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ABSTRACT

Context: Ownership metrics measure how the workload of
software modules is shared among their developers. They
have been shown to be accurate indicators of software qual-
ity. Objective: Since ownership metrics studies were done
only on industrial software projects, we replicated such a
study on Java free/libre and open source software (FLOSS)
projects. Our goal was to generalize an“ownership law”that
stated that minor developers should be avoided. Method:
We explored the relationship between ownership metrics and
fault-proneness on seven FLOSS projects, using publicly
available corpora to retrieve the fault-related information.
Results: In our corpus, the relationship between ownership
metrics and module faults is weak. At best, less than half
of projects exhibit a significant correlation, and at worst, no
projects at all. Moreover, fault-proneness seems to be much
more influenced by module size than by ownership. Conclu-
sion: The results of ownership studies done on closed-source
projects do not generalize to FLOSS projects. To under-
stand the reasons for that, we performed an in-depth analy-
sis and found that the lack of correlation between ownership
metrics and module faults is due to the distributions of con-
tributions among developers and the presence of “heroes” in
FLOSS projects.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.8 [Software
Engineering]: Metrics—process metrics

General Terms

Management, Measurement

Keywords

Process metrics, code ownership, reproduction study
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Software metrics are designed to express quantitative mea-
sures that can serve as indicators for software quality [3].
Although they were originally defined to measure software
artifact characteristics, such as the number of lines of code,
the number of methods, etc., nowadays metrics are defined
to measure developer’s activity [19]. The main intuition of
these metrics, also called process metrics, is that developers
habits have a deeper impact on software quality than the in-
trinsic characteristics of software artifacts, as suggested by
previous research [15, 20].

Among process metrics, those measuring code ownership
are of a particular interest. They measure the level to which
a developer “owns” a module of a software project, by mea-
suring the ratio of contributions made by the developer to
the total number of contributions for the module. More pre-
cisely, if a developer authored more than 5% of commits to a
module, she is considered to be a major contributor of that
module. On the other hand, a developer who authored less
than 5% of commits to a module is considered to be a minor
contributor. According to Bird et al. [2], ownership metrics
are a good indicator for software quality, as the more minor
developers contribute to a software module, the more faults
it contains.

Such a result may therefore be used to reorganize the de-
velopment teams: major owners should be assigned for each
module of a software project and minor owners should be
avoided at all costs. However, prior to reorganizing devel-
opment teams, a stronger validation of ownership metrics is
needed, and this is the purpose of this paper. First, it should
be noted that the empirical validation of ownership metrics
performed by Bird et al. was done solely on industrial soft-
ware — Windows Vista and Windows 7 modules. Further,
the metric granularity used by Bird et al., which considers
binaries (i.e., .dll files) as modules, is not applicable to
every programming language.

This paper aims to replicate the empirical study of own-
ership metrics originally performed by Bird et al. We per-
formed a similar study but considered Java free/libre and
open source software (FLOSS) projects rather than indus-
trial closed-source projects. Moreover, we tested ownership
metrics using two granularities: Java packages and source
code files. Initially, our objective was to make a step towards
generalization of the “ownership law” stating that develop-
ers, involved in developing a module, should be its major
owners and that minor owners should be avoided. However,
the results we obtained do not support the “ownership law.”
We did find a correlation between ownership metrics and
module faults but, at the best, only in half of the projects.



Then, when blocking for module sizes (i.e., eliminating the
impact of size) we did not find any relationship between
ownership metrics and module faults. These findings show
that the “ownership law” cannot be generalized and that
code metrics are better indicators of software quality than
ownership metrics on Java FLOSS projects. In order to un-
derstand why the correlation between ownership metrics and
module faults was not ubiquitously found, we performed a
thorough analysis of the software projects under examina-
tion and noticed that the distribution of ownership metrics
may have an impact on this correlation.

This paper is structured as follows: Section 2 gives an
overview of the related work. Section 3 describes the method-
ology used in the ownership metrics studies: first that of the
original ownership study performed by Bird et al. and then
the one we used in our replication study. Section 4 states
the main results of our study, which are further discussed in
Section 6, and Section 7 concludes.

2. RELATED WORK
In the late 2000s, several studies have shown evidence of a

relationship between the number of developers of a software
artifact and its fault-proneness. Illes-Seifert and Paech [11,
12] found a correlation between the number of faults iden-
tified on a file and its number of authors. Later, they ex-
plored the relationship between several process metrics and
fault-proneness, and did not find a metric where the relation-
ship with fault-proneness existed in all projects. However,
they found that the number of distinct authors of a file was
correlated to the number of faults in almost every project.
Weyuker et al. [23] found that adding the number of devel-
opers who edited a file to their prediction model provides a
slight improvement to the model’s precision.

Many studies used fault prediction models to validate the
relevance of process metrics for measuring software quality.
Moser et al. [18] compared the predictive power of two sets
of software metrics — code and process metrics — on several
Eclipse projects. They found that process metrics are better
indicators of software quality than code metrics. Similar
results have been found by other researchers who also used
fault prediction as a quality indicators for their metrics, such
as in [15, 20].

D’Ambros et al. [5] evaluated different sets of metrics in a
thorough study on fault prediction. They compared the pro-
cess metrics introduced by Moser et al. [18] to other metrics,
such as the classical source code metrics from Chidamber
and Kemerer [3], the measure of entropy of changes intro-
duced by Hassan [9], the churn of source code metrics and
the entropy of source code metrics. They found that the pro-
cess metrics, the churn metrics, and the entropy of source
code metrics are the best performers for fault prediction.
However, the authors expressed serious concerns with the
external validity of their study (i.e., whether the results are
generalizable), which calls for more empirical studies on that
matter.

As the number of developers is not always the process
metric that shows the highest correlation, ownership metrics
rely on other information which is the proportion of contri-
butions made by the developers. Using this information it is
possible to classify developers as major and minor contribu-
tors. The relationship between measures of code ownership
and faults was studied by Bird et al. [2] on Windows Vista
and Windows 7 binaries. Their study showed that the num-

ber of minor contributors of a binary is strongly correlated
to the number of pre- and post-release faults of Windows
binaries.

Mockus et al. [17] observed two code ownership patterns
in open-source projects: In the Apache project, they found
that almost every source code file with more than 30 changes
had several contributors who authored more than 10% of the
changes. In the Mozilla project they found that code own-
ership was enforced by the development guidelines, which
stated that all contributions should be reviewed and ap-
proved by the module owner. Although the focus of their
work was FLOSS projects and ownership in them, the au-
thors did not attempt to examine the connection between
the ownership patterns and fault-proneness.

3. METHODOLOGY
This section starts by describing the methodology used in

the original study of ownership metrics performed by Bird
et al. [2] and continues with the methodology used in our
replication study.

3.1 Original Ownership Study
The goal of the original study by Bird et al. was to eval-

uate whether analyzing how many developers contributed
to a project and in which proportions influenced the fault-
proneness of software modules. With this questions in mind,
they performed a study where they analyzed two commercial
Microsoft projects: Windows Vista and Windows 7. Their
data corpus includes pre- and post-release faults, precisely
linked to the faulty software modules. They introduced sev-
eral ownership metrics that characterize the way in which a
software module was built by the developers. These metrics
are described more in-depth in the next subsection.

3.1.1 Ownership Metrics

Before explaining how the ownership metrics are mea-
sured, we need to define the model we use to represent a
software development process and define the pertinent con-
cepts, such as a software module and developer contribution.

We assume that a software project is composed of a finite
set of software modules that are developed by a finite set of
developers who submit their code modifications by sending
commits to a shared code repository. In our formal model,
we use the following notations:

• M is the set of software modules of a given software
project,

• D is the set of developers, and

• C is the set of commits they send.

Each module is defined by a finite set of source code files.
When a developer modifies one of the files of a software
module by committing her work, she is contributing to that
module. The contributions made by a developer to a given
module can be measured with different metrics (e.g., by
counting the number of modified lines of codes). Bird et
al. chose to measure the weight of a developer contribution
by counting the number of touched files. For instance, if
Alice contributes to a module by modifying three files and
then another five files, she is contributing with a score of
eight. More formally, let

w(mi, dj , ck) ∈ N



be the number of files that belong to a software module
where

• mi is the software module in question,

• dj is the contributing developer who modified the mod-
ule, and

• ck is the commit made by the developer to modify the
module.

Further, for the sake of simplicity, we introduce the fol-
lowing notations:

• w(m) is the sum of all developer contributions per-
formed on a software module m,

• w(d) is the sum of all contributions performed by a
developer d, and

• w(m, d) is the sum of all contributions performed by a
developer d on a module m.

Based on this definition of developer contribution, the
ownership metrics measure the ratio of contributions made
by one developer to the rest of the developers. In other
words, for each module m and for each developer d the own-
ership metric is

ownm,d =
w(m, d)

w(m)
.

In addition, Bird et al. developed the ownership metrics
by defining four scores that are computed for each software
module:

Ownership This score is the highest value of the ratio of
contributions performed by all developers, i.e., for a
given software module m, its Ownership score is

max({ ownm,d | d ∈ D }).

Minor This score counts how many developers have a ra-
tio that is lower than 5%. More formally, for a given
software module m, its Minor score is

|{ 0 < ownm,d ≤ 5% | d ∈ D }|.

Such developers are considered to be minor contribu-
tors of the software module.

Major This score counts how many developers have a ratio
that is greater than 5%. In other words, for a given
software module m, its Major score is

|{ ownm,d > 5% | d ∈ D }|.

Such developers are considered to be major contribu-
tors of the software module.

Total This score is simply the total number of developers
of a module m and is defined as:

Total = Minor +Major.

The 5% threshold used by the Minor and Major scores
was arbitrarily chosen by Bird et al. as their experiments
with thresholds from 2% to 10% produced similar results.

Along with the ownership metrics, Bird et al. computed
several classical code metrics for each software module, such
as:

Size The number of lines of code of a module m.

Complexity Although the exact definition of the complex-
ity metric used in Bird et al. study was not given, we
choose to use the weighted method count (WMC) of
a module m, using the definition of Chidamber and
Kemerer [3].

3.1.2 Methodology and Results

Bird et al. computed the described metrics on every bi-
nary file of Windows Vista and Windows 7. Having access
to the number of pre- and post-release faults for each binary,
they computed the correlation coefficients between the met-
rics and the number of faults by using the non-parametric
Spearman method.

To ensure that ownership metrics have a real added value,
in contrast to classical code metrics such as Size, which was
found to have a confounding effect by El Emam et al. [6],
Bird et al. also performed multiple linear regression and
compared the results of a model using the classical metrics
and a model using both classical and ownership metrics to
explain the fault numbers. Their results indicate that own-
ership metrics were strongly correlated with the pre-release
faults, even better than the classical metrics. They also
found that it is beneficial to consider the ownership metrics
in addition to the classical metrics.

3.2 Our Replication
Having presented the original, Bird et al. study, we now

move on to describing our replica of their study.

3.2.1 Corpus

The original projects chosen by Bird et al. were Windows
Vista and Windows 7, which are commercial closed-source
projects. For our replication of the code ownership study,
we choose seven Java FLOSS projects, shown in Table 1, as
we believe that the development process of an commercial
closed-source project and that of an open-source project is
rather different. Therefore, being able to generalize the re-
sults of the Bird et al.’s study on a corpus of FLOSS projects
would provide considerable support for the ubiquity of the
ownership law.

In the original study, Bird et al. had access to tools used
at Microsoft and Microsoft’s internal information, which sig-
nificantly helped in finding the links between faults and soft-
ware modules. Obtaining such information for Java FLOSS
projects is much harder as they do not use the same con-
ventions and fault tracking tools. To overcome this issue,
we leveraged previous empirical data that provided publicly
available corpora: the PROMISE corpus [16] and the cor-
pus used in the D’Ambros et al.’s study [5], available online1.
Both corpora associate Java classes to their number of faults
for specific releases of the projects. Moreover, these corpora
provide code metrics including the number of lines of code
of a class and its complexity, which were necessary for our
study.

Another noteworthy difference between our corpus and
that of Bird et al. is that our corpus contains only post-
release faults whereas in the original study the corpus con-
tained both pre- and post-release faults [2].

1http://bug.inf.usi.ch/

http://bug.inf.usi.ch/


Table 1: The Java FLOSS projects included in our corpus

Project Version Date Previous Version Date

Apache Ant 1.7.0 2006-12-12 1.6.5 2005-06-02
Apache Camel 1.6.0 2009-02-17 1.5.0 2008-10-31
Apache Log4J 1.2.0 2002-05-10 1.1.3 2001-06-19
Apache Lucene 2.4.0 2008-10-03 2.3.2 2008-05-06
Eclipse JDT Core 3.4 2008-06-13 3.3.2 2008-01-31
Eclipse PDE UI 3.4.1 2008-09-03 3.4 2008-06-03
Eclipse Equinox Framework 3.4.0 2008-06-06 3.3.2 2008-01-18

3.2.2 Module Granularity

In the study performed by Bird et al., software modules
are said to be compiled Window binaries. In contrast, in the
Java world, it seems to be more natural to use Java classes
as software modules, with a reasonable approximation of a
Java class being the file in which it is written. However, we
think that it may be too fine-grained, because typical Java
classes are much smaller than Windows’ binary files. Hence,
we decided to use two definitions of a software module in our
corpus using two different granularities. A software modules
can either be a Java source files (called file granularity) or a
Java package (called package granularity), the latter being
a more comparable to Windows binaries.

3.2.3 Analyzed Time Period

Ownership metrics are computed from the modifications
performed by the developers of a module. Therefore, the
amount of modifications taken into account has an impact
on the metrics values. In the original study, Bird et al. con-
sidered all the modifications performed since the last release
of the software, which in that case was the previous version
of the Windows operating system. Regarding this point,
we wanted to explore what happens when we consider only
the modifications performed since the previous release, and
when considering a wider period such as the whole history
available in the software repository. Thus, we use two dif-
ferent time periods to compute ownership metrics: from the
beginning (called the whole period) and from the last release
(called the last release period).

3.2.4 Correlation and Module Size

In the original study, Bird et al. used multiple linear re-
gression to take into account the effect of using ownership
metrics in addition to classical code metrics, following the
advice given in [6]. To that end, they compared the amount
of variance in failures explained by a model that includes the
ownership metrics to a model that only includes a classical
code metric, such as Size. In our study, we measured this ef-
fect as well, yet we used a slightly different statistical frame-
work. Indeed, using multiple linear regression assumes nor-
mally distributed residuals, which we did not get. To avoid
this difficulty, we used partial correlation [14]. Partial corre-
lation aims to compute a correlation coefficient between two
variables by taking into account the effect of a set of control-
ling variables. We made the necessary computations using
the Spearman method (as it is a non-parametric test) and
by taking into account the effect of the Size metric, which
was shown to have a strong effect on the fault-proneness [6].
Using partial correlation, we were therefore able to analyze
the added value of ownership metrics compared to using only

the Size metric.

3.2.5 Toolset

Since the information about bugs was readily available in
the chosen FLOSS corpora, all that was left to do is to ex-
tract are the contributions of the developers. The necessary
data was available in the version control systems (VCSs) of
the projects. In order to ease the extraction of information
from the VCSs, we used an open source framework ded-
icated to mining software repositories called Harmony [7]
(available from its website2). This framework, previously
used for a number of empirical studies, such as [8] and [22],
provides a homogeneous model for several VCSs, including
Git3 and Subversion4 that were used by the projects in our
FLOSS corpus. The set of Harmony analyses performed in
our study is available online.5

4. RESULTS
As we have two factors—module granularity and analyzed

time period—with two possibilities for each—file and pack-
age for the former and whole and last release for the latter,
we ran our experiment four times. The results are shown in
Tables 2-5.

In these tables, the columns under Correlation show the
Spearman correlation coefficients with our metrics and the
module faults. Correlation coefficients range from −1 to
1, with 0 representing a total absence of correlation and
−1 and 1 representing perfect negative and perfect positive
correlations respectively. The first four columns show sep-
arately the coefficients for ownership metrics and the next
two columns show the coefficients for code metrics. The
four columns under Partial Correlation part show the coef-
ficients of the partial correlation between ownership metrics
and module faults, taking into account the effect of the Size
metric. They are computed using partial correlation in com-
bination with the Spearman method.

For the sake of clarity, correlation coefficients are dis-
played in bold if their absolute values are above the 0.50
value, meaning that they show a significant correlation. Also,
we show in italic with a * symbol the correlation coefficients
that were not statistically significant, i.e., with a p-value
above 0.05.

4.1 Ownership vs Code Metrics
The results shown in the four tables indicate that the

code metrics are better correlated with the number of faults

2http://code.google.com/p/harmony
3http://git-scm.com
4http://subversion.apache.org/
5http://se.labri.fr/articles/ownership

http://code.google.com/p/harmony
http://git-scm.com
http://subversion.apache.org/
http://se.labri.fr/articles/ownership


Table 2: Regular and partial correlation for the package granularity and last release history.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox 0.6 0.64 0.00 0.64 0.72 0.73 0.38 0.41 0.00 0.41
JDT 0.11* 0.54 0.63 0.73 0.85 0.84 -0.01* 0.23* 0.18* 0.26*
PDE 0.42 0.49 0.00 0.49 0.58 0.61 0.33 0.38 0.00 0.38
Ant -0.52 0.54 0.64 0.67 0.63 0.56 -0.34 0.32 0.36 0.4
Camel 0.16* 0.34 0.1* 0.33 0.36 0.4 0.08* 0.19 0.04* 0.19
Log4J 0.22* 0.2* 0.53 0.42 0.85 0.9 0.15* 0.19* 0.38* 0.3*
Lucene 0* 0.34 0.39 0.41 0.47 0.49 -0.01* 0.2* 0.28 0.27

Coefficients are displayed in bold if their absolute values are above the 0.50 value, and in italic with a * symbol if the
correlation coefficients were not statistically significant, i.e., with a p-value above 0.05.

Table 3: Regular and partial correlation for the file granularity and last release history.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox 0.27 0.3 0.00 0.3 0.52 0.54 0.15 0.17 0.00 0.17
JDT 0.21 0.35 0.00 0.35 0.41 0.42 0.1 0.21 0.00 0.21
PDE 0.22 0.23 0.00 0.23 0.27 0.24 0.19 0.2 0.00 0.2
Ant -0.32 0.39 0.16 0.39 0.49 0.43 -0.15 0.19 0.11 0.2
Camel 0.11 0.13 0.00 0.13 0.18 0.19 0.05* 0.07 0.00 0.07
Log4J 0.02* 0.37 0.16 0.39 0.21 0.25 0.04* 0.33 0.12* 0.35
Lucene 0.12 0.16 0.00 0.16 0.15 0.17 0.1 0.13 0.00 0.13

Table 4: Regular and partial correlation for the package granularity and whole history.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox -0.46 0.45 0.46 0.52 0.72 0.73 -0.14* 0.12* 0.22 0.18*
JDT -0.13* 0.18* 0.71 0.73 0.85 0.84 -0.02* 0.12* 0.3 0.36
PDE -0.21 0.4 0.49 0.54 0.58 0.61 -0.08* 0.25 0.23 0.33
Ant -0.38 0.08* 0.48 0.44 0.63 0.56 -0.24* -0.04* 0.01* -0.04*
Camel -0.25 0.36 0.44 0.49 0.36 0.4 -0.22 0.23 0.29 0.35
Log4J 0.23* 0* 0.56 0.34* 0.85 0.9 0.02* 0.03* 0.54 0.33*
Lucene -0.25 0.37 0.51 0.44 0.47 0.49 -0.17* 0.21* 0.35 0.26

Table 5: Regular and partial correlation for the file granularity and whole history.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox -0.36 0.33 0.44 0.44 0.52 0.54 -0.26 0.23 0.28 0.3
JDT -0.07 0.15 0.29 0.35 0.41 0.42 -0.03* 0.11 0.09 0.18
PDE 0.02* 0.07 0.24 0.16 0.27 0.24 0.03* 0.02* 0.16 0.09
Ant -0.13 0.05* 0.35 0.32 0.49 0.43 -0.1 -0.02* 0.14 0.11
Camel -0.1 0.21 0.17 0.22 0.18 0.19 -0.1 0.16 0.12 0.17
Log4J -0.24 0.27 0.27 0.34 0.21 0.25 -0.2 0.23 0.22 0.3
Lucene -0.12 0.15 0.38 0.19 0.15 0.17 -0.1 0.12 0.37 0.16



rather than with the ownership metrics. There are only few
cases where ownership metrics have better correlation co-
efficients than code metrics. This is a completely different
result from the Bird et al. study where they found a more
considerable correlation with ownership metrics. It therefore
shows that, for the Java FLOSS projects, code metrics are
better indicators of fault proneness than ownership metrics.

Among ownership metrics correlation coefficients, the most
notable is the Total score, although the Major and Minor
scores can be roughly as good as the Total score in some
cases. This differs from the results in Bird et al.’s study
where the Minor score was performing the best. Within the
selected Java projects corpus, there are several cases where
there was not a single minor developer, because there was
not enough commits made to the project in the studied pe-
riod. Hence, in Java FLOSS projects, the total number of
developers seems to be a better indicator of fault-proneness
than the number of minor developers. Regarding the code
metrics, there is almost no difference between the size and
complexity metrics.

4.2 File vs Package
Experiments where package granularity was used (Tables

2 and 4) exhibit more significant correlation than experi-
ments where file granularity was used (Tables 3 and 5). Us-
ing file granularity, the results do not contain any cases of
correlation with a coefficient above 0.50 between a metric
and the number of bugs, whereas using package granularity,
there are 17 such cases. Therefore, for Java FLOSS projects,
ownership metrics and code metrics should be computed at
package granularity and not at file granularity. This con-
firms the correctness of our initial intuition that Java classes
(essentially, Java files) are too fine-grained entities compared
to Windows binaries.

4.3 Whole Time Period vs Last Release
Computing ownership metrics over the last release of a

project (Tables 2 and 3) show overall more significant cor-
relations than metrics computed with the whole history of
a project (Tables 4 and 5). With the last release period,
we found 11 correlation coefficients above the 0.50 threshold
and only 6 coefficients above this threshold with the whole
history period. Note that, as stated above, all coefficients
above 0.50 were found using package granularity.
Although the coefficients are generally more significant

when analyzing the last release of the projects, there are
few cases where, as discussed previously, there is not a sin-
gle minor developer in the whole project, thus, causing ab-
solutely no correlation. The cases when we did not observe
any correlation were more common when we analyzed only
the last release of the projects and when we used file gran-
ularity. Analyzing only the last release of a project appears
to be more promising than analyzing whole history of the
project. However, for the Minor metric to provide useful
information, the studied project needs to have a sufficient
number of commits and developers working on the release
under analysis, which is not true for some of the cases in the
corpus projects.

4.4 Controlling for Size
Partial correlation controlled with the module size looks

for a relationship between ownership metrics and bugs while
canceling the effect of the relationships between the module

size and both the number of bugs and ownership metrics.
When considering a package as a unit of module granular-
ity (Tables 2 and 4), many tests produce statistically in-
significant results, due to sample sizes that were not large
enough. Statistically significant results show only a low, at
most moderate, relationship between ownership metrics and
module faults. With file granularity (Tables 3 and 5), as
there are more data points, the number of statistically sig-
nificant results is higher. Nevertheless, the correlations are
weaker than with the package granularity. As a consequence,
although we used a distinct statistical test, we were not able
to confirm the results of Bird et al. on Java FLOSS projects
regarding the relationship between ownership metrics and
post-release bugs when controlling for the module size.

5. THREATS TO VALIDITY
In this section, we discuss three standard threats to va-

lidity with regards to our study: construct validity, external
validity, and statistical conclusion validity.

Construct validity refers to whether or not our actual mea-
sures correspond to the conceptual ones. In our study, two
main concepts are measured: post-release bugs and owner-
ship metrics. The count of number of bugs we used in our
study was extracted in previous research works by Jureczko
et al. [13] and D’Ambros et al. [5] and made publicly avail-
able. Both studies acknowledge threats to validity related
to the construction of these corpora, particularly, the algo-
rithms linking faults to their fixing commits. In both cases
the algorithm analyzes commit messages to find a fault iden-
tifier. When a fault identifier is found, the commit is tagged
as a fixing commit, and all the classes modified in this com-
mit are linked to the fault. Although this technique repre-
sents the state of the art in the literature of linking faults
to commits [24], it suffers from a poor recall as all the fix-
ing commits that do not contain a reference to the fault are
ignored. This fact threatens the validity of the study as it
introduces a bias in the bugs included in the corpus [1].

Another threat related to the faults and identified by pre-
vious research is the quality of the data stored in the issue
tracker itself. According to Herzig et al. [10], many issues
classified as faults in open source projects are in fact evo-
lution or optimization requests. To ensure this, D’Ambros
et al. performed a manual check on one of the projects of
their corpus and found that most of the bugs were correctly
classified. However, we do not know if such a verification
was done on the corpus of Jureczko et al.

External validity answers the question of whether the re-
sults of a study can be generalized or not. A parameter
which may threaten external validity is how the subject
of the study (Java FLOSS projects in our case) were se-
lected. As noted by D’Ambros et al., their corpus is com-
posed of Eclipse projects, that possess a prominent indus-
trial style. This observation may threaten the generalization
of the results obtained with these projects to other open-
source projects, as the development process may be differ-
ent.

The second threat to external validity is linked to the pro-
gramming language and the module granularities we used.
All the projects in our corpus are written in Java, and package-
level granularity is strongly linked to this language as it re-
lies on one of its feature. To resolve this issue, we could
include projects developed in different languages and use a
language-agnostic approach to split projects into modules



(e.g., [4]). Ultimately, when trying to determine where an
“ownership law” applies, the only way to test external valid-
ity is by replicating the study with different projects and/or
different settings.

Statistical conclusion validity relates to the statistical sig-
nificance (or statistical power) of the results. In the case
of correlation tests, the statistical power of the results is
expressed with a p-value, representing the probability that
we find a type I error (i.e., finding a correlation when none
exists). In the tables from the previous section, the correla-
tion coefficient marked with a * had a p-value above 0.05,
which means that for these particular results, there is more
than a 5% chance to find the same scores by taking ran-
dom values. However, we obtained a sufficient amount of
statistically significant scores to provide reliable results.

6. DISCUSSION
Bird et al. [2] found a strong correlation between owner-

ship metrics and module faults in industrial projects whereas
the results of our study of Java FLOSS projects are quite dif-
ferent. This may be due to the inherent differences between
industrial and FLOSS projects.

One main difference between industrial and FLOSS projects
is in the distribution of workload between developers. In in-
dustrial projects, the majority of developers spend 100% of
their time on the project and contribute to it for several
months. In FLOSS projects, there are two kinds of devel-
opers: few “heroes,” who contribute to all modules of the
project for a long time, and a number of minor contribu-
tors, who develop a single feature or fix a bug and then stop
their involvement with the project [21]. This appears to be
a plausible explanation of the absence of minor developers
when analyzing only the last release of the projects in our
corpus. It is possible that, in the considered release, only
“heroes” contributed to the project, or that the number of
contributions per module was not enough to have minor de-
velopers.

To verify our conjectures, we investigated the distribu-
tions of ownership metrics and module faults to check if they
have an impact on the correlation coefficients. Rather than
investigating the distributions for both granularities and for
both time periods, we chose to focus on the setting that pro-
vided the best overall result, which is with the package-level
metrics computed over the last release of the projects.

Figure 1 displays the distribution of the Ownership score
in each project. There are two different types of distribu-
tions for this metric. In the projects Equinox, PDE, Camel,
Log4J, and Lucene, most of the packages with contribu-
tions have a single “hero” who performs most of the com-
mits, as shown by the Ownership values that are close to
1. This suggests that there is an “enforced ownership” in
these projects, similar to the findings of Mockus et al. for
the Mozilla project [17]. In the projects JDT and Ant, as
most of the Ownership values are around 0.50, it seems that
there is no strong ownership on the packages, which would
resemble the ownership pattern found by Mockus et al. on
the Apache project [17].

Figure 2 shows the distribution of the Major score in each
project. The distribution of the number of major developers
in the projects Equinox, PDE, and Camel is consistent with
the previous observations, with most packages with no or a
single major developer. Most packages of Log4J have either
one or two major developers whereas JDT and Ant show

once again similar distributions, which here are lightly right-
skewed. These distributions confirm the interpretation we
made of the ownership metric, which is that two ownership
patterns are found in the FLOSS projects of our corpus:
projects with a strong ownership and projects with several
major developers per module.

Figure 3 depicts the distribution of the Minor score in
each project. Distributions for Equinox and PDE are omit-
ted as the package of these projects do not have any mi-
nor developer on their last release. Distributions for other
projects are all heavily right-skewed.

Finally, Figure 4 displays the distribution of the number of
bugs in each project. Distributions are heavily right-skewed
for every project. The main difference between the projects
is the maximum number of bugs, which ranges from about
50 bugs to 130 bugs per package.

As a consequence, it appears to us that the intrinsic nature
of FLOSS projects is a major bias for measuring a correla-
tion between ownership metrics and module faults. In other
words, if a FLOSS project is developed by a single “hero”
on each module, with “enforced ownership”, and if other de-
velopers provide hardly any or no modifications then the
ownership metrics are not a good indicator for quality.

7. CONCLUSION AND FUTURE WORK
The objective of our study was to replicate the study of

ownership metrics of Bird et al. on FLOSS projects. Such
metrics are known to be good quality indicators and can be
used to organize software development teams. Ownership
metrics were validated, but only on Microsoft industrial soft-
ware projects. We chose to validate them on FLOSS projects
to check if they can be applied in this new context.

Surprisingly, the results we obtained are at odds with
those obtained in the original study. In particular, we did
not observe a strong correlation between ownership metrics
and module faults in the seven popular Java FLOSS projects
of our corpus. Furthermore, we observed that classical code
metrics are better quality indicators, and no relationship was
found between ownership metrics and module faults when
controlling for module size.

As we were not able to reuse the definitions of modules
from Bird et al. paper, we had to define modules in a differ-
ent way. We considered modules to be either files or pack-
ages. Trying both definitions, we discovered that the size of
a software module is an important factor: file granularity is
excessively fine, and package granularity is better but still
not good enough to observe significant correlation.

We investigated the distribution of ownership in each project,
and found that two different patterns emerge. On one hand,
the projects with“hero”contributors, and on the other hand,
the projects without “enforced ownership”, where there are
several major developers in each module. No significant dif-
ference in the correlation scores were observed between these
two categories of projects.

As future work, we seek to improve measures of owner-
ship for FLOSS projects. In the original study of Bird et al.,
major developers of a module were most of the time minor
developers of another module. This might not be the case in
FLOSS projects due to the organization of the open-source
development where there is a clear distinction between the
core developers of a project (“heroes”) and incidental con-
tributors. Our hypothesis is that although incidental con-
tributors do not have significant impact on the quality of a
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Figure 1: Distribution of the Ownership metric per package, with the whole history of the project.
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Figure 2: Distribution of the number of major developers per package, with the whole history of the project.
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project, they introduce noise to the measures of ownership.
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