
HAL Id: hal-00976055
https://hal.science/hal-00976055

Submitted on 9 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imaging the magnetization reversal of step-induced
uniaxial magnetic anisotropy in vicinal epitaxial

La0.7Sr0.3MnO3 films
Paolo Perna, Laurence Méchin, Mohammed Saib, J. Camarero, Stéphane

Flament

To cite this version:
Paolo Perna, Laurence Méchin, Mohammed Saib, J. Camarero, Stéphane Flament. Imaging the mag-
netization reversal of step-induced uniaxial magnetic anisotropy in vicinal epitaxial La0.7Sr0.3MnO3
films. New Journal of Physics, 2010, 12, pp.103033 - 1–9. �hal-00976055�

https://hal.science/hal-00976055
https://hal.archives-ouvertes.fr


Imaging the magnetization reversal of step-induced uniaxial magnetic anisotropy in vicinal

epitaxial La0.7Sr0.3MnO3 films

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 New J. Phys. 12 103033

(http://iopscience.iop.org/1367-2630/12/10/103033)

Download details:

IP Address: 192.93.101.88

The article was downloaded on 20/10/2010 at 11:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/12/10
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Imaging the magnetization reversal of step-induced

uniaxial magnetic anisotropy in vicinal epitaxial

La0.7Sr0.3MnO3 films

P Perna1,2,4, L Méchin1, M Saïb1, J Camarero2,3 and S Flament1

1 GREYC (UMR6072) CNRS-ENSICAEN and Université de Caen

Basse-Normandie, Bd de Marèchal Juin, 14050 Caen, France
2 Instituto Madrileño de Estudios Avanzados en Nanociencia,

IMDEA-Nanociencia, Campus Universidad Autónoma de Madrid,

28049 Madrid, Spain
3 Departamento de Fisica de la Materia Condensada and Instituto ‘Nicolas

Cabrera’, Universidad Autónoma de Madrid, 28049 Madrid, Spain

E-mail: paolo.perna@imdea.org

New Journal of Physics 12 (2010) 103033 (9pp)

Received 14 January 2010

Published 19 October 2010

Online at http://www.njp.org/

doi:10.1088/1367-2630/12/10/103033

Abstract. The magnetization reversal of La0.7Sr0.3MnO3 (LSMO) epitaxial

films deposited on 10◦ vicinal SrTiO3(001) substrates has been investigated

at room temperature by using longitudinal magneto-optical Kerr microscopy.

In the case when the magnetic field is applied parallel to the substrate steps,

magnetization reversal proceeds first by the nucleation of magnetic domains

with well-defined magnetic domain walls (DWs) oriented parallel to the step

direction and then by DW propagation. No magnetic domains are found in the

case when the magnetic field is applied perpendicular to the steps, in which case

magnetization reversal proceeds by coherent rotation. Our results provide a direct

visualization of the step-induced uniaxial magnetic anisotropy in half-metallic

systems and for LSMO thickness up to 70 nm.

The mixed-valence manganese oxides, and in particular the composition La0.7Sr0.3MnO3

(LSMO) showing ferromagnetism up to a Curie temperature of 360 K, have attracted much

interest in the condensed-matter physics community [1]–[4]. In addition to the metal–insulator

transition accompanied by so-called colossal magnetoresistance (CMR) effects, they also show

almost 100% spin polarization [5, 6]. Therefore, LSMO manganites appear to be potential

4 Author to whom any correspondence should be addressed.
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candidates for device applications. For instance, by using a specific pattern geometry, they could

be exploited for developing magnetic field sensors [7]. Besides, spin valves based on domain

wall (DW) resistivity have already been demonstrated in submicronic devices [8]–[11].

Because of the rich and complex physics related to electron–lattice and electron–electron

interactions in manganites, large changes of manganite properties can be expected to take place

because of lattice distortions imposed by chemical or hydrostatic pressure [12, 13] or substrate-

induced strain [14]–[17]. In the case of ferromagnetic LSMO, the tensile or compressive

strain induced by the film–substrate lattice mismatch can induce in-plane or out-of-plane easy

magnetization directions, respectively [18]. This is commonly interpreted as because of the

dominance of magnetoelastic energy over the magnetocrystalline anisotropy energy. In epitaxial

LSMO thin films deposited on SrTiO3 (STO) (001) surfaces, an in-plane biaxial magnetic

anisotropy is generally observed, with the easy axis along the [110] and [11̄0] crystallographic

directions [19]–[24]. The integration of half-metallic systems in real devices requires both room

temperature operation and tailored magnetic anisotropy.

Artificially controlling the in-plane magnetic anisotropy in LSMO thin films by using

patterned geometry and specific substrates is an exciting challenge towards single-layer active

devices using spin transport properties. In particular, surface effects are one way to controllably

modify the atom arrangement and the growth mode [25]. Periodic stepped substrate structures,

vicinal substrates (i.e. substrates whose surface is intentionally misoriented with respect to the

crystal surface) can break the fourfold rotational symmetry of the cubic structures, and a twofold

magnetic anisotropy at the step edges is expected, as found in metallic magnetic materials

such as Co or Fe, grown on metal or semiconductor vicinal substrates [26, 27]. Mathews

et al [28] have reported an in-plane uniaxial magnetic anisotropy in 25- and 7-nm-thick LSMO

films deposited on very low miscut STO substrates (0.13◦ and 0.24◦) at room temperature.

Wang et al [29] show that uniaxial magnetic anisotropy with the easy axis along the step edges

could could be achieved at 80 K in 12.6-nm-thick LSMO films deposited on 10◦ vicinal STO

substrates. A direct visualization of the magnetization reversal processes in these LSMO films as

well as the answer to the question whether the step-induced uniaxial anisotropy is still effective

for thicker films is still lacking. In the present work, we present magnetization reversal images

of LSMO thin films epitaxially grown on vicinal STO (001) surfaces. Longitudinal magneto-

optical Kerr (MOKE) microscopy measurements have been made at room temperature in two

LSMO films, 16 and 70 nm thick, at different applied magnetic field angles. The evolution of the

magnetic images during magnetization reversal and its angular dependence correspond to the

step-induced uniaxial magnetic anisotropy scenario, with the magnetization easy axis aligned

parallel to the substrate steps. This is observed for both films, i.e. for LSMO film thickness up

to 70 nm.

Epitaxial LSMO thin films were deposited by pulsed laser deposition from a stoichiometric

target onto commercially available low vicinal (<0.1◦) STO (001) and high vicinal STO (001)

substrates. In the latter case, the vicinal angle was 10◦ from the [001] direction towards [11̄0],

thus inducing steps along the [110] crystallographic direction. The laser fluence was 1–2 J cm−2,

the target-to-substrate distance was 50 mm, the oxygen pressure was 0.35 mbar and the substrate

temperature was 720 ◦C. Two thicknesses were chosen for LSMO films in this work, namely

16 and 70 nm. The thickness of LSMO films was obtained on the basis of x-ray reflectivity data.

X-ray diffraction data show that the LSMO films grew with their (001) axis coincident with the

(001) axis of the substrate, for both low and high vicinal STO substrates [30, 31].
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Figure 1. The surface of a 70-nm-thick LSMO film deposited on a 10◦ vicinal

STO substrate: (a) 1 µm × 1 µm AFM image in the tapping mode; (b) 100 nm ×

100 nm STM image (tunnel current = 316 pA; bias voltage = 658 mV).

Table 1. Measured magnetic parameters for the vicinal LSMO films at 300 K.

Msat is the saturated magnetization obtained from M(T ) measurements. µ0 HC is

the coercive field, µ0 HK is the anisotropy field and Ku is the uniaxial magnetic

anisotropy constant, measured by MOKE images as described in the text.

LSMO film Msat at 10 K Msat at 300 K µ0 HC at 300 K µ0 HK at 300 K Ku at 300 K

thickness (kA m−1) (kA m−1) (10−4 T) (10−4 T) (J m−3)

16 570 ± 20 186 ± 20 2.3 14.5 135

70 590 ± 20 200 ± 20 7.9 33.0 329

Atomic force microscopy (AFM) in tapping mode and scanning tunneling microscopy

(STM) were used to study the surface morphology of the films. The images of figure 1 show a

very smooth LSMO surface. The root mean square (rms) roughness measured in 1 µm × 1 µm

AFM images is only about 1–2 unit cells. In addition, a periodic terrace morphology oriented

along the substrate step direction is observed, with an average width of 34 nm as extracted from

the AFM image of a 70-nm-thick LSMO. The STM image indicates that these terraces are

actually composed of several LSMO unit cells, which probably originate from step bunching

during the growth. For thinner LSMO, the average terrace width is slightly larger, i.e. about

40 nm, with smaller rms.

Saturated magnetization versus temperature M(T ) curves were measured using a

Superconducting Quantum Interference Device magnetometer [30]. An external magnetic field

of 0.5 T was applied in the plane of the films, parallel and perpendicular with respect to the

substrate steps. For both films, the Curie temperature TC is 345 K and no clear difference

could be observed depending on the direction of the external magnetic field. The saturated

magnetization is 570 and 590 kA m−1 at 10 K, and 186 and 200 kA m−1 at 300 K for the 16- and

70-nm-thick films, respectively (see table 1; [30]).
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Figure 2. MOKE microscopy images showing the magnetic domain structure

during magnetization reversal with H applied in the plane of the films,

perpendicular to the bridge length (i.e. vertical in the images) after the films

were saturated (in a magnetic field µ0 H = −80 × 10−4 T). For each image, the

value of the applied magnetic field µ0 H is indicated below each image letter

and is expressed in 10−4 T. Images A–F and G–L were seen in the 16- and

70-nm-thick vicinal LSMO films, respectively. The steps are vertical in the

images, i.e. perpendicular to the bridge length, which means that the magnetic

field was applied parallel to the steps. It can be seen that magnetization reversal

occurs by nucleation and propagation of the DWs in both samples. Red and

orange arrows show examples of pinned DWs because of the patterned geometry

and the substrate steps, respectively. In the top right inset is displayed the optical

microscope photograph of a 50-µm-wide bridge patterned in the LSMO thin

films.

After LSMO deposition, a 500-nm-thick gold layer was sputtered on the films in order

to allow low resistive four-probe connections (which will not be detailed in this paper). The

LSMO thin films were patterned by UV photolithography and argon ion etching to form 50-

µm-wide bridges (see mask geometry in the insets of figures 2 and 3). A copper coil containing

the sample at its center is used to apply an in-plane magnetic field perpendicular to the long
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Figure 3. MOKE microscopy images showing the magnetic domain structure

during magnetization reversal with H applied in the plane of the films,

perpendicular to the bridge length (i.e. vertical in the images) after the films

were saturated (in a magnetic field µ0 H = −80 × 10−4 T). For each image, the

value of the applied magnetic field µ0 H is indicated below each image letter

and is expressed in units of 10−4 T. Images A–E and F–J were seen in the 16-

and 70-nm-thick vicinal LSMO films, respectively. The steps are horizontal in

the images, i.e. parallel to the bridge length, which means that the magnetic

field was applied perpendicular to the steps. It can be seen that magnetization

reversal occurs by a coherent rotation of the magnetization in both samples. In

the top right inset is displayed the optical microscope photograph of a 50-µm-

wide bridge patterned in the LSMO thin films.

direction of the bridge. The magnetic domain arrangement of the patterned LSMO thin films

was observed using longitudinal MOKE microscopy, which was set to be sensitive to the in-

plane magnetization component parallel to the applied magnetic field direction. The sample is

arranged on a plane inclined at 45◦ with respect to the incident light. A microscope objective is

used to set the magnification of the area of interest. Images were acquired using a Hamamatsu

4880-80 CCD camera that operates in a 14-bit mode. The intensity of the MOKE images was

coded in gray levels. For each magnetic field value, the presented MOKE images were obtained

by subtracting from the measured image a reference image acquired in the saturated state. As

a result of the subtraction process, the contrast is only observed in the magnetic material. The
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magnetization curves were deduced from the MOKE images by averaging the intensity over a

rectangular area comprising only the LSMO rectangular bridge, which was the same for each

applied field. Then, the normalized intensity values were plotted as a function of the applied

magnetic field.

Figures 2 and 3 show a series of MOKE images recorded during magnetization reversal

from one saturated state (light gray) to the opposite one (black) for both patterned LSMO films

deposited on 10◦ vicinal STO (001) with the magnetic field applied either parallel (figure 2) or

perpendicular (figure 3) to the substrate steps. They only show a part of the whole LSMO bridge

shown in the insets. When the magnetic field is applied parallel to the substrate steps (figure 2),

the magnetization switching process starts with the nucleation of magnetic domains (black)

with straight DWs aligned parallel to the substrate steps. DWs then propagate to complete the

magnetization reversal. This behavior corresponds to a magnetization easy-axis direction. The

MOKE images show a sharp contrast with only black and light gray regions (i.e. intermediate

gray level regions are not observed) for both films, which indicates the existence of only two

magnetization directions, i.e. either parallel or antiparallel to the applied field direction (up or

down in the images of figure 2) and hence separated by 180◦ DWs. In some images, one can note

that some DWs are pinned, while other magnetic domains nucleate at several other places along

the bridge length. Some DWs are pinned because of the patterned geometry (see, for example,

the DW pointed by the red arrow in figure 2, steps (B)–(D)), but some others are pinned in

the middle of the bridge, probably pinned by the substrate steps (see, for example, the DWs

pointed out by the orange arrows in figure 2, steps (H)–(K)). The size of the magnetic domains

is in the 10–50 µm range for both films. Complete magnetization reversal finally occurs after

the depinning and propagation of 180◦ DWs from the steps. When the switching process is

achieved, a uniform black bridge is observed.

Very different behavior was found when the magnetic field was applied perpendicular to

the substrate steps for both films (figure 3). During the magnetization reversal, the magnetic

contrast of the MOKE images changes uniformly and progressively from light gray to black,

without any trace of nucleation of magnetic domains. This indicates that the magnetization

reverses by coherent rotation, as expected for a magnetization hard axis direction. The easy and

hard axis directions are orthogonal to each other, which confirms the step-induced uniaxial

magnetic anisotropy in LSMO films grown on vicinal STO substrates. Our results confirm

the one-dimensional micromagnetic model [32], which predicts that the magnetic domains are

nucleated at the steps, acting also as pinning centers for the motion of DWs when the field is

applied parallel to the steps, whereas a coherent rotation of the magnetization takes place when

the field is applied perpendicular to the steps.

In order to have a more quantitative analysis of the step-induced uniaxial magnetic

anisotropy, the MOKE intensities of the images averaged over the LSMO rectangular bridge

area, and normalized by the measured values at the saturation states, have been extracted for

each sample and magnetic field value. Figure 4 shows the corresponding hysteresis curves for

the 16- and 70-nm-thick vicinal LSMO films. When the magnetic field was applied parallel to

the steps, the magnetization curves show a square-like shape, revealing an easy axis along the

steps. The measured coercive field values of µ0 HC were 2.3 × 10−4 and 7.9 × 10−4 T (with

a relative width of the transition 1H/HC of 0.35 and 0.53) for the 16- and 70-nm-thick

films, respectively (see table 1). The magnetization curves with the magnetic field applied

perpendicular to the steps display low remanence and very little hysteresis, i.e. hard axis

behavior. In figure 4, we superimposed the MOKE intensities obtained from the MOKE images

New Journal of Physics 12 (2010) 103033 (http://www.njp.org/)
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Figure 4. Normalized MOKE intensity (thus giving normalized magnetization)

curves (dots) versus magnetic field applied either parallel or perpendicular to the

steps measured in the 10◦ vicinal 16-nm-thick ((a) and (b), respectively) and

70-nm-thick ((c) and (d), respectively) LSMO films, obtained by averaging

MOKE intensities over the LSMO rectangular bridge in the images of figures 2

and 3. Continuous lines (in blue) are the Kerr hysteresis loops obtained by

MOKE magnetometry [29].

(dots) to the Kerr hysteresis obtained by MOKE magnetometry (lines) [30]. The agreement

between the curves demonstrated that the LSMO films are not significantly influenced by

the patterning geometry. Our results are in agreement with theoretical predictions based on

Monte Carlo simulations [33].

The measured anisotropy field µ0 HK was 14.5 × 10−4 and 33 × 10−4 T for 16- and

70-nm-thick LSMO films, respectively, smaller than what was obtained for 70-nm-thick NiFe

and Co films (i.e. in the range of 100–400 × 10−4 T) [34]. Compared with other LSMO films,

our obtained results are larger than the anisotropy values found for a 25-nm-thick LSMO

film grown on a low miscut angle (0.25◦) vicinal STO substrate [28] and three times smaller

than those found for a 12.6-nm-thick LSMO film grown on a 10◦ vicinal STO substrate [29].

Such a discrepancy could be interpreted in terms of the surface topography of the LSMO

films, where larger anisotropy values are expected for smaller terrace widths. In our films,

for a similar surface topography, we found that the anisotropy field increased as the thickness

increases. The uniaxial anisotropy constants Ku at 300 K extracted from the magnetization are

135 and 329 J m−3 for the 16- and 70-nm-thick films, respectively (see table 1; [30]). Overall

our results show that even in the 70-nm-thick LSMO film, one can observe a step-induced

uniaxial magnetic anisotropy and nicely defined in-plane magnetic domain structures, which is

promising for future device applications.

In summary, we have provided a direct visualization of the magnetization reversal

processes in LSMO films grown on 10◦ vicinal STO substrates using room temperature MOKE

microscopy measurements. Two different magnetization processes were seen depending on
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the magnetic field direction with respect to the substrate steps. When the magnetic field is

applied parallel to the steps, magnetization reversal takes place by nucleation and propagation of

magnetic DWs, i.e. the easy axis, whereas a coherent rotation of the magnetization is seen when

the magnetic field is applied perpendicular to the steps, i.e. the hard axis. Interestingly, the step-

induced uniaxial magnetic anisotropy occurs at room temperature and for LSMO thicknesses up

to 70 nm. We show that the growth of LSMO thin films on vicinal substrates offers an additional

tool for magnetic domain engineering in LSMO thin films for future tailored magnetic devices.
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