
HAL Id: hal-00976413
https://hal.science/hal-00976413v1

Preprint submitted on 9 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum likelihood estimator consistency for recurrent
random walk in a parametric random environment with

finite support
Francis Comets, Mikael Falconnet, Oleg Loukianov, Dasha Loukianova

To cite this version:
Francis Comets, Mikael Falconnet, Oleg Loukianov, Dasha Loukianova. Maximum likelihood estima-
tor consistency for recurrent random walk in a parametric random environment with finite support.
2014. �hal-00976413�

https://hal.science/hal-00976413v1
https://hal.archives-ouvertes.fr


Maximum likelihood estimator consistency for
recurrent random walk in a parametric random

environment with finite support

F. COMETS∗ M. FALCONNET† O. LOUKIANOV†

D. LOUKIANOVA†

April 9, 2014

Abstract

We consider a one-dimensional recurrent random walk in random envi-
ronment (RWRE) when the environment is i.i.d. with a parametric, finitely
supported distribution. Based on a single observation of the path, we pro-
vide a maximum likelihood estimation procedure of the parameters of the
environment. Unlike most of the classical maximum likelihood approach,
the limit of the criterion function is in general a nondegenerate random
variable and convergence does not hold in probability. Not only the lead-
ing term but also the second order asymptotics is needed to fully iden-
tify the unknown parameter. We present different frameworks to illustrate
these facts. We also explore the numerical performance of our estimation
procedure.

Key words : Recurrent regime, maximum likelihood estimation, random walk in
random environment. MSC 2010 : Primary 62M05, 62F12; secondary 62F12.

1 Introduction

Since the pioneer works of Chernov (1967) and Temkin (1972), random walks in
random environments (RWRE) have attracted many probabilists and physicists,
and the related literature in these fields has become richer and source of fine
probabilistic results that the reader may find in surveys including Hughes (1996)
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and Zeitouni (2004). The literature dealing with the statistical analysis of RWRE
is far from being as rich and we aim at making a fundamental contribution to the
inference of parameters of the environment distribution for a one-dimensional
nearest neighbour path.

Let ω= (ωx )x∈Z be an independent and identically distributed (i.i.d.) collection
of (0,1)-valued random variables with a parametric distribution ηθ of the form

ηθ =
d∑

i=1
piδai

, (1)

with d an integer, p = (pi )1≤i≤d a probability vector and a = (ai )1≤i≤d the or-
dered support. We further assume that d ≥ 2 is known, and the unknown pa-
rameter is θ = (a,p).

Denote by P
θ = η⊗Z

θ
the law on (0,1)Z of the environment ω and by E

θ the ex-
pectation under this law. The process ω represents a random environment in
which the random walk evolves. For fixed environment ω, let X = (Xt )t∈Z+

be the
Markov chain onZ+ starting at X0 = 0 and with transition probabilities Pω(Xt+1 =

1|Xt = 0) = 1, and for x > 0

Pω(Xt+1 = y |Xt = x) =





ωx if y = x +1,
1−ωx if y = x −1,
0 otherwise.

For simplicity, we stick to the RWRE on the positive integers reflected at 0, but
our results apply for the RWRE on the integer axis as well. The symbol Pω de-
notes the measure on the path space of X given ω, usually called quenched law.
The (unconditional) law of X is given by

Pθ(·) =
∫

Pω(·)dPθ(ω),

this is the so-called annealed law. We write Eω and Eθ for the corresponding
quenched and annealed expectations, respectively.

Random environment is a classical paradigm for inhomogeneous media which
possess some regularity at large scale. Introduced by Chernov (1967) as a model
for DNA replication, RWRE was recently used by Baldazzi et al. (2006, 2007) and
Andreoletti and Diel (2012) to analyse experiments on DNA unzipping, pointing
the need of sound statistical procedures for these models. In (1) we restrict the
model to environments with finite support, a framework which already covers
many interesting applications and also reveals the main features of the estima-
tion problem. Considering a general setup would increase the technical com-
plexity without any further appeal.

The behaviour of the process X is related to the ratio sequence

ρx =
1−ωx

ωx
, x ∈Z+, (2)
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and we refer to Solomon (1975) for the classification of X between transient or
recurrent cases according to whether Eθ(logρ0) is different or not from zero. The
transient case may be further split into two sub-cases, called ballistic and sub-

ballistic that correspond to a linear and a sub-linear displacement for the walk,
respectively.

Comets et al. (2014) provided a maximum likelihood estimator (MLE) of the pa-
rameter θ in the transient ballistic case. The estimator maximizes the annealed
log-likelihood function, it only depends on the sequence of the number of left
steps performed by the random walk. In the ballistic transient case this nor-
malized criterion function converges in probability to a finite deterministic limit
function, which identifies the true value of the parameter. Comets et al. (2014)
establishes the consistency of MLE while asymptotic normality together with
asymptotic efficiency (namely, that it asymptotically achieves the Cramér-Rao
bound) is investigated in Falconnet et al. (2013). Falconnet et al. proved that a
slight modification of the above criterion function also provides a well-designed
limiting function in the sub-ballistic case. In all these works, the results rely on
the branching structure of the sequence of the number of left steps performed
by the walk, which was originally observed by Kesten et al. (1975).

The salient probabilistic feature of a recurrent RWRE is the strong localization
revealed by Sinaı̆ (1982). Inhomogeneities in the medium create deep traps the
walker falls into. Typically, on a time interval [0,n], the walker sneaks most of the
time around the very bottom of the main “valley” which is at random distance of
order log2 n. Visiting repeatedly the medium at the bottom of the main "valley",
it collects precise information there. Unfortunately the medium at the bottom is
not typical from the unknown distribution ηθ , but on the contrary, it is strongly
biased by the implicit information that there is a deep trap right there. However,
the localization mechanism can be completely analysed using the analogy be-
tween nearest neighbour walks and electrical networks, as explained in the book
of Doyle and Snell (1984). From Gantert et al. (2010), we know that the empirical
distributions of the RWRE converge weakly to a certain limit law which describes
the stationary distribution of a random walk in an infinite valley whose construc-
tion goes back to Golosov (1984). This allows to unbias our observation of the
medium, and to prove consistency of MLE. We recall at this point the moment
estimator introduced in Adelman and Enriquez (2004), which relies on the ob-
servation that the step when leaving a site x for the first time yields an unbiased
estimator of the environment.

In the course of the proof, expanding the log-likelihood for a large observation
time n, we prove convergence of the first order term at scale n and of the second
order term at scale log2 n. Though the first order term is random in general, it
allows to identify the support a of the environment, while the second one with a
correct estimate of a, allows to identify the probability vector p. This discrepancy
reflects that the amount of information gathered on the unknown parameter a
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is proportional to the duration of the observation, whereas the one for p is only
proportional to the number of distinct visited sites. As emphasized above, the
expansion of the likelihood, Lemma 2.2 below, is the key. Therefore it is natural
to introduce a maximum pseudo-likelihood estimator (MPLE), defined by the
above first two terms of the expansion, as a intermediate step to study MLE.

The rest of the article is organized as follows. In Section 2, we present the con-
struction of our M-estimators (i.e. an estimator maximising some criterion func-
tion), state the assumptions required on the model as well as our consistency
results. Sections 3 and Section 4 are respectively devoted to the proofs of the
consistency result for the estimators of a, and p respectively. Section 5 presents
some examples of environment distributions for which we provide an explicit
expression of the limit of the criterion function, and check whether it is a non-
degenerate or a constant random variable. Finally, numerical experiments are
presented in Section 6, focusing on the three examples that were developed in
Section 5.

2 Statistical problem, M-estimators and results

We address the following statistical problem: we assume that the process X is
generated under the true parameter value θ⋆ = (a⋆,p⋆), an interior point of the
parameter space Θ, and we want to estimate the unknown θ⋆ from a single ob-
servation (Xt )0≤t≤n of the RWRE path with time length n. Let d ≥ 2 an integer.
We always assume that Θ⊂ (0,1)2d is compact and satisfies Assumptions I and II
below, which ensure that the environment is recurrent and has d atoms.

Assumption I (Recurrent environment). For any θ = (a,p) in Θ,

pi > 0, for any i ≤ d, and
d∑

i=1
pi log

1−ai

ai
= 0. (3)

Assumption II (Identifiability). For all θ in Θ,

0 < a1 < a2 < . . . < ad < 1. (4)

Note that, since Θ is compact, there exists ε0 in (0,1/2d ) such that

a1 ≥ ε0, 1−ad ≥ ε0, ai+1 −ai ≥ ε0, pi ≥ ε0, for any i ≥ 1. (5)

We shorten to P⋆ and E⋆ (resp. P
⋆ and E

⋆) the annealed probability Pθ⋆

and
its corresponding expectation Eθ⋆

(resp. the law of the environment Pθ⋆

and its
corresponding expectation E

θ⋆

) under parameter value θ⋆.
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Define for all x ∈Z,

ξ(n, x) :=
n∑

t=0
1{Xt = x}, (6)

ξ−(n, x) :=
n−1∑

t=0
1{Xt = x; Xt+1 = x −1}, (7)

ξ+(n, x) :=
n−1∑

t=0
1{Xt = x; Xt+1 = x +1}, (8)

which are respectively the local time of the RWRE in x and the number of left
steps (resp. right steps) from site x at time n. Note that

ξ(n −1, x) = ξ+(n, x)+ξ−(n, x) and |ξ−(n, x +1)−ξ+(n, x)| ≤ 1.

Denote by Rn the range of the walk,

Rn = |Rn|, Rn =
{

x > 0 : ξ(n −1, x) ≥ 1
}

, (9)

with |E | the cardinality of the set E . It is straightforward to compute the quenched
and annealed likelihood of a nearest neighbour path X[0,n] of length n starting
from 0

Pω(X[0,n]) =
∏

x∈Rn

ω
ξ+(n,x)
x (1−ωx )ξ

−(n,x),

and

Pθ(X[0,n]) =
∏

x∈Rn

∫1

0
aξ+(n,x)(1−a)ξ

−(n,x)dηθ(a).

Then, the annealed log-likelihood function θ 7→ ℓn(θ) is defined for allθ = (a,p) ∈
Θ as

ℓn(θ) = log Pθ(X[0,n]) =
∑

x∈Rn

log
[ d∑

i=1
a
ξ+(n,x)
i

(1−ai )ξ
−(n,x)

pi

]
. (10)

Definition 2.1. A Maximum Likelihood Estimator (MLE) θ̂n of θ⋆ is defined as a

measurable choice

θ̂n ∈ Argmax
θ∈Θ

ℓn(θ). (11)

We denote ân and p̂n the first and second projection of θ̂n .

Due to an analysis of the log-likelihood function provided by Lemma 2.2 be-
low, we are lead to Definition 2.3 of a Maximum Pseudo-Likelihood Estimator
(MPLE). To do so, some additional notations are required. Let

ν(n, x)=
ξ(n −1, x)

n
, ν+(n, x)=

ξ+(n, x)

n
, and ν−(n, x) =

ξ−(n, x)

n
.
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Let Θa =
{

a : ∃p, (a,p) ∈Θ
}

be the first projection of the parameter space Θ. In-
troduce for a in Θa and π+, π− :Z→R+ with

∑
x [π+(x)+π−(x)] = 1

L(a,π+,π−) =
∑

x∈Z

max
i

{
π+(x) log ai +π−(x) log(1−ai )

}
, (12)

and
Ln(a) = L

(
a,ν+(n, ·),ν−(n, ·)

)
, (13)

where we set ν+(n, x) = ν−(n, x) = 0 for any non-positive integer x. Define the
increasing sequence β= (βi )0≤i≤d depending on a as

β0 =−∞, βi = log
( 1−ai

1−ai+1

)/
log

( ai+1

ai

)
, for any i ≤ d −1, and βd =∞.

(14)
For any x in Rn , define the random integer ı̂(a,n, x) as

ı̂(a,n, x) = i , if ξ+(n, x)/ξ−(n, x)∈ (βi−1,βi ], (15)

which is designed to satisfy

ı̂(a,n, x) ∈ Argmax
{
ξ+(n, x) log ai +ξ−(n, x) log(1−ai ) : i ≤ d

}
, (16)

when x is in Rn . Finally, introduce Kn(θ) as

Kn(θ) =
1

Rn

∑

x∈Rn

log p ı̂(a,n,x) =
d∑

i=1

Rn(a, i )

Rn
log pi , (17)

where Rn(a, i ) is the random integer defined by

Rn(a, i ) =
∑

x∈Rn

1
{

ı̂(a,n, x) = i
}
=

∑

x∈Rn

1

{
βi−1 <

ξ+(n, x)

ξ−(n, x)
≤βi

}
. (18)

Lemma 2.2. We have

ℓn(θ) = n ·Ln(a)+Rn ·Kn(θ)+ rn(θ), (19)

where

rn(θ) =
∑

x∈Rn

log

(
1+

∑

i 6=ı̂(a,n,x)

pi

p ı̂(a,n,x)
Ui (a,n, x)ξ(n−1,x)

)
, (20)

with

Ui (a,n, x) =
( ai

a ı̂(a,n,x)

)ξ+(n,x)/ξ(n−1,x)( 1−ai

1−a ı̂(a,n,x)

)ξ−(n,x)/ξ(n−1,x)
. (21)

Furthermore, for any θ ∈Θ,

1

n

(
Rn ·Kn(θ)+ rn (θ)

)
−−−−→
n→∞

0, P⋆-a.s., (22)

as well as
rn(θ)

log2 n
−−−−→
n→∞

0, in P⋆-probability. (23)
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Hence, the first term in the RHS of (19) is of order n and depends only on a,
whereas the second term is of order log2 n and depends on a and p. The proofs
of (22) and (23) are respectively provided in Sections 3.2 and 4.2. As claimed
above, in view of Lemma 2.2, the following definition appears natural for an es-
timator of θ⋆.

Definition 2.3. A Maximum Pseudo-Likelihood Estimator (MPLE) θn = (an ,pn)
of θ is a measurable choice of





an ∈ Argmax
a∈Θa

Ln(a),

pn ∈ Argmax
p

Kn(an ,p).
(24)

In the beginning of Section 4, we prove that

pn =

(
Rn(an , i )

Rn
: i = 1, . . . ,d

)
. (25)

Now, we can state our consistency results.

Theorem 2.4. Let Assumptions I and II hold. Both the ML estimator ân and the

MPL estimator an converge in P⋆-probability to the true parameter value a⋆.

Theorem 2.5. Let Assumptions I and II hold. Both the ML estimator p̂n and the

MPL estimator pn converges in P⋆-probability to the true parameter value p⋆.

We expect the speed of convergence for estimating p is much slower than the
one for estimating a. This is supported by our simulation experiment provided
in Section 6 but we leave this question for further research. Section 3 is devoted
to the proof of the consistency of an and ân whereas Section 4 is devoted to the
proof of the consistency of p̂n and pn .

Concluding remarks. Let us start to describe a naive estimation based on recur-
rence. For all x in Rn , we can estimate the environment at this point by

ω̂(n)
x =

ξ+(n, x)

ξ(n −1, x)
.

By recurrence, ω̂(n)
x converges to ωx , P⋆-a.s. With some extra work, it can be

shown that,
1

Rn

∑

x∈Rn

δω̂(n)
x

−−−−→
n→∞

ηθ⋆ P⋆-a.s.,

where Rn is defined by (9), and this leads to estimators of the parameters. This
empirical estimator is then consistent. However, it gives equal weight to all vis-
ited sites x in Rn , without any notice of the number of visits there, which is
certainly far from optimal. This is essentially how Adelman and Enriquez (2004)
devise their estimators, and the simulations in Section 6 indicate they perform
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poorly at some extend. On the other hand, Andreoletti (2011) proposes estima-
tors based on local time of the walk, which indeed take care of this flaw, but
which are adhoc in essence and difficult to use in an optimal manner. In con-
trast, our estimate relies on first principles - maximum likelihood - and uses the
full information gathered by the walk all through.

3 Proof of consistency for the MLE and MPLE of the or-

dered support

In the present section, we first recall the weak convergence result established
by Gantert et al. for the empirical distributions of the RWRE. Then, we identify
the limit of our criterion as a functional of a only, and provide some information
on it. Using its regularity properties, we can adapt the proof of consistency for
M-estimators to our context.

3.1 Potential and infinite valley

The environment ω in which the random walk evolves is visualized as a potential
landscape V where V = {V (x) : x ∈Z} is defined by

V (x) =





∑x
y=1 logρy if x > 0,

0 if x = 0,
−

∑0
y=x+1 logρy if x < 0,

(26)

with ρy = (1−ωy )/ωy . An example of a realization of V can be seen on Figure 1.

Setting C (x, x+1) = exp[−V (x)], for any integer x, the Markov chain X is an elec-
tric network in the sense of Doyle and Snell (1984) or Levin et al. (2009), where
C (x, x +1) is the conductance of the (unoriented) bond (x, x +1). In particular,
the measure µ defined as

µ(x) = exp[−V (x −1)]+exp[−V (x)], x ∈Z, (27)

is a reversible and invariant measure for the Markov chain X .

Now, define the right border cn of the “valley” with depth log n + (log n)1/2 as

cn = min
{

x ≥ 0 : V (x)− min
0≤y≤x

V (y) ≥ log n + (log n)1/2}, (28)

and the bottom bn of the “valley” as

bn = min
{

x ≥ 0 : V (x) = min
0≤y≤cn

V (y)
}
.

On Figure 1, one can see a representation of bn and cn . We are interested in the
shape of the “valley” (0,bn ,cn) when n tends to infinity and we recall the concept
of infinite valley introduced by Golosov (1984).
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V (x)

x

bn

cn

log n +
√

log n

Figure 1: Example of potential derived from a random environment distributed
as in Example I with parameter a = 0.3. Simulation with n = 1000.

Let Ṽ = {Ṽ (x) : x ∈ Z} be a collection of random variables distributed as V con-
ditioned to stay positive for any negative x, and non-negative for any non nega-
tive x. For simplicity, we assume that without loss of generality, Ṽ is also realised
under P⋆. For each realization of Ṽ , consider the corresponding Markov chain
on Z, which is an electrical network with conductances C̃ (x, x +1) = exp[−Ṽ (x)].
As usual, the measure µ̃ defined as µ̃(x) = C̃ (x − 1, x)+ C̃ (x, x + 1), x ∈ Z, is a
(reversible) and invariant measure for the Markov chain X . Furthermore, the
measure µ̃ can be normalized to get a reversible probability measure ν, defined
by

ν(x)=
exp[−Ṽ (x −1)]+exp[−Ṽ (x)]

2
∑

z∈Zexp[−Ṽ (z)]
. (29)

Note that ν(x) can be written as the sum of ν+(x) and ν−(x), where for any x ∈Z

ν+(x) =
exp[−Ṽ (x)]

2
∑

z∈Z exp[−Ṽ (z)]
and ν−(x) =

exp[−Ṽ (x −1)]

2
∑

z∈Zexp[−Ṽ (z)]
. (30)

We have ν+(x) = ν−(x +1). Define ω̃(x)∈ (0,1), for any x ∈Z, as

ω̃(x) =
ν+(x)

ν(x)
=

1

1+exp[Ṽ (x)− Ṽ (x −1)]
. (31)

Remark 3.1. Noting that the possible values of Ṽ (x)−Ṽ (x−1) are those of V (x)−
V (x −1) for any integer x, we deduce that under P

⋆, ω̃(x) is equal to one of the

coordinates of a⋆.

Gantert et al. (2010) showed that the empirical distribution of the RWRE, suit-
ably centered at bn converges to the stationary distribution of a random walk in
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an infinite valley. More precisely, let

νn(x) = ν(n, x +bn), ν+n (x) = ν+(n, x +bn), and ν−n (x) = ν−(n, x +bn).

Theorem 3.2 (Gantert et al. (2010)). Let Assumptions I and II hold. The distri-

butions of {νn(x) : x ∈Z} converge weakly to the distribution of ν (as probability

measures on ℓ1 equipped with the ℓ1-norm). As a consequence, for each strongly

continuous functional f : ℓ1 →R which is shift invariant, we have

f
(
{ν(n, x) : x ∈Z}

) law
−−−−→
n→∞

f
(
{ν(x) : x ∈Z}

)
.

In Gantert et al. (2010) is mentioned that the result still holds with obvious ex-
tensions for the non-reflected case, i.e., of a RWRE on Z. An inspection of the
proof of Gantert et al. immediatly yields:

Corollary 3.3. Let Assumptions I and II hold. The distributions of

{(ν+n (x),ν−n (x)) : x ∈Z}

converge weakly to the distribution of {(ν+(x),ν−(x)) : x ∈ Z}. As a consequence,

for each strongly continuous functional f : ℓ1 ×ℓ1 → R which is shift invariant,

we have

f
(
{(ν+(n, x),ν−(n, x)) : x ∈Z}

) law
−−−−→
n→∞

f
(
{(ν+(x),ν−(x)) : x ∈Z}

)
.

3.2 Identification and properties of the criterion limit

First, we start with

Proof of (22) in Lemma 2.2. Clearly,

logε0× max
0≤t≤n

Xt ≤ ℓn(θ)−
∑

x∈Rn

max
i≤d

{
ξ+(n, x) log ai+ξ

−(n, x) log(1−ai )
}
≤ 0, (32)

with ε0 from (5), and from (12) and (13)

∑

x∈Rn

max
i≤d

{
ξ+(n, x) log ai +ξ−(n, x) log(1−ai )

}
=n ·Ln(a).

Since E⋆(ρ0) ≥ exp[E⋆ log(ρ0)] = 1, case (c’) in Theorem 2.1.9 in Zeitouni (2004)
applies, and Xn/n converges to 0, P⋆-a.s. Hence, 1

n
max0≤t≤n Xt converges to 0

P⋆-a.s and the claim is proved.

For any a ∈Θa, denote L∞(a)

L∞(a) = L(a,ν+,ν−) =
∑

x∈Z

max
i

{
ν+(x) log ai +ν−(x) log(1−ai )

}
, (33)

10



where ν+ and ν− are defined by (30). Anticipating Lemma 3.5 below, Corol-
lary 3.3 and (22) immediatly yields

Ln(a)
law

−−−−→
n→∞

L∞(a).

Therefore, we provide some useful information on the functional L∞(·). To do
so, some additional notations are required.

Definition 3.4 (Boltzmann entropy function and Kullback-Leibler distance). De-

fine the Boltzmann entropy function H (·) on (0,1) as

H (q)=−[q log q + (1−q) log(1−q)] ≥ 0,

the Kullback-Leibler distance dKL(·|·) on (0,1)× (0,1) as

dKL(q |q ′) = q log
q

q ′
+ (1−q) log

1−q

1−q ′
≥ 0,

and their multinomial extensions on probability vectors q and q′

H (q) =−
∑

i

qi log qi ≥ 0, dKL(q|q′) =
∑

i

qi log
qi

q ′
i

≥ 0.

With ν and ω̃ defined by (29) and (31), we have for all a in Θa the identity

L∞(a) =−
∑

x∈Z

ν(x)H
[
ω̃(x)

]
−

∑

x∈Z

ν(x)min
i

(
dKL

[
ω̃(x)|ai

])
. (34)

From Remark 3.1, we have mini

(
dKL

[
ω̃(x)|a⋆

i

])
= 0, and using the fact that dKL(q |q ′)>

0 for q 6= q ′, we deduce that

L∞(a) < L∞(a⋆) =−
∑

x∈Z

ν(x)H
[
ω̃(x)

]
, a 6= a⋆. (35)

More precisely, a useful bound is

L∞(a) ≤ L∞(a⋆)−min
k

(
ν
{

x ∈Z : ω̃(x) = a⋆

k

})
×

d∑

j=1
min

i

(
dKL

[
a⋆

j |ai

])
, (36)

where the sum is deterministic and positive for a 6= a⋆, though its factor (min j (·))
is a.s. positive and does not depend on a.

Lemma 3.5. The function L defined by (12) is Lipschitz continuous:

|L(a,π+,π−)−L(a,µ+,µ−)| ≤ | logε0| ·
(
‖π+−µ+‖1 +‖π−−µ−‖1

)
, (37)

|L(a,π+,π−)−L(a′,π+,π−)| ≤ 2ε−1
0 ‖a−a′‖2. (38)

11



Proof of Lemma 3.5. Recall that Rd ∋ u 7→ maxi ui ∈ R is 1-lipschitz continuous
for the norm ‖ ·‖∞. Moreover, the mapping

fi : (a, v+, v−) 7→ v+ log ai +v− log(1−ai )

is | logε0|-lipschitz continuous in v+, resp. in v−, with ε0 from (5). By compo-
sition, (v+, v−) 7→ maxi fi (a, v+, v−) is | logε0|-lipschitz continuous in the ‖ · ‖1

norm, and (37) follows by summing over x. By Cauchy-Schwarz,

| fi (a, v+, v−)− fi (a′, v+, v−)| =
∣∣∣
∫1

0
∂a fi (a′+ t (a−a′), v+, v−) · (a−a′)dt

∣∣∣

≤ ‖a−a′‖2 ×sup
a"

‖∂a fi (a", v+, v−)‖2,

where derivative can be bounded using

‖∂a fi (a, v+, v−)‖2 =
(
a−2

i (v+)2 + (1−ai )−2(v−)2)1/2
≤ 2ε−1

0 (v++v−).

Taking the maximum over i and summing over x, this yields (38).

3.3 Proof of Theorem 2.4

Recall that an is defined by (24). Fix some ε> 0. We prove that for all ε1 > 0, there
exists an integer n1 such that for all n ≥n1,

P⋆
(
an ∈B(a⋆,ε)

)
≥ 1−2ε1, (39)

where B(a⋆,ε) is the open ball of radius ε centered at a⋆.

Under P⋆, the sequence (g [ω̃(x)] : x ∈Z) with g (u)= log(u−1−1) is the sequence
of the jumps of a random walk V conditioned to stay positive. The jump of un-
conditionned V takes the value g (a⋆

j
) with positive probability p⋆

j
. Hence it is

not difficult to check that for all j in {1, . . . ,d }, we can findP
⋆-a.s. some random x

such that ω̃(x) = a⋆

j
. Since ν is P⋆-a.s. supported by the whole Z, we have

P
⋆
(

min
j

{
ν{x : ω̃(x) = a⋆

j }
}
> 0

)
= 1.

By continuity, for arbitrary ε1 > 0 we can fix δ1 > 0 such that

P
⋆

(
min

j

{
ν{x : ω̃(x) = a⋆

j }
}
≥ δ1

]
≥ 1−ε1. (40)

By compactness of K =Θa \B(a⋆,ε),

κ= inf
{ d∑

j=1
min

i

{
dKL

[
a⋆

j |ai

]}
: a ∈ K

}
> 0.

12



By (38),
a′ ∈B

(
a,κδ1ε0/6

)
⇒|L∞(a)−L∞(a′)| ≤ κδ1/3. (41)

Since K is totally bounded, we can select a finite covering ∪
k0

k=1B(ak ,κδ1ε0/6) of
K with balls of that radius. From (37) we can apply Corollary 3.3, and we have

(
Ln(ak ) : 0 ≤ k ≤ k0

) law
−−−−→
n→∞

(
L∞(ak ) : 0 ≤ k ≤ k0

)
,

where we have set a0 = a⋆. Also,

(
Ln(a⋆)−Ln (ak )

)
k≤k0

law
−−−−→
n→∞

(
L∞(a⋆)−L∞(ak )

)
k≤k0

,

where the limits are simultaneously larger than κδ1 on a set of large probability
(larger than 1−ε1) by (36) and (40). Then, we find n1 such that for n ≥ n1,

P⋆
(
Ln(a⋆)−Ln(ak )≥ 2κδ1/3, 1 ≤ k ≤ k0

)
≥ 1−2ε1.

Taking (41) into account, we obtain that, for all n ≥ n1,

P⋆
(
Ln(a⋆)−Ln(a) ≥ κδ1/3,a ∈ K

)
≥ 1−2ε1.

This implies (39) for all n ≥ n1. Hence an → a⋆ in P⋆-probability. Now, we turn
to the convergence of ân to a⋆ in P⋆-probability. According to (32), we have

Ln(a)−un ≤
ℓn(θ)

n
≤ Ln(a),

where un is non-negative and converges P⋆-a.s. to 0 independently from θ.
Choosing n2 such that for all n ≥n2

P⋆
(
un ≥ κδ1/3

)
≤ ε1,

achieves the proof of the convergence ân → a⋆.

4 Proof of consistency of estimates for the probability vec-

tor

First, note that Kn(θ) can be rewritten

Kn(θ) =−H
(Rn(a, ·)

Rn

)
−dKL

(Rn(a, ·)

Rn

∣∣∣p
)
. (42)

Therefore,

Kn(an ,p) ≤−H
(Rn(an , ·)

Rn

)
,

with equality if and only if p =

(
Rn (an ,i )

Rn
: i = 1, . . . ,d

)
. Hence, we can use the alter-

native definition of pn given by (25) to prove Theorem 2.5.
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4.1 Proof of Theorem 2.5: convergence of pn

For 0 < δ< 1 let

G
δ
n =

{
x ≤ bn : max

z∈[x,bn ]
V (z)−V (x) ≥δ log n

}
, (43)

D
δ
n =

{
x > bn : max

z∈[bn ,x]
V (z)−V (bn) ≤ (1−δ) log n

}
, (44)

R
δ
n =G

δ
n ∪D

δ
n . (45)

Note that D
δ
n is an interval, D

δ
n =]bn ,cδn] with cδn ≤ cn .

Denote β⋆ and β the sequences defined by (14) replacing a by a⋆ and an respec-
tively. Noting that for any i in {1, . . . ,d−1}, dKL(a⋆

i
|a⋆

i+1) > 0, we can choose ε′ > 0
small enough such that for any i ∈ {1, . . . ,d }

β⋆

i−1 ≤
a⋆

i

1−a⋆

i

−2ε′ <
a⋆

i

1−a⋆

i

+2ε′ ≤β⋆

i . (46)

Let ε> 0. Define the events Aδ
n(ε′), Bn(ε′) and Cδ

n(ε, i ) by

Aδ
n(ε′)=

{
∀x ∈R

δ
n :

∣∣∣
ξ+ (n, x)

ξ−(n, x)
−

1

ρx

∣∣∣≤ ε′
}

, (47)

Bn(ε′)=
{
∀i ∈ {1, . . . ,d } : |βi −β⋆

i | ≤ ε′
}

, (48)

Cδ
n(ε, i ) =





∣∣∣
1

|Rn ∩R
δ
n|

∑

x∈Rn∩R
δ
n

1{ωx = a⋆

i }−p⋆

i

∣∣∣>
ε

4



 , (49)

Denote ∁Aδ
n(ε′) and ∁Bn(ε′) the respective complementary events of Aδ

n(ε′) and
Bn(ε′), and define the quantities φδ

n(ε′), ψδ
n(ε) and µδ

n(ε) by

φδ
n(ε′) =P⋆

(∁
Aδ

n(ε′)
)
+P⋆

(∁
Bn(ε′)

)

ψδ
n(ε) =P⋆

( |Rn \R
δ
n |

Rn
>

ε

2

)
,

µδ
n(ε, i ) =P⋆

(
Cδ

n(ε, i )
)
.

Then, we have

P⋆

(
|pn(i )−p⋆

i | > ε
)
≤φδ

n(ε′)+ψδ
n (ε)+ψδ

n (ε/2)+µδ
n (ε, i ). (50)

Indeed, it is clear that

P⋆

(
|pn(i )−p⋆

i | > ε
)
≤ P⋆

(
|pn (i )−p⋆

i | > ε, Aδ
n(ε′),Bn(ε′)

)
+φδ

n(ε′), (51)

and writing the set Rn as the union of the two disjoint sets
(
Rn ∩R

δ
n

)
and

(
Rn \R

δ
n

)

in (18) and using (25) yields

P⋆

(
|pn(i )−p⋆

i | > ε, Aδ
n(ε′),Bn(ε′)

)
≤ P⋆

(
Aδ

n(ε′),Bn(ε′),Dδ
n(ε, i )

)
+ψδ

n(ε), (52)
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with

Dδ
n(ε, i ) =





∣∣∣
1

Rn

∑

x∈Rn∩R
δ
n

1

{
βi <

ξ+(n, x)

ξ(n, x)
≤βi+1

}
−p⋆

i

∣∣∣>
ε

2



 .

Using our choice of ε′ to satisfy (46), we have for all i in {1, . . . ,d }
{
βi <

ξ+(n, x)

ξ(n, x)
≤βi+1, Aδ

n(ε′),Bn(ε′)

}
=

{
ωx = a⋆

i , Aδ
n(ε′),Bn(ε′)

}
.

Hence,

P⋆

(
Aδ

n(ε′),Bn(ε′),Dδ
n (ε, i )

)
≤ P⋆

(∣∣∣
1

Rn

∑

x∈Rn∩R
δ
n

1{ωx = a⋆

i }−p⋆

i

∣∣∣>
ε

2

)
, (53)

and clearly,

P⋆

(∣∣∣
1

Rn

∑

x∈Rn∩R
δ
n

1{ωx = a⋆

i }−p⋆

i

∣∣∣>
ε

2

)
≤ψδ

n(ε/2)+µδ
n (ε, i ). (54)

Combining (51), (52), (53) and (54) yields (50).

Anticipating some lemmas which are proved independently in the next section,
we conclude the proof. From Lemma 4.1, we have

lim
δ→0

limsup
n→∞

ψδ
n(ε) = 0.

By the law of large numbers,

lim
n→∞

µδ
n(ε) = 0.

In view of (50), to conclude the proof of Theorem 2.5 it suffices to prove that,
for all δ > 0, φδ

n(ε) vanishes as n →∞. On the one hand, an converges to a⋆ in
P⋆-probability, and thus

P⋆
(∁

Bn(ε′)
)
−→ 0.

On the other hand, by Lemma 4.2,

P⋆
(∁

Aδ
n(ε′)

)
−→ 0.

This concludes the proof of the convergence in P⋆-probability of pn to p⋆. ✷

4.2 Proof of (23) in Lemma 2.2

For all x ∈Rn , one can write

logUi (a,n, x) =
[ ξ+(n, x)

ξ(n −1, x)
−a ı̂(a,n,x)

][
log

ai

a ı̂(a,n,x)
− log

1−ai

1−a ı̂(a,n,x)

]
(55)

−dKL
(
a ı̂(a,n,x)|ai

)
.
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Let c0 be the quantity defined as

c0 = inf
a∈Θa

inf
i 6= j

dKL(ai |a j ) > 0. (56)

where the strict inequality comes from (5) and the continuity of dKL(·|·). Recall
ε0 in (5) and ε′ in (46), and let ε′′ be the quantity defined as

ε′′ = min
{
ε′,

c0

4

(
log

1−ε0

ε0

)−1}
. (57)

Let V (ε′′) ⊂Θa be the neighborhood of a⋆ defined as

V (ε′′) =
{

a ∈Θa : max
{
‖a−a⋆‖,‖β−β⋆‖

}
≤ ε′′

}
. (58)

Fix 0 < δ < 1. Let a be in V (ε′′) and assume that Aδ
n(ε′′) defined by (47) occurs,

then for all x ∈R
δ
n and any i 6= ı̂(a,n, x)

logUi (a,n, x) ≤−
c0

2
. (59)

Indeed, using (58) and the fact that Aδ
n(ε′′) occurs with ε′′ ≤ ε′, we have for all

x ∈R
δ
n

ı̂(a,n, x) = ı̂(a⋆,n, x) and ωx = a⋆

ı̂(a,n,x) = a⋆

ı̂(a⋆,n,x). (60)

Then, if i 6= ı̂(a,n, x), using (55), (56), (60), and the fact that
∣∣∣ log

ai

a ı̂(a,n,x)
− log

1−ai

1−a ı̂(a,n,x)

∣∣∣≤ 2log
1−ε0

ε0
,

yield

logUi (a,n, x) ≤ 2log
1−ε0

ε0

(∣∣∣h
(ξ+(n, x)

ξ−(n, x)

)
−h

( 1

ρx

)∣∣∣+‖a−a⋆‖

)
−c0

with
h(u)=

u

1+u
.

Using the fact that 0 ≤ h′(u) ≤ 1, for any u ≥ 0, and the fact that Aδ
n(ε′′) occurs,

we have

logUi (a,n, x)≤ 2log
1−ε0

ε0

(
ε′′+‖a−a⋆‖

)
−c0.

Using our choice of a and ε′′ achieves the proof of (59). Now, from (59), we de-
duce that if Aδ

n(ε′′) occurs,

0 ≤ rn(θ) ≤
∣∣∣Rn \R

δ
n

∣∣∣ · log
(
1+

d −1

ε0

)
+

∑

x∈R
δ
n

log
(
1+

d −1

ε0
e−ξ(n−1,x)c0/2

)
. (61)

Assume that the event Eδ
n defined by

Eδ
n =

{
∀x ∈R

δ
n : ξ(n, x)≥ nδ/2

}
, (62)

occurs. Then

0 ≤ rn(θ) ≤
d −1

ε0

(∣∣∣Rn \R
δ
n

∣∣∣+|Rδ
n|e

−nδ/2c0/2
)
. (63)

From Lemma 4.1, 4.2 and 4.3, we conclude that (23) occurs. ✷
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4.3 Convergence of p̂n

From the definitions of θ̂n and an respectively given by (11) and (24), we have

ℓn(θ̂n )−ℓn(θn ) ≥ 0 and Ln(ân)−Ln (an) ≤ 0. (64)

Recalling (19), (64) implies

Kn(θ̂n )−Kn(θn)+
1

Rn
[rn(θ̂n)− rn(θn )] ≥ 0. (65)

From Theorem 2.4, when n is large enough, both ân and an belong to V (ε′′) in-
troduced in (58) with large probability. Assuming that the event Aδ

n(ε′′) defined
by (47) occurs, we have

ı̂(an ,n, x)= ı̂(ân ,n, x)= ı̂(a⋆,n, x), for all x ∈R
δ
n ,

and

Kn(θ̂n ) ≤ log
(1−ε0

ε0

) |Rn \R
δ
n |

Rn
+

1

Rn

∑

x∈Rn

log p̂ ı̂(a⋆,n,x),

as well as

Kn(θn ) ≥ log
( ε0

1−ε0

) |Rn \R
δ
n |

Rn
+

1

Rn

∑

x∈Rn

log p̄ ı̂(a⋆,n,x),

which holds for large n when pn is in [ε0,1−ε0], and finally

Kn(θ̂n)−Kn (θn) ≤ 2log
(1−ε0

ε0

) |Rn \R
δ
n|

Rn
−dKL(pn |p̂n ). (66)

Assuming furthermore that Eδ
n defined by (62) occurs, then (63) occurs. All in

all, combining (63), (65) and (66) yields the existence of a positive constant C ,
depending on ε0 and d only, such that

dKL(pn |p̂n) ≤C
( |Rn \R

δ
n|

Rn
+
|Rδ

n|

Rn
e−nδ/2c0/2

)
,

with large probability. From the fact that pn converges in P⋆-probability to p⋆,
the continuity of dKL(·|·), Lemma 4.1, 4.2 and 4.3, we conclude that p̂n converges
to p⋆ in P⋆-probability. ✷

4.4 Intermediate lemmas

Lemma 4.1. There exists a random variable Z (δ) ≥ 0 such that

|Rn \R
δ
n |

log2 n

law
−−−−→
n→∞

Z (δ), with (67)

Z (δ) −−−→
δ→0

0 in P⋆-probability. (68)
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Proof. By the invariance principle,

(
V ([u log2 n])

log n
;u ≥ 0

)
law

−−−−→
n→∞

(W (u);u ≥ 0), (69)

with W a standard Brownian motion. Recall the definition of cδn , D
δ
n =]bn ,cδn]

with D
δ
n from (44), and define

c∞ = inf
{

u > 0 : W (u)− min
v∈[0,u]

W (v) ≥ 1
}

, b∞ =Argmin
v∈[0,c∞]

W (v),

cδ∞ = min
{
u > b∞ : W (u)−W (b∞) ≥ 1−δ

}
.

By (69) and from well-known results on RWRE (e.g., (Zeitouni, 2004, Sect. 2.5)),
we have the joint convergence of

bn

log2 n

law
−−−−→
n→∞

b∞,
cδn

log2 n

law
−−−−→
n→∞

cδ∞,
maxRn

log2 n

law
−−−−→
n→∞

c∞.

Then, the convergence in (67) follows, with the limit given by

Z (δ) = Leb
({

u < b∞ : max
v∈[u,b∞]

W (v)−W (u) ≤ δ
}
∪ [cδ∞,c∞]

)

= Z1(δ)+Z2(δ)

with Leb(A) the Lebesgue measure of a Borel set A and Z2(δ) = c∞−cδ∞. It is not
difficult to see that cδ∞ ր c∞ a.s. as δց 0, and then Z2(δ) vanishes. Let us prove
in details that Z1(δ) vanishes. Letting

Aδ =
{
u < b∞ : max

v∈[u,b∞]
W (v)−W (u) ≤ δ

}
,

we have, as δց 0,

Aδ ց A0+ ⊂ A′ =
{

u < b∞ : W (u) ≥W (v), v ∈ [u,b∞]
}

.

By Fubini, we compute

E⋆Leb(A′) =
∫∞

0
P⋆(u < b∞,u ∈ A′)du,

and we show that the integrand is zero. For all u ≥ 0,

P⋆(u < b∞,u ∈ A′) = lim
αց0

P⋆(u < b∞,u ∈ A′,u ≤ b∞+α)

≤ limsup
αց0

P⋆(W (u) ≥W (v), v ∈ [u,u +α]),

and the last probability is zero by Iterated Logarithm law (Karatzas and Shreve,
1991, Th. 9.12)). Finally, limδ→0 Leb(Aδ) = 0 a.s., ending the proof of (68).
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Lemma 4.2. Let Assumptions I and II hold, let ε′ and ε′′ be such that (46) and

(57) are satisfied, and let Aδ
n(ε′′) and Aδ

n(ε′′) be the events defined by (47). Then

the following convergence holds

P⋆

(
∁Aδ

n(ε′)
)
, P⋆

(
∁Aδ

n(ε′′)
)
−−−−→
n→∞

0, for any δ in (0,1). (70)

Proof. Under Pω(·|ξ(n − 1, x) = m), the pair (ξ+(n, x),ξ−(n, x)) is distributed as
(B(m,ωx ),m−B(m,ωx )), where B(m, q) is a binomial random variable with sam-
ple size m and probability of success q . Using Hoeffding’s concentration in-
equality yields

Pω

(∣∣∣
ξ+(n, x)

m
−ωx

∣∣∣>α
∣∣∣ξ(n −1, x) = m

)
≤ 2exp[−2mα2], ∀α> 0. (71)

Assume that the event {ξ(n −1, x) = m} occurs. Then, we have

∣∣∣
ξ+(n, x)

ξ−(n, x)
−

1

ρx

∣∣∣=
∣∣∣ f

(ξ+(n, x)

m

)
− f (ωx )

∣∣∣≤ sup
I

f ′ ·

∣∣∣
ξ+(n, x)

m
−ωx

∣∣∣,

with

f (u) =
u

1−u
and I =

[
ξ+(n, x)

m
∧ωx ,

ξ+(n, x)

m
∨ωx

]
.

Under Assumption II, uniform ellipticity occurs and (71) implies that we can
find a constant K > 0 depending on ε′′ only such that

Pω

(∣∣∣
ξ+(n, x)

ξ−(n, x)
−

1

ρx

∣∣∣> ε′′
∣∣∣ξ(n −1, x) = m

)
≤ K −1 exp[−K m]. (72)

Recall the event Eδ
n defined by (62) and denote its complement by ∁Eδ

n . We have

Pω

(
∁Aδ

n(ε′′)
)
≤Pω

(
∁Aδ

n(ε′′),Eδ
n

)
+Pω

(
∁Eδ

n

)
.

Now,

Pω

(
∁Aδ

n(ε′′),Eδ
n

)
≤

∑

x∈R
δ
n

Pω

(∣∣∣
ξ+(n, x)

ξ−(n, x)
−

1

ρx

∣∣∣> ε′′,ξ(n −1, x) ≥nδ/2
)

,

and writing
{
ξ(n −1, x) ≥nδ/2

}
=

⋃
m≥nδ/2 {ξ(n −1, x) =m} and using (72) yield

Pω

(
∁Aδ

n(ε′′),Eδ
n

)
≤

∑

x∈R
δ
n

∑

m≥nδ/2

K −1 exp[−K m] ·Pω(ξ(n −1, x) =m).

Using the fact that

exp[−K m] ≤ exp[−K nδ/2], for any m ≥ nδ/2,

the fact that ∑

m≥nδ/2

Pω(ξ(n −1, x) = m) ≤ 1,

19



and the fact that |Rδ
n| ≤ cn , yield

Pω

(
∁Aδ

n(ε′′),Eδ
n

)
≤ K −1cn exp[−K nδ/2]. (73)

Then, combining (73) and

P⋆

(
∁Aδ

n(ε′′),Eδ
n

)
= E

⋆

(
Pω

(
∁Aδ

n(ε′′),Eδ
n

))

yields

P⋆

(
∁Aδ

n(ε′′),Eδ
n

)
≤ K −1 exp[−K nδ/2] log3 n +P

⋆(cn > log3 n),

and from the fact that cn/log2 n converges in P
⋆-distribution to c∞, we deduce

that
P⋆

(
∁Aδ

n(ε′′),Eδ
n

)
−−−−→
n→∞

0, for any δ in (0,1).

From Lemma 4.3 below, we have

P⋆

(
∁Eδ

n

)
= E

⋆

(
Pω

(
∁Eδ

n

))
−−−−→
n→∞

0, for any δ in (0,1),

and this achieves the proof of (70) since Aδ
n(ε′′) ⊂ Aδ

n(ε′).

Lemma 4.3. Let Assumptions I and II hold and let Eδ
n be the event defined by (62).

Then the following convergence holds

P⋆

(
∁Eδ

n

)
−−−−→
n→∞

0, for any δ in (0,1). (74)

Proof. Note that

P⋆

(
∁Eδ

n

)
≤ P⋆

(
∃x ∈G

δ
n : ξ(n, x)< nδ/2

)
+P⋆

(
∃x ∈D

δ
n : ξ(n, x) <nδ/2

)
,

where G
δ
n and D

δ
n are respectively defined by (43) and (44). We first show that

P⋆

(
∃x ∈D

δ
n : ξ(n, x)<nδ/2

)
−−−−→
n→∞

0, for any δ in (0,1). (75)

Let x be in D
δ
n . Define T (y) = inf{t ≥ 1 : Xt = y} the first hitting time of y . The

probability of visiting x > bn during a given excursion from bn to bn is (e.g.,
(Zeitouni, 2004, formula (2.1.4)))

Pω(T (x) < T (bn) |X0 = bn)=
ωbn∑x

j=bn
exp[V ( j )−V (bn)]

>
ε0

cn
·nδ−1, (76)

where the lower bound follows from (4) and the fact that x belongs to D
δ
n .

Fix ε > 0 and let kn denote the number of excursions of X from bn to bn before
time n. From (2.14) in Gantert et al. (2010), we have

Pω

(∣∣∣
kn

n
−

1

γn

∣∣∣≥ ε
)
−−−−→
n→∞

0, for P
⋆-a.a. ω,
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where γn is the average length of an excursion from bn to bn . Let Fn denote the
event Fn =

{
kn ≥n ·γ−1

n /2
}

. We have

Pω

(
∃x ∈D

δ
n : ξ(n, x)< nδ/2, Fn

)
≤

∑

x∈D
δ
n

Pω

(
ξ(n, x)<nδ/2, Fn

)
.

Using the independence of excursions from bn to bn yields

Pω

(
ξ(n, x) <nδ/2, Fn

)
≤ Prob

(
B

(
n ·γ−1

n /2,ε0c−1
n nδ−1

)
≤ nδ/2),

where B(m, q) is a binomial random variable with sample size m and probability
of success q . Combining the Chernov’s bound

Prob
(
B(m, q)≤ m(q −α)

)
≤ exp

[
−mdKL(q −α|q)

]
.

with m = n ·γ−1
n /2, q = ε0c−1

n nδ−1 and m(q −α) = nδ/2, the fact that |Dδ
n | ≤ cn ,

that

γn =

cn∑

x=0

µ(x)

µ(bn)
≤ 2(1+cn ),

and that
cn

log2 n

law
−−−−→
n→∞

c∞,

yield (75).

Now, we turn to the case where x is in G
δ
n , and a different argument is needed.

From Lemma 1 in Golosov (1984),

P⋆(T (bn) >n)−−−−→
n→∞

0,

hence,
P⋆(ξ(n,bn) = 0) −−−−→

n→∞
0.

Note that {
∃x ∈G

δ
n : ξ(n, x) = 0

}
⊂

{
ξ(n,bn) = 0

}
.

The probability of visiting bn during a given excursion from x to x is

Pω(T (bn) < T (x) |X0 = x) =
ωx

∑bn

j=x
exp[V ( j )−V (x)]

< n−δ, (77)

where the larger bound follows the fact that x belongs to G
δ
n . Let hn(x) denote

the number of returns to x before reaching bn . From (77), this is a geometric
variable with success probability less than n−δ. Now,

Pω

(
∃x ∈G

δ
n : ξ(n, x)≤ nδ/2

)
≤ Pω

(
∃x ∈G

δ
n : 1 ≤ ξ(n, x) ≤nδ/2

)

+Pω

(
∃x ∈G

δ
n : ξ(n, x)= 0

)
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Hence,

Pω

(
∃x ∈G

δ
n : 1 ≤ ξ(n, x)≤ nδ/2

)
≤

∑

x∈G
δ
n

Pω

(
1 ≤ ξ(n, x)≤ nδ/2

)

≤
∑

x∈G
δ
n

Pω

(
1 ≤ hn(x) ≤ nδ/2

)

≤ |G δ
n | · [1− (1−n−δ)nδ/2

]

≤ cn · [1− (1−n−δ)nδ/2
].

Hence,

P⋆

(
∃x ∈G

δ
n : 1 ≤ ξ(n, x)≤ nδ/2

)
≤ [1− (1−n−δ)nδ/2

] log3 n +P
⋆(cn > log3 n),

which combined with the fact that cn/log2 n converges in distribution to c∞
proves that

P⋆

(
∃x ∈G

δ
n : ξ(n, x)< nδ/2

)
.

5 Examples

5.1 Particular Case: recurrent Temkin model

Example I. Let η = 1
2δa + 1

2δ1−a . Here, the unknown parameter is the support

a ∈Θ⊂ (0,1/2) (namely θ = a).

Proposition 5.1. In the framework of Example I, the limiting function L∞defined

by (33) is deterministic and given by

L∞(a)=−
[

H (a⋆)+dKL(a⋆|a)
]
.

Proof. Note that

{ω̃(x),1− ω̃(x)} = {a⋆,1−a⋆}, for any x ∈Z. (78)

Recalling that ν+(x) = ν(x) · ω̃(x) and ν−(x) =ν(x) · [1− ω̃(x)] and noting that

max
u∈{a,1−a}

{
a⋆ log u + (1−a⋆) log(1−u)

}
= a⋆ log a + (1−a⋆) log(1−a),

implies that (33) might be rewritten as

L∞(a) =
[

a⋆ log a + (1−a⋆) log(1−a)
]∑

x

ν(x).

The fact that
∑

x∈Zν(x) = 1 achieves the proof.
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5.2 Case of two-point support

Example II. Let η= p1δa1 +p2δa2 with a1 < 1/2 < a2, and

p1 =
log 1−a1

a1

log a2(1−a1)
a1(1−a2)

, p2 =
log a2

1−a2

log a2(1−a1)
a1(1−a2)

.

Here, the unknown parameter is the support a = (a1, a2).

The following result extends Proposition 5.1.

Proposition 5.2. In the framework of Example II, the limiting function L∞ de-

fined by (33) is deterministic and given by

L∞(a) =−
1

a⋆

2 −a⋆

1

2∑

j=1

∣∣∣a⋆

j −
1

2

∣∣∣
[

H (a⋆

j )+min
i=1,2

dKL(a⋆

j |ai )
]
.

Proof. By (34),

L∞(a) =−
2∑

j=1
ν( j ) ·

[
H (a⋆

j )+min
i=1,2

dKL(a⋆

j |ai )
]
, ν( j ) =

∑

x:ω̃(x)=a⋆

j

ν(x).

So, the formula for L∞(a) follows from the values of the coefficients ν( j ): these
are determined by

2∑

j=1
ν( j ) = 1,

2∑

j=1
ν( j ) · (2a⋆

j −1) = 0,

where the second equality means that the mean drift is zero in the recurrent
case. Indeed, the drift per time unit on time interval [0,n], n−1 ∑n−1

t=0 (2ωX t
−1) =∑

x νn(x)(2ω̃(x)−1), vanishes as n →∞ by the law of large numbers for martin-
gales. For a direct derivation, we can write, from (30) and (31),

∑

x

ν(x)ω̃(x) =
∑

x

ν+(x)=
∑

x

ν−(x) =
∑

x

ν(x)(1− ω̃(x)),

and then
∑

x ν(x)(2ω̃(x)− 1) = 0, which, after reorganizing the terms, gives the
second equality above.

5.3 Particular Case: recurrent lazy Temkin model

We present a simple example for which L∞(·) is a random variable.

Example III. Let η = 1−r
2 δa + rδ1/2 +

1−r
2 δ1−a with a < 1/2,r ∈ (0,1). Here, we

have a = (a, 1
2 ,1−a) and p = ( 1−r

2 ,r, 1−r
2 ), and the unknown parameter is (a,r ).
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Proposition 5.3. In the framework of Example III, there exists a′ ∈ (0, a⋆), de-

pending only on a⋆, such that the limiting function L∞(a) is deterministic when

a ∈ (0, a′] and random when a ∈ (a′,1/2):

Var⋆(L∞(a)) > 0.

Proof. Set a = {a,1/2,1−a}. By (34),

L∞(a) =−ν(a⋆) ·
[

H (a⋆)+min
a

dKL(a⋆|·)
]

−ν(1−a⋆) ·
[

H (1−a⋆)+min
a

dKL(1−a⋆|·)
]
−ν(1/2) ·H (1/2),

with
ν(u) =

∑

x:ω̃(x)=u

ν(x), u ∈ a.

So, the formula for L∞(a) follows from the values of the coefficients ν(u): these
satisfy ∑

u∈a

ν(u) = 1,
∑

u∈a

ν(u)(2u −1) = 0,

where the second equality is equivalent toν(a⋆ ) =ν(1−a⋆). Hence, we have 2ν(a⋆)+

ν(1/2) = 1. Furthermore, noting that

H (a⋆)= H (1−a⋆) and min
a

dKL(a⋆|·) = min
a

dKL(1−a⋆|·)

yields

L∞(a) = ν(1/2)[H (a⋆)+min
a

dKL(a⋆|·)−H (1/2)
]
−

[
H (a⋆)+min

a
dKL(a⋆|·)

]
. (79)

One can see that in (79), the quantities

[
H (a⋆)+min

a
dKL(a⋆|·)−H (1/2)

]
and min

a
dKL(a⋆|·)

]

are deterministic. Hence, L∞(a) is random if and only if ν(1/2) is random and[
H (a⋆)+mina dKL(a⋆|·)−H (1/2)

]
is non zero.

The facts that dKL(a⋆|·) is continuous, decreasing on (0, a⋆), increasing on (a⋆,1),
null at a⋆ and that

dKL(a⋆|1/2) = H (1/2)−H (a⋆) and dKL(a⋆|a) −−−→
a→0

+∞,

yield the existence of a unique a′ ∈ (0, a⋆) such that

dKL(a⋆|a′)= H (1/2)−H (a⋆),

and as a consequence that for any a ∈ (0, a′],

min
a

dKL(a⋆|·) = dKL(a⋆|a′) = H (1/2)−H (a⋆).
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Hence, the limiting function L∞(a) is deterministic and equal to−H (1/2) =− log 2,
for any a ∈ (0, a′].

Now, let a be in (a′,1/2). Recall that

ν(1/2) =
∑

x:ω̃(x)=1/2
ν(x), with ν(x)=

exp[−Ṽ (x −1)]+exp[−Ṽ (x)]

2
∑

z∈Z exp[−Ṽ (z)]
,

and that ω̃(x) = 1/2 if and only if Ṽ (x)= Ṽ (x−1). Now, we focus on the potential
of the infinite valley. Recall that Ṽ (0) = 0, {Ṽ (x)}x≥0 and {Ṽ (−x)}x≥0 are two inde-
pendent Markov chains where Ṽ (x) is non-negative for any non-negative x and
Ṽ (x) is positive for any negative x, see Golosov (1984). Especially, we have

P
⋆
(
Ṽ (x +1) = 0 |Ṽ (x)= 0

)
= 1−P

⋆
(
Ṽ (x +1) = logρ⋆ |Ṽ (x) = 0

)
= r,

where we set ρ⋆ = 1−a⋆

a⋆ . Define the random variable T ≥ 1 as T = inf{x ∈ N :
Ṽ (x) = logρ⋆}. The random variable T is distributed according to a geometric
distribution with parameter of success 1−r , and for any 0 ≤ x ≤ T −1, the poten-
tial Ṽ (x) is equal to 0. We have

ν(1/2) =

∑
x<0 e−Ṽ (x)

1Ṽ (x−1)=Ṽ (x) + (T −1)+
∑∞

x=T e−Ṽ (x)
1Ṽ (x−1)=Ṽ (x)

∑
x≤0 e−Ṽ (x) + (T −1)+

∑∞
x=T e−Ṽ (x)

Using the definition of (Ṽ (x) : x ∈Z) and the strong Markov property, T is inde-
pendent of F :=S(Ṽ (x) : x ≤ 0 or x ≥ T ), hence

Var⋆[ν(1/2)|F ] =Var⋆
(

T −1+Υ
′

T −1+Υ

)
,

with
Υ

′ =
∑

x<0;x≥T

e−Ṽ (x)
1Ṽ (x−1)=Ṽ (x) and Υ=

∑

x≤0;x≥T

e−Ṽ (x).

Since Υ>Υ
′, Var⋆[ν(1/2)|F ] is a non constant strictly positive random variable,

hence
Var⋆(ν(1/2)) = E

⋆
(
Var⋆[ν(1/2)|F ]

)
+Var⋆(E⋆[ν(1/2)|F ]) > 0.

6 Numerical performance

In this section, we explore the numerical performance of our estimation proce-
dure in the frameworks of Examples I to III. We compare our performance with
the performance of the estimator proposed by Adelman and Enriquez (2004) in
the framework of Example I. An explicit description of the form of Adelman and Enriquez’s
estimator in the particular case of the one-dimensional nearest neighbour path
is provided in Section 5.1 of Comets et al. (2014). Therefore, one can estimate θ⋆

by the solution of an appropriate system of equations, as illustrated below.
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Example I (continued) In this case the parameter θ equals a and we have

v = E
⋆[ω0] =

1

2
a⋆+

1

2
(1−a⋆) =

1

2
,

w =
E
⋆[ω2

0]

E⋆[ω0]
= {

1

2
[a⋆]2 +

1

2
(1−a⋆)2} ·v−1 = [a⋆]2 + (1−a⋆)2.

Hence, among the visited sites, the proportion of those from which the first
move is to the right (or to the left) gives no information on the parameter a⋆. We
need to push to the sites visited at least twice to get some information. Among
those from which the first move is to the right, the proportion of those from
which the second move is also to the right gives an estimator for [a⋆]2+(1−a⋆)2.
Using this observation, we can estimate a⋆.

We now present the three simulation experiments corresponding respectively
to Examples I to III. The comparison with Adelman and Enriquez’s procedure
is given only for Example I. For each of the three simulations, we a priori fix a
parameter value θ⋆ as given in Table 1 and repeat 1,000 times the procedure de-
scribed below. We first generate a random environment according to ηθ⋆ on the

Simulation Estimated parameter

Example I a⋆ = 0.3

Example II (a⋆

1 , a⋆

2 ) = (0.4,0.7)

Example III (a⋆,r⋆) = (0.3,0.2)

Table 1: Parameter values for each experiment.

set of sites {1, . . . ,105}. In fact, we do not use the environment values for all the
sites, since only few of these sites are visited by the walk. However the compu-
tation cost is very low comparing to the rest of the estimation procedure. Then,
we run a random walk in this environment and stop it successively at n, with
n ∈ {104 ·k : 1 ≤ k ≤ 10}. For each stop, we estimate θ⋆ according to our MPLE
procedure (and Adelman and Enriquez’s one for the first simulation). In the
cases of Examples I and III, the likelihood optimization procedure for the sup-
port a⋆ was performed as a combination of golden section search and succes-
sive parabolic interpolation. In the case of Example II, the likelihood optimiza-
tion procedure for (a⋆

1 , a⋆

2 ) was performed according to the "L-BFGS-B" method
of Byrd et al. (1995) which uses a limited-memory modification of the “BFGS”
quasi-Newton method published simultaneously in 1970 by Broyden, Fletcher,
Goldfarb and Shanno. In all three cases, the parameters in Table 1 are chosen
such that the RWRE is recurrent.

Figure 2 shows the boxplots of our estimator and Adelman and Enriquez’s esti-
mator obtained from 1,000 iterations of the procedures in Example I. First, we
shall notify that in order to simplify the visualisation of the results, we removed

26



in the boxplots corresponding to Example I about 13.5% of outliers values (out-
side 1.5 times the interquartile range above the upper quartile and below the
lower quartile) from our estimator. Second, we shall also notify that about 16%
of Adelman and Enriquez’s estimation procedures could not be achieved for the
simple reason that the equation involving a⋆ had no solution. We observe that
our procedure is far more accurate than Adelman and Enriquez’s, and that the
accuracies of the procedure increase with the value of n.

Figure 3 shows the boxplots of our estimator obtained from 1,000 iterations of
the procedure in Example II. Once again, we shall notify that in order to simplify
the visualisation of the results, we removed in the boxplots corresponding to
Example II about 13% of outliers values from both estimators of a⋆

1 and a⋆

2 . We
observe that the accuracy of the procedure is high, and that in this case, it does
increase with the value of n.

Figure 4 shows the boxplots of our estimator obtained from 1,000 iterations of
the procedure in Example III. We shall notify that in order to simplify the visual-
isation of the results, we removed in the boxplots corresponding to Example III
about 12.3% of outliers values from our estimator of a⋆ and 2.8% of outliers val-
ues from our estimator of r⋆. We observe that the accuracy of the procedure
is high for the parameter of the support and low for the probability parameter,
even if in both cases, the accuracy increases with the value of n.
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Figure 2: Boxplots of our estimator (left and white) and Adelman and Enriquez’s
estimator (right and grey) obtained from 1,000 iterations and for values n rang-
ing in {104 · k : 1 ≤ k ≤ 10} (x-axis indicates the value k). The panel displays
estimation of a⋆ in Example I. The true value is indicated by an horizontal line.
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Figure 3: Boxplots of our estimator obtained from 1,000 iterations in Example II
and for values n ranging in {104 ·k : 1 ≤ k ≤ 10} (x-axis indicates the value k). Es-
timation of a⋆

1 (top panel) and a⋆

2 (bottom panel). The true values are indicated
by horizontal lines.
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Figure 4: Boxplots of our estimator obtained from 1,000 iterations in Example III
and for values n ranging in {104 ·k : 1 ≤ k ≤ 10} (x-axis indicates the value k). Es-
timation of a⋆ (top panel) and r⋆ (bottom panel). The true values are indicated
by horizontal lines.
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