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Abstract

In this paper, we propose a novel approach for estimat-
ing visual focus of attention in video streams. The method
is based on an unsupervised algorithm that incrementally
learns the different appearance clusters from low-level vi-
sual features extracted from face patches provided by a face
tracker. The clusters learnt in that way can then be used
to classify the different visual attention targets of a given
person during a tracking run, without any prior knowledge
on the environment and the configuration of the room or the
visible persons. Experiments on public datasets containing
almost two hours of annotated videos from meetings and
video-conferencing show that the proposed algorithm pro-
duces state-of-the-art results and even outperforms a tradi-
tional supervised method that is based on head orientation
estimation and that classifies visual focus of attention using
Gaussian Mixture Models.

1. Introduction

Generally, the Visual Focus of Attention (VFOA) of a
person denotes the target – an object or another person –
the person is looking at, at a given point in time. The au-
tomatic estimation of the VFOA of a person from video is
of great importance in many applications, such as human-
computer interaction, advanced video-conferencing, smart
meeting rooms, or human behaviour analysis in general, and
much research has been conducted in this area in the past.

Principally, the VFOA of a person is defined by the per-
son’s eye gaze direction. Many studies about automatic
gaze estimation from video exist [10, 20], but their use is
mostly limited to close-up and near-frontal views of a per-
son’s face, for example in Human-Computer Interaction ap-
plications. In this paper, we will focus on more challenging
scenarios where the camera is fixed at a few meters from the
filmed persons and where the persons stay roughly at the
same places, like in formal meetings or video-conferencing
applications. Previous work on VFOA analysis in such
open spaces has mostly been based on the estimation of

head pose as a surrogate for gaze [18, 15, 2, 12, 3, 19, 21].
This is done either globally,e.g. by learning to classify im-
age patches of the head at different angles based on low-
level visual features or locally,i.e. by localising certain
facial features and by geometrically and statistically infer-
ring the global orientation (see [11] for a literature survey).
Further, with video, head pose estimation can be included
in a joint head and posetracking algorithm [9, 2, 8, 14].
Early works of Stiefelhagenet al. [17], for example, used
a Gaussian Mixture Model (GMM) on head pose angles
to estimate VFOA. The model is initialised withk-means
and further updated with an Expectation-Maximisation al-
gorithm. They also showed that using the other participant’s
speaking status increases the VFOA performance. Otsukaet
al. [12] proposed a method based on a Dynamic Bayesian
Network that also analyses the group behaviour and de-
tects certain conversational patterns. A GMM and Hidden
Markov Model (HMM) approach for modelling and recog-
nising VFOA was proposed by Smithet al. for people walk-
ing by an outdoor advertisement [16] and by Ba and Odobez
for analysing meeting videos [3]. In the latter work, the au-
thors also presented a MAP adaptation method to automat-
ically adapt the VFOA model to the individual persons as
well as a geometrical model (based on findings from [6, 7])
combining head orientation and eye gaze direction. Voit and
Stiefelhagen [19] built on this geometrical model and pre-
sented VFOA recognition results on a dynamic dataset with
multiple cameras. Recently, Ba and Odobez [4] extended
their approach on VFOA estimation for meetings with a
Dynamic Bayesian Network (DBN) that incorporates con-
textual information, like speaking status, slide change, and
modelling conversation behaviour.

As the experimental results of these works show, head
pose can be used effectively to estimate the VFOA of a
group of people,e.g. in a meeting room, to a certain extend.
However, there are certain drawbacks of this approach: for
example, in uncontrolled environments it is difficult to es-
timate head pose reliably because it often requires a large
amount of annotated training data of head appearances or
shapes beforehand in order to model all the possible varia-
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Figure 1. Process of the proposed approach

tions of a head and face among different people as well as
for a given individual. These data are often not available,
or too time-consuming to produce. Further, for accurate re-
sults, a relatively precise localisation of the head, the face,
or facial features is crucial but challenging in unconstrained
application scenarios.

In this paper, we propose a novel approach that allevi-
ates these problems. Our algorithm, given a video stream
from a single camera and the rough 2D position estimation
of a person’s head, incrementally learns to automatically ex-
tract the VFOA of the personwithout explicitly estimating
head pose or gaze and without any prior model of the head,
face, the room configuration, or other external conditions.
The proposed method learnson-the-flythe different classes
of targets in an unsupervised way directly from the low-
level visual features. This means also that, as opposed to
supervised algorithms, it will not assign labels to the differ-
ent targets (e.g.’table’, ’screen’, ’person 1’). However, we
will experimentally show that the proposed unsupervised
approach is able to identify and estimate the (unlabelled)
targets with higher accuracy than a classical supervised ap-
proach. The fact that no pre-trained model is needed makes
this approach especially interesting for applications where
the specific environment, as well as the configuration of
the room and the filmed persons is not known a priori, and
where an explicit training phase is not possible.

2. Principal approach

The overall process of our approach is illustrated in
figure 1. First, a basic tracking algorithm is initialised
and tracks a rectangular face region throughout the video
stream. The image patch inside the tracked face region is
extracted and visual features, Histograms of Oriented Gra-
dients (HOG), are calculated to initialise the VFOA model
at the first video frame and to update it at each subsequent
frame. At the same time, the model that has been learnt so
far is used to estimate the person’s VFOA target (e.g. table,
other person) from the face patch. Note that the learning is
doneon-the-flyand does not require any prior knowledge
on head pose or room configuration. Another advantage of
this approach is that the VFOA estimation is completely in-
dependent from the face tracking algorithm, which means

that the standard tracking method used here can easily be
replaced by a different, possibly more accurate, algorithm.

For tracking a face, we used a standard particle filter ap-
proach, very similar to the one presented in [13]. It provides
a solution for the classical recursive Bayesian model, where,
assuming we have the observationsY1:t from time 1 to t,
we estimate the posterior probability distribution over the
stateXt at timet:

p(Xt|Y1:t) =
1

C
p(Yt|Xt)

×

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1 , (1)

whereC is a normalisation constant. In our experiments,
the stateXt ∈ R

3 is composed of the position and scale of
the face. The state dynamicsp(Xt|Xt−1) is defined by a
first order auto-regressive model with Gaussian noise:

p(Xt|Xt−1) = N (Xt−1; 0,Σp) . (2)

The observations likelihood is defined as:

p(Yt|Xt) ∝ exp

(

−λ
9
∑

r=1

(

D2
B [h

∗

r , hr(Xt)]
)

)

, (3)

where λ is a constant,hr(Xt) are HSV colour his-
tograms extracted from a grid ofr = 9 cells centred atXt,
h∗

r is the reference histogram initialised from the face region
in the first frame, andDB is the Bhattacharyya distance.
As in [13], the histogram bins for the H and S channels
are decoupled from the V channel. Also the quantisation
is applied at two different levels,i.e. 4 bins and 8 bins, to
improve the robustness under difficult lighting conditions.
This leads to an overall observation vector size of 828.

3. Learning Visual Focus of Attention

3.1. Overview

The tracking algorithm described in the previous section
provides us at each video frame with a bounding box of
the tracked face. The principal idea is to compute visual
features from the underlying image patch described by this
rectangle and directly classify the VFOA of the person at
that point in time.

Here, we make use of the fact that the head orienta-
tion of a person in a given scenario (e.g. a meeting) is not
completely random. There are a few stationary angles that
a head takes most of the time. And in the scenarios we
are dealing with, these head poses mostly correspond to
VFOA targets. Using an unsupervised clustering algorithm
we model these stationary head poses directly in the low-
level feature space. Thus, we estimate VFOA from these
low-level features without an error-prone intermediate step



(a) (b)

Figure 2. Visual features extraction for the VFOA model. a) HOG-
like features are computed on a grid of4 × 4 cells placed on the
tracked face. b) To compute the histograms, gradient orientation
is quantised into 4 bins (respectively 8 bins) and magnitude into 2
bins.

of head pose estimation. The proposed algorithmincremen-
tally learns these clusters from the texture features extracted
on-the-fly from the video stream, which makes it appropri-
ate for applications that do not require (or even allow) prior
training or adaption of different room configurations, light-
ing conditions, or other scene-dependant variables.

3.2. Learning Algorithm

Let us denoteOt ∈ R
N the observed feature vector

of a face image patch at timet. Here, we propose to use
HOG-like features computed on an array of 4 by 4 non-
overlapping cells (see Fig. 2(a)). For each cell, two nor-
malised two-dimensional histograms of unsigned oriented
gradients and magnitudes are computed using a specific
quantisation scheme illustrated in Fig. 2(b). The gradient
orientation is quantised in 4 bins and the magnitude in 2
bins. An additional bin (with no orientation) is used for
very weak gradients (in the centre of the half circle in the
diagram). Also, to improve the overall robustness and dis-
criminative power, we computetwo histograms at different
quantisation levels for orientation: 4 and 8, and normalise
each of them separately. Thus, the dimensionN of the fea-
ture vector is:16·(4·2+1+8·2+1) = 416. One advantage
of these histogram features is that they are relatively robust
to small spatial shifts of the overall bounding box, which
frequently occur with common face tracking methods.

The visual feature vectorsOt at time t are used to incre-
mentally learn the VFOA classes. To this end, we propose
a specific sequentialk-means clustering algorithm with an
adaptive number of clusters. The algorithm constructs a
model ofk clusters corresponding to the VFOA classes and
described by their mean feature vectorsµi and a global di-
agonal co-variance matrixΣ = diag(σ1, . . . , σN ). Algo-
rithm 1 summarises the main learning procedure. At each
point in timet the observed feature vectorOt is computed,
and the closest clusterct is determined using the normalised

Algorithm 1 Proposed incremental learning algorithm

k = kini

µi = O0 i = 1..k

ni = 0 i = 1..k

Σ = Σini

for t = 1 to T do
ct = argmini(D(Ot,µi))

d̄ = 2
N(N+1)

∑k

i=1

∑k

j=i+1(D(µi,µj))

if d(Ot, ct) > θd̄ then
k ← k + 1

µk = Ot

end if

nc ← nc + 1

µct
← µct

+ 1
nct

(Ot − µct
)

µct−1
← µct−1

+ α
nct−1

(Ot − µct−1
)

µi ← µi +
1
n2

i

(Ot − µi) i ∈ Ω

incrementally updateΣ

end for

Euclidean distance:

D(Ot,µi) =

√

√

√

√

N
∑

j=1

(ot,i − µi,j)2

σ2
j + ǫ

, (4)

with ǫ being a small constant avoiding division by zero.
Also, the mean distancēd between each of thek clusters

is calculated, and a new cluster is created if the distance
of the current feature vector to the closest cluster is greater
thanθd̄, whereθ is a parameter of our algorithm (set to2
in our experiments). Existing clusters are not removed or
merged in this algorithm.

Eventually, we incrementally update the meanµct
of

the closest cluster, the mean of the previous closest clus-
ter µct−1

(with a lower factorα = 0.3 here), and also the
means in a “neighbourhood”Ω (i.e. with adjacent indexes)
but with a quadratically decreasing update factor. Updat-
ing the previous closest cluster enforces a certain temporal
continuity of the model. Updating the neighbouring means
(inspired by self-organising maps) ensures a certain topo-
graphical coherence in the feature space and limits outliers
in the initial learning phase.

Finally, the global covariance matrixΣ is incrementally
updated using the current feature vectorOt. At each timet,
the algorithm classifies the observed featuresOt of a face
into one of thek clusters:ct, and, as we will show in the fol-
lowing experimental results, the learnt classes correspond to
a large degree to specific targets of VFOA.



Figure 3. Example frames from the three datasets that have been used for evaluation. First two: TA2 dataset, middle two: PETS 2003
dataset, and last two: IHPD dataset. (Faces have been blurred manually.)

4. Experiments

4.1. Data

We evaluated the proposed approach on three public
datasets from different scenarios, each containing a certain
number of persons sitting around a table and filmed roughly
from the front (see Fig. 3). The VFOA targets are different
for each dataset, due to the scenario and the layout of the
room. The three datasets are the following:

TA21[5]: in this set there are two videos from two dif-
ferent rooms where people communicated over a video-
conferencing system and performed a shared task on a lap-
top in front of them. In the first video there are four persons
and in the second there are two, and the defined VFOA tar-
gets are the table, the camera, and the other persons, result-
ing in 5 targets for the first video and 3 for the second. For
each person, the targets over 7 500 frames (5 minutes), 30
minutes in total, have been annotated.

IHPD2[1]: this dataset consists of the ”meeting“ part of the
Idiap Head Pose Database. It contains eight meeting record-
ings with four persons, where one video shows two partici-
pants behind a table. The annotated VFOA targets here are
the table, the slide screen, and the other persons (the white-
board target has not been used here). 110 040 frames (∼ 1
hour 13 minutes) with VFOA annotation have been used in
total for the evaluation.

PETS 20033: this dataset contains two videos from a for-
mal meeting of six participants (scenario D), where each
video shows 3 of the persons roughly from the front (similar
to IHPD). Here, the VFOA targets that have been annotated
for each participant are the other five participants. The pro-
vided VFOA annotation for the 6 persons and 47 000 frames
(∼30 minutes) in total has been used.

Table 1 summarises the properties of these datasets.

Annotation has been done manually and frame-by-
frame, where frames with ambiguous visual focus and tran-
sition phases have not been annotated.

1https://www.idiap.ch/dataset/ta2
2https://www.idiap.ch/dataset/headpose
3http://www.cvg.rdg.ac.uk/slides/pets.html

dataset number
of videos

number of
persons

VFOA
targets

annotated
frames

TA2 2 6 5 / 3 7500
IHPD 8 16 5 110040
PETS 2003 2 6 5 47000

total 12 28 5/3 164540 (110 min.)

Table 1. The three datasets and annotation used for evaluation.

4.2. Evaluation

As our algorithm is unsupervised, we don’t have the ac-
tual estimated VFOA targets (the labels) that we can di-
rectly compare to the ground truth. For evaluation purposes,
i.e. after running our method on the whole video, we there-
fore assign to each cluster the VFOA target that maximises
VFOA accuracy. That means, we assume that we know
which target each cluster corresponds to. We believe that
this is not a very restrictive assumption, as the labels could
be assigned in a separate processing step, for example by in-
corporating a more general discriminative classifier trained
beforehand.

As an accuracy measure, we used the Frame-based
Recognition Rate (FRR) of the VFOA for all the videos
and averaged it over each datasets and over several runs.
The FRR is simply the proportion of frames with correctly
recognised VFOA:

FRR =
Nc

Nt

, (5)

whereNc is the number of correct classifications, andNt is
the total number of annotated video frames. As our algo-
rithm is learning the VFOA modelincrementally, we need
to account for a certain training phase, which we don’t in-
clude in the evaluation. We used 8 000 (∼ 5 min.) training
frames in the beginning of the videos (not annotated), and
evaluated the FRR on the following sequence with annota-
tion. This length has been chosen in order to have enough
training data forall the VFOA targets of a person, as some-
times a target is focused for the first time only after several
minutes.

We compared the proposed approach to a variant that
uses a fixed number of clusters. We also compared it to
a classical supervised approach, that uses a specific face de-
tection and tracking algorithm, a head pose estimator as in

https://www.idiap.ch/dataset/ta2
https://www.idiap.ch/dataset/headpose
http://www.cvg.rdg.ac.uk/slides/pets.html


Figure 4. Four examples of face images that are closest to the cor-
responding learnt cluster centres. Upper-left and lower-left: from
IHPD dataset. Upper-right and lower right: from TA2 (first video).

TA2 IHPD PETS 2003 average

supervised 58.8 49.4 26.5 46.5

fixedk = 5 45.7 46.8 35.2 44.1

variablek 61.5 51.0 45.0 52.0

Table 2. Average frame-based recognition rate of VFOA (in %).

[14], and Gaussian Mixtures Models (GMM) to model dif-
ferent VFOA targets in terms of head pose pan and tilt an-
gles as in [17, 3]. In this approach, the head pose model is
trained beforehand in a supervised way, and the GMM pa-
rameters have been partly trained and partly defined manu-
ally.

4.3. Results

First, we will show some qualitative results on the clus-
tering that is obtained on some of the videos. To illustrate
this, we saved for each tracking run the face image regions
corresponding to the feature vectors that were closest to
the cluster centres. Fig. 4 shows some examples. We can
see that the images come from different head poses mostly
corresponding to real VFOA targets. Clearly, some targets
might not be captured by the model, as in the top right ex-
ample of Fig. 4 (corresponding to the left-most person in
the top-left image of Fig. 3) because the three other persons
are almost seated in the same gaze direction. In the bottom
right example, two clusters (corresponding to the second
and fourth image) have been created for the same VFOA
target: the table. Apart from these errors, the results mostly
make sense.

Additionally, we evaluated the proposed algorithm us-
ing the metric and the three datasets described above. The
tracking algorithm has been initialised manually with a
bounding box around the face. Table 2 shows the FRR for
each dataset, for the proposed method with fixed cluster size
k = 5, variable cluster size, and the classical supervised ap-
proach described above. One can see that the proposed ap-
proach outperforms the supervised method with an average
FRR of 52% compared to 46%. The variant with fixed clus-
ter size is generally worse than the baseline method, except
for the PETS 2003 dataset. This is probably due to the fact

that the cluster centres are all initialised at the beginning
and not when they are actually required as in the variable
case. These results are comparable or superior to those pub-
lished in the literature, although the evaluation protocols are
not exactly the same due to the unsupervised and incremen-
tal nature of our method. Note that we do not include any
temporal modelling (e.g. a HMM) or contextual information
in the VFOA estimation process as in other existing work.
This may additionally improve the overall performance.

The overall tracking algorithm, implemented in C++,
runs at around 80-90 fps on a 3.6GHz processor for a
720× 576 video (face size∼ 50× 80), where around 11%
of CPU time is spent on feature extraction for VFOA, i.e.
gradient computation on the whole image, and less than 1%
on the VFOA learning and classification.

5. Conclusion

We presented an algorithm that incrementally, and in an
unsupervised way, learns a VFOA model directly from low-
level gradient histogram features extracted from face im-
ages coming from a tracking algorithm. In a meeting room
or video-conferencing setting, the proposed method is able
to automatically learn the different VFOA targets of a per-
son without any prior knowledge about the number of per-
sons or the room configuration. By assigning a VFOA label
to each cluster, a posteriori, we evaluated the VFOA recog-
nition rate for three different datasets and almost 2 hours of
annotated data. The obtained results are very promising and
show that this type of unsupervised learning can outperform
traditional supervised approaches.

Future work will investigate different types of visual
features, cluster merging, and the possibility of automati-
cally assigning meaningful labels to the clusters. Also, we
will study the generalisation capability of the algorithm to
unseen videos (same room with different persons) as this
might enable a broader range of practical applications.
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