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Abstract

In this paper, we present a novel algorithm for fast track-
ing of generic objects in videos. The algorithm uses two
components: a detector that makes use of the generalised
Hough transform with pixel-based descriptors, and a prob-
abilistic segmentation method based on global models for
foreground and background. These components are used
for tracking in a combined way, and they adapt each other
in a co-training manner. Through effective model adapta-
tion and segmentation, the algorithm is able to track ob-
jects that undergo rigid and non-rigid deformations and
considerable shape and appearance variations. The pro-
posed tracking method has been thoroughly evaluated on
challenging standard videos, and outperforms state-of-the-
art tracking methods designed for the same task. Finally,
the proposed models allow for an extremely efficient imple-
mentation, and thus tracking is very fast.

1. Introduction

Given a video stream, tracking arbitrary objects that are
non-rigid, moving or static, rotating and deforming, par-
tially occluded, under changing illumination and without
any prior knowledge is a challenging task. This uncon-
strained tracking problem where the object model is ini-
tialised from a bounding box in the first video frame and
continuously adapted has been increasingly addressed in the
literature in the past years. When no prior knowledge about
the object’s shape and appearance is available, one of the
main difficulties is to incrementally learn a robust model
from consecutive video frames. This model should gen-
eralise to new unseen appearances and avoid drift,i.e. the
gradual inclusion of background appearance, which can ul-
timately lead to tracking failure.

Our method addresses these issues with an adaptive ap-
proach combining a detector based on pixel-based descrip-
tors and a probabilistic segmentation framework.

1.1. Related Work

Earlier works [21, 11, 32, 30, 41, 18] on visual ob-
ject tracking mostly consider a bounding box (or some
other simple geometric model) representation of the ob-
ject to track, and often a global appearance model is used.
These classical methods are very robust to some degree
of appearance change and local deformations (as in face
tracking), and also allow for a fast implementation. How-
ever, for trackingnon-rigid objects that undergo a large
amount of deformation and appearance variation,e.g. due
to occlusions or illumination changes, these approaches are
less suitable. Although some algorithms effectively cope
with object deformations by tracking their contour (e.g.
[31, 42, 10]), most of them require the object to be moving
or need prior shape knowledge [12]. Others, describe an ob-
ject by a relatively dense set of keypoints that are matched
in each frame [26, 19] to track the object. However, these
methods have mostly been applied to relatively rigid ob-
jects.

Many existing methods, follow a tracking-by-detection
approach, where a discriminative model of the object to
track is built and updated “online”,i.e. during the tracking,
in order to adapt to possible appearance changes. For ex-
ample, Adamet al. [1] use a patch-based appearance model
with integral histograms of colour and intensity. The dy-
namic patch template configuration allows to model spatial
structure and to be robust to partial occlusions. Grabneret
al. [16] proposed an Online Adaboost (OAB) learning algo-
rithm that dynamically selects weak classifiers that discrim-
inate between the object image region and the background.
Later, they extended this method to a semi-supervised algo-
rithm [17] that uses a fixed (or adaptive [39]) prior model to
avoid drift and an online boosting framework learning with
unlabelled data. Babenkoet al. [4] presented another online
method based on Multiple Instance Learning (MIL), where
the positive training examples are bags of image patches
containing at least one positive (object) image patch. Be-
sides boosting algorithms, Online Random Forests have
been proposed for adaptive visual object tracking [36, 37],
where randomised trees are incrementally grown to clas-
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sify an image region as object or background. Kalalet al.
[22] also use randomised forests which they combine effec-
tively with a Lucas-Kanade tracker in a framework called
Tracking-Learning-Detection (TLD) where the tracker up-
dates the detector using spatial and temporal constraints and
the detector re-initialises the tracker in case of drift.

In order to cope with changing appearance, Meiet al.
[28] introduced thel1 tracker that is based on a sparse set
of appearance templates that are collected during tracking
and used in the observation model of a particle filter. Re-
cently, several extensions have been proposed [6, 20, 43]
to improve the robustness and reduce the complexity of this
method. However, these approaches are still relatively time-
consuming due to the complexl1 minimisation. A sparse
set of templates has also been used by Liuet al. [27], but
with smaller image patches of object parts, and by Kwon
et al. [23] in their Visual Tracking Decomposition (VTD)
method. In a similar spirit, Rosset al. [34] propose a par-
ticle filter algorithm called IVT that uses an observation
model relying on the eigenbasis of image patches com-
puted online using an incremental PCA algorithm. Other
approaches, more similar to ours, consist in using a pixel-
based classifier [3, 9]. Avidan et al. [3], for example, pro-
posed an ensemble tracking method that label each pixel as
foreground or background with an Adaboost algorithm that
is updated online. However, all of these methods still op-
erate more or less on image regions described by bounding
boxed and inherently have difficulties to track objects un-
dergoing large deformations.

To overcome this problem, recent approaches integrate
some form of segmentation into the tracking process. For
example, Nejhumet al. [29] proposed to track articulated
objects with a set of independent rectangular blocks that are
used in a refinement step to segment the object with a graph-
cut algorithm. Similarly, although not segmenting the ob-
ject, Kwon et al. [24] handle deforming objects by track-
ing configurations of a dynamic set of image patches, and
they use Basin Hopping Monte Carlo (BHMC) sampling
to reduce the computational complexity. Other approaches
[33, 40] use a segmentation on the superpixel level. Bibby
et al. [8] propose an adaptive probabilistic framework sep-
arating the tracking of non-rigid objects into registration
and level-set segmentation, where posterior probabilities
are computed at the pixel level. Aeschlimanet al. [2] also
combined tracking and segmentation in a Bayesian frame-
work, where pixel-wise likelihood distributions of several
objects and the background are modelled by Gaussian func-
tions the parameters of which are learnt online. In a differ-
ent application context, pixel-based descriptors have also
been used for 3D articulated human-body detection and
tracking by Shottonet al. [38] on segmented depth images.
In the approach recently proposed by Belagianniset al. [7],
a graph-cut segmentation is applied separately to the image

patches provided by a particle filter.
The work of Godecet al. [15] is probably the most sim-

ilar to ours. The authors proposed a patch-based voting al-
gorithm with Hough forests [14]. By back-projecting the
patches that voted for the object centre, the authors initialise
a graph-cut algorithm to segment foreground from back-
ground. The resulting segmentation is then used to update
the patches’ foreground and background probabilities in the
Hough forest. This method achieves state-of-the-art track-
ing results on many challenging benchmark videos. How-
ever, due to the graph-cut segmentation it is relatively slow.
Also, the segmentation is discrete and binary, which can
increase the risk of drift due to wrongly segmented image
regions.

1.2. Motivation

The algorithm presented in this paper is inspired by
these recent works on combined tracking and segmentation,
which is beneficial for tracking non-rigid objects. Further-
more, patch-basedlocal descriptors have shown state-of-
the-art performance due to their possibility of handling ap-
pearance changes with large object deformations.

In this paper, we integrate these concepts and present
a novel tracking-by-detection algorithm that relies on a
Hough-voting scheme based on pixel descriptors. The
method tightly integrates with a probabilistic segmentation
of foreground and background that is used to incrementally
update the local pixel-based descriptors and vice versa. The
local Hough-voting model and the global colour model op-
erate both at the pixel level and thus allow for very efficient
model representation and inference.

The following scientific contributions are made:

• a fast tracking algorithm using a detector based on
the generalised Hough transform and pixel descriptors
in combination with a probabilistic soft segmentation
method,

• a co-training framework, where the local pixel-based
detector model is used to update the global segmenta-
tion model and vice versa,

• a thorough performance evaluation on standard
datasets and a comparison with other state-of-the-art
tracking algorithms.

Note that the main goal of the proposed approach is to
provide an accurateposition estimateof an object to track
in a video. Here, we are not so much interested in a perfect
segmentation of the object from the background. Better ap-
proaches for segmentation exist in the literature but they are
rather complex. Thus, instead of using these, we aimed at
reducing the overall computational complexity.

In the following, we will first describe the overall ap-
proach (Section2). Then we will detail each of the com-



Figure 1. The overall tracking procedure for one video frame.
Each pixel inside the search window (blue dotted rectangle) in the
input image casts a vote (1) according to the current Hough trans-
form model (darker: high vote sum, lighter: low vote sum). Then
the maximum vote sum (circled in red) and all pixels that have
contributed (i.e. the backprojection) are determined (2). In par-
allel, the current segmentation model is used to segment the im-
age region inside the search window (3) (binarised segmentation
shown in red). Finally, after updating the objects current position
(4), the segmentation model is adapted (5) using the backprojected
image pixels, and the Hough transform model is updated (6) with
foreground pixels from the segmentation and background pixels
from a region around the object (blue frame).

ponents of the algorithm (Sections3-5). And finally, some
experimental results will be presented (Section7).

2. Overall Approach

The overall procedure of detection, segmentation, track-
ing, and model adaptation for one video frame is illus-
trated in Fig.1. The algorithm receives as input the current
video frame as well as the bounding box and segmentation
from the tracking result of the previous frame. The pixel-
based Hough transform is applied on each pixel inside the
search window, the enlarged bounding box,i.e. each pixel
votes for the centre position of the object according to the
learnt model. Votes are cumulated in a common reference
frame, the voting map, and the position with the highest
sum of votes determines the most likely position of the ob-
ject’s centre (see Section3 for a more detailed explanation).
Then, the pixels that have contributed to the maximum vote
are determined. This process is calledbackprojection. In
parallel, the image region corresponding to the search win-
dow is segmented using the current segmentation model.
That is, each pixel is assigned a foreground probability (see
Section4). The position of the tracked object is updated
using the maximum vote position and the centre of mass of
the segmentation output (see Section5). Finally, the mod-
els are adapted in a co-training manner to avoid drift. That
means, the segmentation model is updated using the back-

projection, and the pixel-based Hough model is adapted ac-
cording to the segmentation output (see Section6 for more
details).

3. Pixel-based Hough Voting

We developed a new detection algorithm relying on the
generalised Hough transform [5]. In contrast to existing
models developed recently for similar tasks (e.g. [14, 15])
which use Hough forests,i.e. Random Forests trained on
small image patches, or the Implicit Shape Model (ISM)
[25] our method operates at thepixel-level.

This has the following advantages:

• pixel-based descriptors are more suitable for detecting
objects that are extremely small in the image (e.g. for
far-field vision),

• the feature space is relatively small and does not (or
very little) depend on spatial neighbourhood, which
makes training and updating of the model easier and
more coherent with the object’s appearance changes,

• the training and the application of the detector is ex-
tremely fast as it can be implemented with look-up ta-
bles.

One drawback of using a pixel-based Hough model is when
the object’s image region contains primarily pixels of very
similar colours (and gradients). In that case, the pixels on
their own may not be discriminative enough to infer the ob-
jects centre position. Note that also patch-based methods
have difficulties with uniform regions. In practice, however,
this is rarely the case and may be controlled by increasing
the discriminative power of the descriptors (at the cost of
invariance). Also, in this tracking framework, this risk is
considerably reduced by combining the detector with the
segmentation output.

Let us now consider the model creation and application
in detail. Figure2 illustrates the model creation (training)
and detection process.

3.1. Training

Let us denotex = (x1, x2) the position of a pixelI(x) in
an imageI. In the training image, the pixels inside a given
initial bounding box are quantised according to the vector
composed of its HSV colour values (with separate V quan-
tisation) and itsx andy gradient orientation (with a separate
quantisation for low gradient magnitudes) (see Fig.2 left).
Experiments showed that colour alone is also working well,
but not gradient alone. This amounts to computingD = Dz

(z = 1..N ), an N-dimensional histogram, which is referred
to aspixel-based Hough modelin this paper. Here, we use
N = (16× 16+ 16)× (8 + 1) = 2448 (16 colour bins and
8 gradient orientations). The vectorsDz = {d1

z, . . . ,d
Mz

z }
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Figure 2. Training and detection with the pixel-based Hough
model. Left: the modelD is constructed by storing for each quan-
tised pixel value in the given bounding box all the displacement
vectors to the object’s centre position (here only colour is used for
illustration). Right: the object is detected in a search window by
accumulating the displacement votes of each pixel in a voting map
(bright pixels: many votes, dark pixels: few votes).

containMz displacement vectorsdm
z = (xzm, wzm), each

associated with a weightwzm = 1.0. Thus, training con-
sists in constructingD, where each pixelI(x) in the given
bounding box produces a displacement vectordz (arrows in
Fig. 2) corresponding to its quantised valuezx and pointing
to the centre of the bounding box.

3.2. Detection

In a new video frame, the object can be detected by let-
ting each pixelI(x) inside the search window vote accord-
ing toDz corresponding to its quantised valuezx. The right
part of Fig.2 illustrates this. Each vote is a list of displace-
mentsdm

z that are weighted bywzm and accumulated in a
voting map. The detector’s output is then simply the posi-
tion in the voting map with the maximum valuexmax.

Note that, as illustrated in figure2, the position estima-
tion is “diffused” by two factors: the deformation of the
object (one of the green pixels in the figure), and pixels of
the same colour (green and blue pixels). But the maximum
value in the voting map is still distinctive and corresponds
well to the centre position of the object. This could also be
observed in our experiments.

Nevertheless, to be robust to very small deformations we
group the votes in small voting cells of3×3 pixels (as [15]).

3.3. Backprojection

With the position of the maximum in the voting map
xmax, we can determine which pixels in the search window
contributed to it during the detection. This process is illus-
trated in Fig.1 and is calledbackprojection. More precisely,
let z be the value of pixelI(x). Then, the backprojectionb

at each positionx ∈ Ω is defined as:

bx =

{

wzm if dm

z
voted forxmax ,

0 otherwise.
(1)

The backprojected pixels are used for adapting the seg-
mentation model (see Section6 for more details). The idea
behind this is that, intuitively, pixels that contributed to
xmax are most likely corresponding to the object.

4. Segmentation

Complementary to the local pixel-wise Hough model, a
global segmentation model is trained and adapted to allow
for varying object shapes and for a better discrimination be-
tween foreground (object) and background, especially when
the shape and appearance changes drastically and abruptly.

A probabilistic soft segmentation approach is adopted
here (similar to [2]). Let ct,x ∈ {0, 1} be the class of the
pixel at positionx at time t: 0 for background, and1 for
foreground, and lety1:t,x be the pixel’s colour observations
from time1 to t. For clarity, we’ll drop the indexx in the
following. In order to incorporate the segmentation of the
previous video frame at timet− 1 and to make the estima-
tion more robust, we use a recursive Bayesian formulation,
where, at timet, each pixel (in the search window) is as-
signed the foreground probability:

p(ct = 1|y1:t) = Z−1p(yt|ct = 1)
∑

c′
t−1

p(ct = 1|c′t−1
) p(c′t−1

|y1:t−1) , (2)

whereZ is a normalisation constant to make the probabili-
ties sum to1. The distributionsp(yt|ct) are modelled with
HSV colour histograms with12 × 12 bins for the H and
S channels and12 separate bins for the V channel. The
foreground histogram is initialised from the image region
defined by the bounding box around the object in the first
frame. The background histogram is initialised from the
image region surrounding this rectangle (with some margin
between). The transition probabilities for foreground and
background are set to:

p(ct = 0|ct−1) = 0.6 p(ct = 1|ct−1) = 0.4 (3)

which is an empirical choice that has been validated exper-
imentally. Note that the tracking algorithm is not very sen-
sitive to these parameters.

As opposed to recent work on image segmentation (e.g.
[35]), we treat each pixel independently, which, in general,
leads to a less regularised solution but at the same time re-
duces the computational complexity considerably. As stated
in section1.2, we are not so much interested here in a per-
fectly “clean” segmentation but rather in fast and robust
tracking of the position of an object.



5. Tracking

In a new video frame, pixel-based detection and segmen-
tation are performed inside a search windowΩ, which is set
here to twice the size of the object’s bounding box. Then,
the object’s positionXt can be re-estimated. To this end, we
utilise not only the output of the detector,i.e. the maximum
position in the voting map, but also the segmentation out-
put. Clearly, this makes the tracking algorithm more robust
to non-rigid deformations. More precisely, we calculate the
centre of mass of the soft segmentation produced by Eq.2:

xs =
1

S

∑

x∈Ω

p(cx = 1|y) x, (4)

where S is the sum of all foreground probabilities
p(cx = 1|y) in the search windowΩ. Then, we set the new
object position to a linear combination of voting map max-
imumxmax andxs:

Xt = αxs + (1− α)xmax . (5)

The factorα determines how much we trust in the seg-
mentation’s position compared to the Hough model’s es-
timation. It is computed dynamically at each frame by
a simple reliability measure that is defined as the propor-
tion of pixels in the search window that change from fore-
ground to background or vice versa,i.e. crossing the thresh-
old p(cx = 1|y) = 0.5. A high value ofα means that the
shape of the object has changed considerably from the pre-
vious frame to the current one, and consequently the Hough
voting is assumed to be less accurate.

6. Model adaptation

Both pixel-based Hough model and segmentation model
are updated at each frame in a co-training manner,i.e. the
output of one model is used to update the other one. To up-
date the Hough model, only foreground pixels are used, that
is pixels for whichp(cx = 1|y) > 0.5. For each of these
pixelsx the displacementd to the new object’s centre is cal-
culated, and its weightw is set according to its foreground
probability:

w ←

{

γ p(cx = 1|y) + (1− γ)w if d ∈ Dz ,

p(cx = 1|y) otherwise,

whereγ = 0.1 is the update factor. In the second case,d is
added toDz. For computational and memory efficiency, we
limit the size of eachDz and only keep theK displacements
with the highest weights (K = 20 in our experiments).

The foreground and background distributions of the seg-
mentation model are adapted using the backprojectionbx.
That is, the colour distributionp(y|b > 0.5) of the backpro-
jected pixels is calculated, and used to linearly update the

current foreground colour distribution:

p(yt|ct = 1) = δ p(y|b > 0.5)+(1−δ) p(yt−1|ct−1 = 1) ,
(6)

whereδ = 0.1 is the update factor. The background colour
distribution is updated in the same way but using the colour
distribution from a rectangular frame surrounding the object
borders (as for initialisation).

7. Evaluation

7.1. Evaluation Protocol

We conducted quantitative evaluation on two sets of
challenging standard videos that are commonly used in
the literature. The tracking accuracy and speed on these
datasets has been measured and compared to two state-of-
the-art tracking methods.

The first dataset1 has been constructed by Babenkoet al.
[4] from various other publications, and it has been used by
Godecet al. [15]. It contains 8 videos (with more than 5 000
frames) of objects or faces that undergo mostly rigid defor-
mations and some rather large lighting variations as well as
partial occlusions. Most of these sequences are actually in
grey-scale format (except “David”, “Girl”, and “Face Oc-
clusions 1”). For this reason, we do not use the segmenta-
tion part of our algorithm here because it is based on colour.
That means, tracking is only performed by Hough voting.

The second dataset2 is composed of 11 videos (around
2 500 frames) showing moving objects that undergo consid-
erable rigid and non-rigid deformations. This dataset has
also been used by [15] and partially by [23] among others.

We compared our algorithm which we callPixelTrackto
two state-of-the-art methods: HoughTrack (HT) proposed
by Godec et al. [15] and Tracking-Learning-Detection
(TLD) by Kalal et al. [22]. Although, these and other previ-
ous works have reported tracking accuracy results on some
of the videos from our datasets, we evaluated these methods
again using our performance measure in order to have a con-
sistent comparison. Initialisation is done manually, where
HT has been initialised by the values given by their authors,
and the same initialisation has been used for TLD. For our
method, the initial rectangle is smaller as it should contain
as few background pixels as possible in order to obtain a
good initial segmentation model.

To measure the performance of the different tracking al-
gorithms, we determine, for each video, the percentage of
frames in which the object is correctly tracked. In each
video frame, the tracking is considered correct if the PAS-
CAL VOCC [13] overlap measureRT∩RGT

RT∪RGT
is above a

threshold, whereRT is the rectangle from the tracking al-
gorithm, andRGT is the ground truth rectangle surround-
ing the object. We set the threshold to0.1. A higher

1http://vision.ucsd.edu/ bbabenko/projectmiltrack.shtml
2http://lrs.icg.tugraz.at/research/houghtrack/

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://lrs.icg.tugraz.at/research/houghtrack/


HT [15] TLD [ 22] PixelTrack

David 89.25 77.42 45.16
Sylvester 55.02 88.10 36.80
Girl 92.22 97.01 93.21
Face Occlusions 1 99.44 100.00 100.00
Face Occlusions 2 100.00 46.01 88.34
Coke 72.88 88.14 91.53
Tiger 1 26.76 12.68 46.48
Tiger 2 41.10 19.18 98.63

average 72.08 66.07 75.02

Table 1. Babenko sequences: percentage of correctly tracked
frames.

HT [15] TLD [ 22] PixelTrack

Cliff-dive 1 100.00 69.12 100.00
Motocross 1 100.00 15.38 57.69
Skiing 100.00 6.85 100.00
Mountain-bike 100.00 81.36 94.55
Cliff-dive 2 100.00 8.20 32.79
Volleyball 45.12 42.28 100.00
Motocross 2 100.00 100.00 100.00
Transformer 38.71 33.06 94.35
Diving 21.21 24.68 88.74
High Jump 77.87 35.25 94.26
Gymnastics 98.87 84.75 99.09

average 80.16 45.54 87.41

Table 2. Non-rigid object tracking: percentage of correctly tracked
frames.

value would discriminate our method too much because the
bounding box that is output currently does not change its
size and aspect ratio during the tracking, and it is rarely ini-
tialised to surround the complete object.

Finally, we want to emphasise that we strictly used the
same parameters of our algorithm for all the videos and all
the experiments.

7.2. Results

Table 1 summarises the evaluation results on the
Babenko videos. Although our method is not designed for
grey-scale videos and, thus, does not show its full poten-
tial, it still performs better than other state-of-the-artmeth-
ods on many videos of the dataset and also on average.
Fig. 3 shows some tracking results from the “Tiger 2” se-
quence. HoughTrack loses track after frame 100. Also TLD
very early stops to detect the object and removes the track,
whereas PixelTrack is able to follow the object despite the
appearance changes and occlusions.

Table2 shows the results for dataset 2 with non-rigid de-
formations. For 8 out of 11 video sequences our method
outperforms the other algorithms or is on par. Also the
average of correct tracking is almost7 percentage points

HT TLD PixelTrack

2.3 5.2 113.8

Table 3. Average overall processing speed in frames per second.
Measured without screen display.

higher thanHT . The two videos that are the most difficult
for the proposed method are “Motocross”, where the motor-
bike does a complete flip, changes its size in the video, and
where the background is very cluttered, and “Cliff Dive 2”
where the appearance (and shape) of foreground and back-
ground changes dramatically.

Fig. 4 illustrates some tracking results of the three com-
pared methods on one of the sequences: “Diving”. The two
baseline methods lose the track at some point. The pro-
posed algorithm is able to track the diver despite consid-
erable shape and appearance changes. Fig.5 shows some
more tracking results of PixelTrack.

Finally, we measured the average processing speed of
each algorithm for all the 19 videos on a 3.4 GHz Intel Xeon
processor. In terms of speed, the proposed method outper-
forms the other two by a factor of around 20 for TLD and 50
for HT. The reason why HT is relatively slow is the graph-
cut segmentation, which is computationally demanding (but
on the other hand also quite accurate). The code of HT is
implemented in C++ using OpenCV library. Whereas, TLD
uses Matlab with pre-compiled OpenCV code. The fast ex-
ecution speed is a real advantage of the proposed approach.
This is due to pixel-based Hough voting that allows for an
extremely efficient implementation with lookup-tables as
well as a fast segmentation algorithm.

8. Conclusions
We presented an algorithm for tracking generic objects

in videos without any prior knowledge. It is an effec-
tive combination of a local pixel-based detector based on
a Hough voting scheme and a global probabilistic segmen-
tation method that operate jointly and update each other
in a co-training manner. Our algorithm is very fast com-
pared to existing methods, which makes it suitable for real-
time applications, or tasks where many objects need to be
tracked at the same time, or where large amounts of data
need to be processed (e.g. video indexation). Experimen-
tal results show that the method outperforms state-of-the-
art tracking algorithms on challenging videos from standard
benchmarks.
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