL()+ ) HE(OULE) + ¢ (20) dubious datay. < 0, k2 — tmax + 1 < k < ko, V)
t=r—itl and the indexs of the active model is associated to
with the followmg definitions : these points.
= (s = HY;Vs 1L + 10, k1 © ZEro mean matrix of noises,
- H2,(t), t €[r —i+1, L + k] : matrix of Markov
parameters after the change of dynamic,
— UL (t) : matrix witch #!* column is equal tdJy (:,t)
(t*" column of the matrix/;) and zeros elsewhere

Ur(t)=( 0 0 Ur(yt) 0 .. 0) (21)

Then, the relation (20) becomes :

V. IDENTIFICATION OF THE MARKOV PARAMETERS OF
THE LOCAL MODELS

The determined weigths are used to estimate the Markov

parameters of the local models. This estimation relies on a
matrix input-output relation exposed in the next subsectio

A. Local input-output matrix relation

The relation allows to express the outputs of a local

i i Ltk i 1 - model according to the inputs and its state vector.
Ysib,L = SviUL+t ZH( siO)=H UL +Cs (22) - p 1oy input-output relation
=r—

and the residual vector is given by : Ys.kiPs =
- CLAI VX, Py + HEU Py + HY Vi i Py + 04, P
Ysk ()0 2 > (25)
i (H () — HYUL(O gy, )0 Z + Gy, 2 Z The proof is given in appendix 1.

(23)  We recall that according to (4Y, is equal toj and verifies
It is easy to see from (23) that the residual vector is nahe condition (7). In fact, the number of datagis= j+i—1.
zero mean vector if a model change occurs. The estimation of the Markov parametdig , is deduced
from (25). As the relation is based on the matrix of local

B. Estimation of the switching times and the weights
outputsy, . ;, it is necessary to estimate this matrix.

Previously, it was shown that the residual vectgy, is
a zero mean gaussian vector with variance maRixin B. Determination of the local model outputs

absence of model switching. If a change occurs, the meanThe weights verifying (2), the following property holds :
value ofe, ;, is not null. Therefore, a? test is applied to

detect these changes in the mean of the residual vector. (Pg.k)* = Py ANdpg i X pss =0, (if g #5)  (26)
Let . the mean of the residual vecter ;.. The residual ang the local outputs are obtained from the system outputs :

vector being gaussian, the tetm, ;, = EZkRgles,k follows

a2 distribution with¢ degrees of freedom. Thus, it verifies

the following test with the confidence threshaid:

{ < X2, ho change has occured & 0)
Ws,k ’

> X%.a' a change has occured  0)
’ (24)

h

Pok Uk = Pg.k D _Psklsk = Dok Yok Yk € [1,q]  (27)

s=1

By stacking the previous relation, we obtain :

gs,k,sz = gk,jps (28)



C. Identification of the Markov parameters Lemma 1

From the knowledge of the outputs of a local model, thé\n unbiased estimation of the variance matriy. is :
corresponding Markov parameters are estimated by least
squares. The estimation technique is summarised by the 21{#, :if}i,s [UjPSUjT]_l (31)
following theorem.
Theorem 1 - Under the assumptions :

. B. Determination of the “similar” local models
1) the local models is stable,

2) the matrixU; P,has full rank, The similarity between two local models is measured by
3) the variablei is sufficient enough such as the termthe distance between their Markov parameters : the distance
C, A X, 4, P, is negligible, between two matrices/¢; and Hy; is defined as :
we have : - ~ o rd NS — o -
d<Hg,i’ Hg,i) = tmce((Hii - Hﬁlz)zHl(ng - Hﬁl,i)Tg
)

Tk PUT (U PUT) ™ = HE, (29) ) ) ) ;
> Witthw‘:iNS Zd#’iNr Yipd
Proof : the local model s being stable, the term - Net Ny HE s 0 Nk Ny THo
CsAT X i i Ps in (25) is negl_igible for appropriate where N, = Z{;:lp&k and N, = Z{;:lpnk.
values ofi (see section Ill). This gives :

_ _ Considering3 as the threshold of g test with¢ degrees

s Ps = HLU; Py + HY Vi ; Py + g i Ps D X

Yook 5iUsFs + Hy Vo g Po £ 0s e of freedom, the similarity test is described below.
As the matrices of noises; ; P; andws j ; Ps are uncorre-
lated with the inputs, an unbiased estimation of the matrix
of Markov parametet¢, is obtained by least squares : - d(H?,, H%,)> 3 : the modelss and r are not similar,

-d(HY,, He,)< 3 : the modelss and r are similar.

5,17

Similarity test

HY ;= Go oy PUS (U PUT) ™ with g g 3Py = G Ps
m C. Merging of the local models

After the similarty test, the local models which are revea-
led identical are merged. The Markov parameters of the new

Between two consecutive switching timés and k2 (merged) local models are re-estimated, followed by a new
(k1 < k2), the data belonging to the intervidh, — twmax, k2[  search of similar local models. Notice that this parameter
cannot be classified because of the delay for detectiogstimation gives more accurate results because the number
The class of the dubious data is determined now, from thg gata used to estimate the parameters is increased due
knowledge of the Markov parameters of the local modelsiy the merging. Notice also that the application of the

-if s < €1k V K € k2 — tmax, k2, then the local  gimilarity test after the merging is useful because it is

D. Classification of dubious data

models is active p, . — 1, prx < 0 Vr), possible that some similar models are not recognized at the
-if ek > €1k V k€ Jka — fmax, k2|, then the local |atter stage because of the inaccuracy of their parameters
models — 1 is active p,—1x — 1, prp < 0 Vr), due the insufficient number of data used to identify them.

wheree, , = |y, — Hﬁiufj)‘ is the equation error and The procedure alternates parameter estimation and similar

s is the index associated to the unclassified points of th@odels merging and is repeated until the number of local
interval |ka — timax, k2| models converges.

The set of local models similar to the model is
notedE,y. In the merging algorithm, all the local models
After the first estimation of the local model parameterspelonging toE,, are replaced by a new local modsf)*.

we search “similar” local models. The proposed approacfihe weighting function of the modebh* is derived from :
consists in comparing the Markov parameter matribs.

VI. MERGING OF THE SIMILAR LOCAL MODELS

Let us estimate the variance matrix (used further in the Psork = Y Psk» k€ [L,q] (33)
merging algorithm) of the Markov parameters. s€E,0
A. Variance of the Markov parametefg¢, The merging technique is summarised by algorithm 1.
An unbiased estimation of the varianeg , of the output
error of the local mode} is given by : Algorithm 1 (merging of local models)
" T - Step 1 (initialisation) : st < 0.
5 race(eses) _ " inati
Oys = =7 Es = UskjPs — Usk,i Ps (30) - Step 2 (estimation of the Markov parameters)
iy —mi) Compute the matrice&l?; using theorem 1.
with g, % ; the estimation of; 1 ;. - Step 3 (similarity test)

The proof is similar to the one of the lemma I1.1 of [3]. Apply the similarity test and build the seB; of similar
The varianceX ;a  of sz is obtained from lemma 1. models .



- Step 4 (calculation of the weights after merging)

For each seE, , if card(Es) > 1 then :

1) st —1

2) ps,x < sy remove the local models , r € E; ,
r#Ss.

- step 5 (re-organisation of the index of the remaining
local models (merged and original models))

- Step 6 (stopping test)

VIII.

Consider a switching system which is the sum of two
third order models. The changes of the system dynamics are
summarised as follows ¢ = 1 over the intervalg1, 999]
and[1800,2499] and s = 2 over the interval§1000, 1799
and [2500, 3500]. The matrices of the two submodels are
defined below :

| LLUSTRATION EXAMPLE

If st =1 then go to step 1 otherwise stop the algorithm. 032 031 0 0.9 -0.7
1= -032 031 O ,Bi=1 071 -05
The algorithm permits the automatic determination of the 0 0 -0.18 0.8 0.47
ngmber of Ioca} models (or .quivalently the number OfO (055 02 08 D _ 097 0.63
different dynamics) of t_he .swnchlng system. Let compute“1r = { 945 03 058/)°'“*~ | -0.32 095
now a state space realisation of each local model.
-0.1 04 O 0.1 -0.6
VII. | DENTIFICATION o'\FAOA;EELASUSAHON OF THE LOCAL Ay = 05 04 0 By—| 032 -066
0 0 0.26 0.3 0.82
The aim here is the estimation of the ordes and a 0.8 -01 07 05 03
realisation @, B,, Cs, D;) of the local models from the Cp = 0.3 048 09 Do = 02 -05 )"

knowledge of their Markov parameters.

The matrix D, is extracted directly from the estimation

The inputsu, are Pseudo-Random Binary Sequences

of H¢, (see 12). The Eigenvalue Realization Algorithm(PRBS) with variable amplitudes. The signal to noise
(ERA)’ [2] is used to determine the order and a minimajatio of the outputs with relation to the measurement

and balanced realisation.

Algorithm 2 : ERA
— Build the Hankel matricesi), and H; , which

noises is 30,3db. The process noisgshave a covariance
var(vy) ~ 7 x 10~*I3 ; the covariance matrix of the inputs
isvar(uy) ~ 7x10721,. ¢ = 3500 input-output data points
have been processed on the system.

contain the Markov parameters and are defined by th&. First computation of the weights

general relation : (withy = intg(i/2), the integer part
of i/2) :

C, A7 1B,
C, AT B,

Cs;AY By
C, A1 B,
M, ;

Cs AZ+-2V72BS

C,AT+1B,
34)

The changes of the system dynamics are detected using

the procedure proposed in section IV with= 38, i =

13 and ¢t = 19 (half-width of the sliding window).
The estimations of the switching times arel 000, 1801

and 2501. The data belonging to the intervaléd1, 999],
]1782,1801[ and]2482, 2501[ are not classified. Therefore,
we suppose that the first model is active in the interval
[1,981], the second one jih000, 1782], the third model in

Recall that the condition (7) implies that the matriceg1801, 2482] and the last one in the intervé501, 3500].

H,‘Zys and H},,s have a dimension greater than.
— Perform the singular values decomposition :

240 — Uy S 0 Vi
v,s — U2 0 52 ‘/'2T
~ U, S VT (35)

where S, contains the neglected singular values.

— The order of the local model is equal to the numbe1ot

of singular values inS;.

— Compute the observability matrix, , = U, S;/*
the controllability matrixC, , = Sll/QvlT.

— The matrixCy can be determined from the firérows
of I', s (see 10).

— The matrix B, can be determined from the first
columns ofC, s (see 11).

— The matrixA, is given by :
Ay =S7VPUTHL s,

and

30
25F 1
15}
5 -
0
0 500 1000 1500 2000 2500 3000
Fig. 1. Estimation of the switching times

Using theorem 1, the Markov parameters of these four
local models are computed with= 13. Then, the classes of
the unclassifed points are specified. The poles of each local



model are computed during 100 Monte carlo realisations. IX. CONCLUSION

The estimated poles are portrayed in figure 2. This figure p sypspace identification technique of switching system
shows that the local models 1 and 3 and the local modelgss presented in the paper. The technique estimates first

2 and 4 are similar. the switching times and permits an easy determination
of the weigths assoicated to the local models. Then, an
Local model 1 Local model 2 estimation of the Markov parameters of the detected models

Imaginary Axis
o
Imaginary Axis
o

Imaginary Axis
o
Imaginary Axis
o

0 0
Real Axis Real Axis (4]

1 1 . i i R )
is computed. A merging algorithm is proposed to combine
05 05 * the similar local models and is based on the comparison
- ' of the Markov parameters. The parameters of the mer-
‘ * . . . . .
merging and parameters estimation is repeated until the
number of models converges. Therefore, a minimal and
balanced state space realisation of the remaining models
0.5 1 . . . S
Real Axis Real Axis a simulation exampl_e with shows the feasibility of the
Local model 3 Local model 4 method. The application of the method on real process data
with average dwell-time in 38th CDG Phoenix, USA, (3), 1999,
' pp.2655-2660.
05 bl 05 3 [2] C. Juang.Applied system identificatiopnPrentice—Hall, Englewood
' ' Cliffs; NJ, 1994.
[3] L. Ljung. System Identificatignr2nd Ed. Prentice Hall, New Jersey;
-1 -1
- -0. . 1 -0. . 1
05 02 05 05 K. M. Pekpe, K. Gasso, G. Mourot and J. Ragot , Subspace-ide
tification of switching model jn 13th IFAC Symposium on System
Fig. 2. Poles of the 4 local models for 100 Monte Carlo redbsat  [5] 3. Roll. Local and Piecewise Affine Approaches to System Identi-
fication PhD. Thesis, Lin&ping University, Division of Automatic

ged models are estimated once. The procedure of models
t 4
-0.5 \\ / -0.5 \\.
-1 can be determined. The overall approach is illustrated on
1 -0.5 0 0.5 1 1 -0.5 0
1 1 will be studied as a perspective of this work.
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B. Merging of local models (algorithm 1)

X. APPENDIX 1
The similarity remark is confirmed by the similarity

o . The proof of the matrix intput-output relation is establi-
test. For 100 Monte carlo realisations, the fOIIOngshed herein for deterministic subsystem. The extension to
results are obtained d(H{,;, Hg,) € [28000,38500], y :

" N 2 2 a stochastic system is straigthforward. The expression of
d(iTd, A8 € [412), d(AY, HE) € [27500,38500), Y g P

_ Us,k,j X Py is given by :
d(H;, H{;) € [3,13] with the threshold3 ~ 18, 4.
Therefore, the local models 1 and 3 are merged as well as Yskj X Ps =
the models 2 and 4. The Markov parameters of the two ( Ds,kYsk  Psk+1Ysk+1 -+ Dsk+j—1Ys k+j—1 )
remaining models are computed again and their poles are g X Py =
estimated. We can notice the improvment of the accuracy( Pes(CoAi m, i + 05;4272Bsuk7i + ...+ Dyuy)

of the poles for 100 Monte carlo realisations (see figure 3). Dok 1 (CsAT mg g i 1 i+ oo+ Doty 1) )

) gs,k,j X Ps - )
. New local model 1 . New local model 2 ( ps,k:OSA:Lgilxs,k—il ps,k+j—10(9A1~71$s,k+j—1—i )
+ ( Psk(CsAT?Boug—i + ... + Dyug) ...
05 05 * ps,k:Jrjfl(CsAé_QBsukJrjflfi + ...+ DsukJrjfl) )
¢ - 2 _
; ; ) Ys,k,j X Ps -
% 0 ) % 0 = CSAf;l ( PskTsk—i - Psktj—1Tsktj—1—i )
£ L 2 £ . —|—( psﬁk(C’sA;*QBsuk,i+...+Dsuk)
o o8 Poerj—1(CsAT2Bougy 15 + ... + Dty j—1) )
o . Finally, one obtains :
-1 -0.5 o 05 1 -1 -05 o 05 1 - 4
Real Axis Real Axis ys,k’j X PS — CSA’;— Xs’k;fi”jps + HS,inPS (36)

Fig. 3. Poles of the merged local models for 100 Monte Carlasat@dns



