
HAL Id: hal-00975971
https://hal.science/hal-00975971

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized power domination: propagation radius and
Sierpinski Graphs

Paul Dorbec, Sandi Klavzar

To cite this version:
Paul Dorbec, Sandi Klavzar. Generalized power domination: propagation radius and Sier-
pinski Graphs. Acta Applicandae Mathematicae, 2014, pp.DOI 10.1007/s10440-014-9870-7.
�10.1007/s10440-014-9870-7�. �hal-00975971�

https://hal.science/hal-00975971
https://hal.archives-ouvertes.fr


Generalized power domination: propagation radius and
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Abstract

The recently introduced concept of k-power domination generalizes dom-

ination and power domination, the latter concept being used for monitoring

an electric power system. The k-power domination problem is to determine a

minimum size vertex subset S of a graph G such that after setting X = N [S],

and iteratively adding to X vertices x that have a neighbour v in X such that

at most k neighbours of v are not yet in X , we get X = V (G). In this paper

the k-power domination number of Sierpiński graphs is determined. The prop-

agation radius is introduced as a measure of the efficiency of power dominating

sets. The propagation radius of Sierpiński graphs is obtained in most of the

cases.

Keywords: power domination; electrical network monitoring; domination; Sierpiński

graph; propagation radius

AMS Subj. Class. (2010): 05C69, 94C15

1 Introduction

The motivation for the power domination in graphs is the problem of monitoring

an electric power system by placing as few measurement devices in the system as

possible [3]. Actually, several hundreds of measurement units for monitoring an
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electric power system have been installed world wide. For a detailed description of

the application in power networks and for related references see the very instructive

introduction of [1].

The problem of monitoring an electric power system was formulated in graph

theory terms as follows [13]. Let G be a graph and S ⊆ V (G). Then the set M(S),

called the set of vertices monitored by S, is defined as follows. Initially, the set

M(S) consists of all vertices dominated by S. After that, we repeatedly add to

M(S) vertices x that have a neighbour v in M(S) such that all the other neighbours

of v are already in M(S). We continue this process until no such vertex x exists,

M(S) being the obtained set. The set S is a power dominating set of G, PD-set for

short, if M(S) = V (G). The power domination number γP(G) of G is the minimum

cardinality of a PD-set in G. Actually, the formulation of the power domination

problem as just given is not the original definition but an equivalent simplification

of it that was independently proposed in [8, 9]. Recently, the power domination was

extended to the so-called generalized power domination [5]. The generalization is

that a non-negative integer k is given and then a vertex x is added to the set M(S)

of already observed vertices provided that x has a neighbour v in M(S) such that

at most k neighbours of v are not yet in M(S).

After the power domination was proposed as a graph theory problem, it has

received a lot of attention, especially from the algorithmic point of view. For com-

plexity results and related topics (like parametrized power domination complexity

and approximation algorithms) see [1, 2, 4, 12, 13, 21]. In particular, the problem of

deciding whether there exists a power dominating set of a given size is NP-complete

for planar bipartite graphs [4]. On the other hand, linear-time algorithms for finding

a minimum power dominating set were given for trees [13], for block graphs [27],

and for interval graphs [22]. The exact value of the power domination number was

determined for some products of graphs in [8, 9], bounds for the power domination

numbers of connected graphs and of claw-free cubic graphs are given in [31]. As

already mentioned, the k-power domination was first studied in [5]. It was further

investigated in [7].

Sierpiński graphs form a two parametric family of graphs introduced in [18], mo-

tivated by the Tower of Hanoi problem and studies of certain universal topological

spaces. See recent books [14, 24] for many connections between Sierpiński graphs

and these two topics and [15] for the problem of when Sierpiński graphs embed as

spanning subgraphs into the corresponding Tower of Hanoi graphs. In addition,

Sierpiński graphs were studied from numerous other points of view, recent investi-

gations include [11, 16, 17, 20, 23, 28, 29, 30]. We also point out that earlier than

the Sierpiński graphs, the so-called WK-recursive networks were introduced in [6],

see also [10]. WK-recursive networks are very similar to Sierpiński graphs—they can

be obtained from Sierpiński graphs by adding a link (an open edge) to each of its
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extreme vertices. In addition, Sierpiński graph were independently studied in [26].

We proceed as follows. In the next section concepts needed in this paper are

introduced and some known results recalled. Then, in Section 3, we determine the

k-power domination number of Sierpiński graphs. This seems to be the first class

of graphs of fractal nature, for which the power domination number is determined

exactly. Actually, for only few non-trivial families of graphs the exact power dom-

ination number is known. In the subsequent section we introduce the concept of a

propagation radius as the minimum number of propagation steps over all kPD-sets.

We were in particular motivated by the investigations of Aazami in [1], where the

problem of determining a minimum size power dominating set is studied under the

additional condition that the number of propagation steps in bounded by a fixed

constant. In the final section the propagation radius of Sierpiński graphs Sn
p is

determined for most of the parameters p and n.

2 Preliminaries

All graphs G = (V (G), E(G)) considered are finite and simple, that is, |V (G)| ∈ N

and there are neither multiple edges nor loops. The open neighbourhood of a vertex v

of G, denoted by NG(v), is the set of vertices adjacent to v. The closed neighbourhood

of v is NG[v] = NG(v) ∪ {v}. The open (resp. closed) neighbourhood NG(S) (resp.

NG[S]) of a set S ⊆ V (G) is the union of the open (resp. closed) neighbourhoods

of its elements. When G is clear from context, we may use N instead of NG. The

degree of a vertex v, denoted by d(v), is the order of its open neighbourhood, the

maximum degree of G is denoted by ∆(G).

A dominating set of a graph G is a set of vertices S such that N [S] = V (G). The

domination number γ(G) of a graph G is the minimum cardinality of a dominating

set of G.

The distance dG(u, v) between vertices u and v of a connected graph G is

the number of edges on a shortest u, v-path. The eccentricity of a vertex u is

maxx∈V (G) dG(u, x). The radius of G, denoted by rad(G), is the minimum eccentric-

ity of the vertices of G.

Let k ≥ 0. If G is a graph and S ⊆ V (G), then the sets
(

Pi
G,k(S)

)

i≥0
of vertices

monitored by S at step i are defined as follows:

P0
G,k(S) = N [S], and

Pi+1
G,k (S) =

⋃{N [v] : v ∈ Pi
G,k(S) such that

∣

∣N [v] \ Pi
G,k(S)

∣

∣ ≤ k}.

Clearly, Pi
G,k(S) ⊆ Pi+1

G,k (S) ⊆ V (G) holds for any i ≥ 0. It is also clear (cf. [5])

that if Pi0
G,k(S) = Pi0+1

G,k (S) for some i0, then Pj
G,k(S) = Pi0

G,k(S) for every j ≥ i0;

accordingly define P∞
G,k(S) = Pi0

G,k(S). When the graph G is clear from the context,

we will simplify the notation to Pi
k(S) and P∞

k (S).
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Here are the key definitions from [5]. Let k, G, and S be as above. If P∞
G,k(S) =

V (G), then S is called a k-power dominating set of G, abbreviated kPD-set. The

minimum cardinality of a kPD-set in G is the k-power domination number γP,k(G)

of G. A γP,k(G)-set is a kPD-set in G of cardinality γP,k(G).

We now turn to Sierpiński graphs. For n ∈ N, let [n]0 = {0, . . . , n − 1} and

[n] = {1, . . . , n}. If p, n ∈ N, then the Sierpiński graph Sn
p is defined as follows. The

vertex set of Sn
p is the set [p]n0 , whose elements we denote by sn . . . s1. Two vertices

s and t are adjacent if and only if there exists a δ ∈ [n] such that

(i) sd = td, for d ∈ [n] \ [δ];

(ii) sδ 6= tδ;

(iii) sd = tδ and td = sδ for d ∈ [δ − 1].

Note that Sn
1
∼= K1 (n ≥ 1), Sn

2
∼= P2n (n ≥ 1), and S1

p
∼= Kp (p ≥ 1). See Fig. 1 for

S3
5 .

Figure 1: Sierpiński graph S3
5

Vertices of the form k . . . k = kn are called extreme vertices of Sn
p . Clearly, Sn

p

contains p extreme vertices and they are of degree p − 1; all the other vertices are

of degree p. If r ∈ [n− 1], then let sn . . . sr+1S
r
p denote the subgraph of Sn

p induced

by vertices with prefix sn . . . sr+1. Note that sn . . . sr+1S
r
p is isomorphic to Sr

p, in

particular, sn . . . s2S
1
p is isomorphic to Kp.

Finally, we recall two related results on Sierpiński graphs.
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Theorem 2.1 ([19, Theorem 3.8]) For any n ≥ 1 and any p ≥ 1,

γP,0(S
n
p ) = γ(Sn

p ) =

{

ppn−1+1
p+1 ; n even ,

pn+1
p+1 ; n odd .

Theorem 2.2 ([25, Theorem 3.1]) For any n ≥ 1 and any p ≥ 1,

rad(Sn
p ) =

{

2n − 1; n < p ,

2n−p+1(2p−1 − 1); n ≥ p .

In the rest of the paper we will consider the k-power domination for k ≥ 1.

Hence, until stated otherwise, we will throughout assume that k, p, n ∈ N.

3 The k-power domination number of Sierpiński graphs

In this section we prove:

Theorem 3.1 We have

γP,k(S
n
p ) =











1; p = 1 or p = 2 or n = 1 or p ≤ k + 1 ,

p− k; n = 2 and p ≥ k + 2 ,

(p− k − 1)pn−2; n ≥ 3 and p ≥ k + 2 .

Proof. Recall that Sn
1
∼= K1, that S

n
2
∼= P2n , and that S1

p
∼= Kp. Hence γP,k(G) = 1

for any of these Sierpiński graphs G. Note also that since ∆(Sn
p ) = p, it follows that

γP,k(S
n
p ) = 1 when k ≥ p− 1 = ∆(Sn

p )− 1 (see [5, Lemma 7]).

Now let n ≥ 3 and p ≥ k + 2. Let S be a kPD-set of Sn
p and let w ∈ [p]n−2

0 . We

claim that

|S ∩ V (wS2
p)| ≥ p− k − 1 . (1)

Assume first that |S ∩ V (wS2
p)| = p − k − 2 and that S has exactly one ver-

tex in p-cliques wiS1
p for i ∈ {i1, . . . , ip−k−2}. Then S ∩ V (wi′S1

p) = ∅ holds

for k + 2 coordinates i′. Let wjS1
p be an arbitrary such subgraph. Let X =

{wji1, . . . , wjip−k−2} ∪ {wjj}, and observe that P1
k(S) ∩ wjS1

p ⊆ X. Note that

this conclusion holds for any j ∈ J = [p]0 \ {i1, . . . , ip−k−2}, and thus that the set

of vertices {wjj′ : j ∈ J, j′ ∈ J, j′ 6= j} has an empty intersection with P1
k (S).

Since every vertex in V (Sn
p ) has either 0 or k + 1 neighbours in this set, no ver-

tex from this set may get monitored later on, a contradiction. Assume next that

|S ∩ V (wS2
p)| < p − k − 2 or that S intersects some wiS2

p in more than one vertex.

Then we can analogously conclude that not all vertices of wjS1
p will be monitored.

Hence (1) is proved.
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Since V (Sn
p ) partitions into pn−2 sets V (wS2

p), where w ∈ [p]n−2
0 , we obtain:

|S| =
∑

w∈[p]n−2

0

|S ∩ V (wS2
p)| ≥

∑

w∈[p]n−2

0

(p − k − 1) = (p− k − 1)pn−2 .

We next show that γP,k(S
n
p ) ≤ (p − k − 1)pn−2 whenever n ≥ 3 and p ≥ k + 2.

To this end recall from [18] that Sn
p is hamiltonian for any p ≥ 3. Using this

result together with the fact that contracting each of the subgraphs of Sn
p of the

form wS2
p into a single vertex yields a graph isomorphic to Sn−2

p , we can arrange

the subgraphs wS2
p into a circuit such that there is exactly one edge between the

consecutive subgraphs. We now construct a set S which contains p− k − 1 vertices

of each subgraph wS2
p .

Let wS2
p , w

′S2
p , and w′′S2

p be arbitrary but fixed consecutive subgraphs in the

selected Hamiltonian order. Let uu′ be the edge between wS2
p and w′S2

p , where

u ∈ wS2
p , and let x′x′′ be the edge between w′S2

p and w′′S2
p , where x′ ∈ w′S2

p . Let

S ∩w′S2
p consist of the vertex x′ and of p− k− 2 additional vertices, no two lying in

the same subgraph w′iS1
p , and no one lying in the p-clique Q that contains u′. Do

this in parallel for any subgraph yS2
p . As wS2

p , w
′S2

p , and w′′S2
p are arbitrary, the

set S is precisely defined in this way. In particular, the vertex u is put into S when

considering wS2
p . Observe now that p − k vertices of Q lie in P1

k(S): one of these

vertices is u′, the other p−k−1 are those vertices of Q that have a neighbour in the

p-cliques that contain the p− k− 1 vertices of S. But then the remaining k vertices

of Q lie in P2
k(S) and it is then straightforward that all the vertices of w′S2

p lie in

P∞
k (S). We conclude that S is a kPD-set. Since |S| = (p− k − 1)pn−2, the proof is

complete for the case n ≥ 3 and p ≥ k + 2.

The remaining case to consider is when n = 2. The arguments in this case are

similar to those that we used above when p ≥ k+2. The only difference is that now

we have only one subgraph of the form wS2
p (that is, the one where w is the empty

word). Hence no vertex of S2
p is monitored from outside through one of its extremal

vertices and thus we need at least p − k vertices in a kPD-set instead of p − k − 1.

It is then easy to verify that kPD-sets of order p− k indeed exist. �

4 Propagation radius

In practice, besides the minimum size of a kPD-set, the information in how many

propagation steps the graph is monitored from a given kPD-set could also be im-

portant. For instance, in the path graph, its central vertex seems to be “the best”

candidate for the power dominating set, as it propagates to the whole path in the

shortest time. We hence introduce the k-propagation radius of a graph G defined as

radP,k(G) = 1 + min{i : Pi
G,k(S) = V (G), S kPD-set of G, |S| = γP,k(G)} .
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In [13], trees T for which γP,1(T ) = γ(T ) holds were characterized. This result

naturally leads to the more general question for which k and which G, γP,k(G) =

γ(G) holds. From this point of view we observe the following:

Proposition 4.1 Let G be a graph. Then γP,k(G) = γ(G) if and only if radP,k(G) =

1.

Proof. Suppose radP,k(G) = 1. Then a γP,k(G)-set is also a dominating set,

hence γ(G) ≤ γP,k(G). Since in general γP,k(G) ≤ γ(G) holds, we conclude that

γP,k(G) = γ(G).

Suppose radP,k(G) ≥ 2. Since P0
G,k(S) = V (G) holds for any γ-set of G, we must

have γP,k(G) < γ(G). �

Note that γP,k(G) can be any positive integer less than γ(G) as soon as radP,k(G) >

1. Indeed, if n ≥ 2, then let Tn be the tree obtained from the star K1,n by subdi-

viding each of its edges. Then γP,k(Tn) = 1 and γ(Tn) = n.

Recall from [5, Lemma 7] that if ∆(G) ≤ k + 1, then γP,k(G) = 1 and that any

vertex of G forms a power dominating set. From the proof of this result, it readily

follows:

Lemma 4.2 If ∆(G) ≤ k + 1, then radP,k(G) = rad(G).

On the other hand, to see that γP,k(G) = 1 in general does not imply that

radP,k(G) = rad(G) consider the following example. For n, k ≥ 1 define the peacock

P k
n as follows. Start with a path on n vertices v1, . . . , vn and a vertex x not on the

path. Add edges xvi, i ∈ [n], and for all i ∈ [n − 1] subdivide the edge vivi+1 by

a vertex wi. Add k − 1 pendant vertices at vi for i = 2, 3, . . . , n − 1, and add k

pendant vertices at the vertex vn. Finally, add to the graph a disjoint path Pk+1 on

(consecutive) vertices u1, . . . , uk+1 and connect ui with x for every i ∈ [k + 1]. The

peacock P 3
10 is shown in Fig. 2.

Proposition 4.3 For any n and k, γP,k(P
k
n ) = 1 and radP,k(P

k
n ) = n+ 1.

Proof. For i = 1, . . . , n − 1, let vi,j , 2 ≤ j ≤ k − 1, be the k − 1 leaves attached

to vi and let vn,j, j ∈ [k], be the k leaves attached to vn. Clearly, P0
k({x}) =

{x} ∪ {v1, . . . , vn} ∪ {u1, . . . , uk+1}. Note further that P1
k({x}) = P0

k({x}) ∪ {w1}
and that Pi

k({x}) = Pi−1
k ({x}) ∪ {wi, vi,1, . . . , vi,k−1} holds for i = 2, . . . , n − 1.

Finally, Pn
k ({x}) = V (P k

n ). If follows that {x} is a kPD-set γP,k(P
k
n ) = 1.

To conclude that radP,k(P
k
n ) = n+1 it suffices to observe that no vertex different

from x is a PD-set. This is true for any vertex ui because then no propagation would

be possible from x having n + k > k neighbours not yet monitored. Similarly, no
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v2 v9

v10
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w9

u1

u2 u3

u4

Figure 2: The peacock P 3
10

vertex vi, wi, or vi,j can form a kPD-set, because (at least) vertices u1, . . . , uk+1

would not get monitored. �

Note that the arguments of the proof of Proposition 4.3 apply to any graph that

is constructed as P k
n , except that the path on vertices u1, . . . , uk+1 is replaced by

an arbitrary graph of order at least k + 1. (Using this fact, a graph theorist with

artistic gift has many options to draw a fine picture of the peacock’s body.)

Corollary 4.4 For any positive integers k and t, there exists a graph G with γP,k(G) =

1 such that radP,k(G)− rad(G) = t.

Proof. By Proposition 4.3, radP,k(P
k
t+1)− rad(P k

t+1) = (t+ 2)− 2 = t. �

All the graphs from the proof of Corollary 4.4 have radius 2. To construct graphs

with arbitrary radius that lead to the same conclusion, let P k
n,r be the graph obtained

from the disjoint union of the peacock P k
n,r and a path P2r, r ≥ 2, by identifying

a leaf of P2r with u1. Then rad(P k
n,r) = r + 1 and radP,k(P

k
n,r) = max{n + 1, 2r}.

Therefore, for any n ≤ 2r − 1,

radP,k(P
k
n,r)− rad(P k

n,r) = 2r − (r + 1) = r − 1 .

5 Propagation radius of Sierpiński graphs

In this section, we compute the propagation radius of the Sierpiǹski graphs Sn
p . We

first consider the easier case when n ≤ 2. First note that if p = 1 or n = 1, then the

graph is a complete graph and the propagation radius is 1.
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Theorem 5.1 If p ≥ 2, then

radP,k(S
2
p) =

{

2; k = 1 or p = 2 ,

3; k ≥ 2 and p ≥ 3 .

Proof. If k ≥ p− 1, then k+1 ≥ ∆(S2
p) so radP,k(S

2
p) = rad(S2

p) which is 2 if p = 2

and 3 if p ≥ 3.

Now for k ∈ [p − 2] consider the set D = {i0 : k ≤ i ≤ p − 1}. This set is

of order p − k = γP,k(S
2
p). If k = 1, this set dominates all of S2

p except vertex 00,

so P1
1 (D) = V (S2

p) and radP,1(S
2
p) ≤ 2. Note that the propagation radius is not 1

because γ(S2
p) = p > γP,1(S

2
p). Suppose now that k ≥ 2. Observe that P0

k(D) =

N [D] = V (S2
p) \

(

{0i : i ∈ [k]0} ∪ (V (iS1
p))i∈[k]0

)

, then that P1
k(D) = V (S2

p) \ {ij :

i ∈ [k − 1], j ∈ [k]0} and finally that P2
k(D) = V (S2

p). Thus radP,k(S
2
p) ≤ 3. The

proof of radP,k(S
2
p) ≥ 3 is deferred to the following more general lemma which will

turn out to be useful later as well. �

Lemma 5.2 Let n ≥ 2 and k ∈ [p− 2]. If k ≥ 2 or n ≥ 3, radP,k(S
n
p ) ≥ 3.

Proof. Suppose that k ≥ 2 or n ≥ 3, and let D be a minimum kPD-set of Sn
p .

In both cases, γP,k(S
n
p ) ≤ (p − 2)pn−2 so there exists some wS2

p (w possibly null)

containing at most p−2 vertices of D. Thus there exist in wS2
p two copies of S1

p not

containing any vertex of D, say w0S1
p and w1S1

p . We prove that w01 or w10 is not in

P1
k (D). Clearly, w01 and w10 are not in P0

k(D). Moreover, |(w0S1
p ∪w1S1

p)∩P0
k(D)|

contains no more than p− k vertices if n = 2 or than p− k− 1 + 2 vertices if n ≥ 3.

So in both cases, |(w0S1
p ∪w1S1

p) \ P0
k (D)| ≥ 2p− (p− k + 1) = p+ k − 1 and since

k ≤ p − 2, this is at least 2k + 1. Therefore, in w0Sn
p or in w1Sn

p , there are more

than k unmonitored vertices to which any neighbour of w01 or w10 respectively is

adjacent, preventing any propagation to this vertex on that step. Thus w01 or w10

is not in P1
k(D) and radP,k(S

n
p ) ≥ 3. �

We now state the theorem for n ≥ 3, that we then prove with a sequence of

lemmas. (The radius of Sn
p that appears in the statement can be found in [25] and

is recalled in Theorem 2.2.)

Theorem 5.3 If n ≥ 3, then

radP,k(S
n
p ) =



















3; p ≥ 2k + 3 ,

4 or 5; 2k + 2 ≥ p ≥ k + 1 +
√
k + 1 ,

5; k + 1 +
√
k + 1 > p ≥ k + 2 ,

rad(Sn
p ); p ≤ k + 1 .
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Figure 3: Propagation for getting radius 3 in S2
5 , k = 2.

First note that since the maximum degree of Sn
p is p, radP,k(S

n
p ) = rad(Sn

p )

whenever k ≥ p− 1 as we already mentioned in Lemma 4.2. The following lemmas,

together with Lemma 5.2, give the other parts of the proof.

Lemma 5.4 Let n ≥ 3 and k ∈ [p − 2]. Then radP,k(S
n
p ) = 3 if and only if

p ≥ 2k + 3.

Proof. Recall that radP,k(S
n
p ) ≥ 3 by Lemma 5.2. We first prove that if radP,k(S

n
p ) ≤

3, then p ≥ 2k + 3. Let D be a minimum kPD-set of Sn
p that has radius at most

3. By Theorem 3.1, |D| = (p − k − 1)pn−2 and thus there exist a copy wS2
p with

at most p − k − 1 vertices. We consider the possible configurations of sequences

of propagations within wS2
p (see Fig. 3). Renaming the vertices if necessary, we

can assume that the vertices in D′ = D ∩ wS2
p are located in the copies wiS1

p with

k < i ≤ p − 1. Therefore, all vertices of wiS1
p for k < i ≤ p − 1 are possibly in

P0
k (D

′). Moreover, in each copy wjS1
p , j ∈ [k + 1]0, no more than p− k − 1 vertices

are in Pt
k(D

′) for t ≥ 1 and the set D′ does not power dominate wS2
p by itself: it

needs that some vertices be monitored from a neighbouring S2
p .

Observe that if the configuration wS2
p gets at most k vertices monitored by

propagation from neighbouring copies of S2
p , and the earliest such propagation is at

time t0, then its vertices are monitored on step t0+3 at the earliest. Indeed, in such

a case, at least one copy among wjS1
p , j ∈ [k+1]0 does not have a vertex monitored

by a neighbouring copy of S2
p , say one is wkS1

p . Say also that the vertex w00 is one

of the vertices monitored by an adjacent w′S2
p on step t0. Then, all vertices of w0S

1
p

should get monitored just after, that is w0S1
p ⊂ Pt0+1

k . They then can propagate

on step t0 + 2 to the vertices wj0 for j ∈ [k], and especially wkk gets monitored no

earlier than step t0 + 3.

10



Yet in that case, even if t0 = 0, the graph gets monitored only on step 3 so would

have propagation radius 4. Thus, we know that each copy of S2
p must have at least

k + 1 vertices monitored by a neighbouring copy of S2
p . To summarize, each wSn

p

monitors at most p− k− 1 vertices in neighbouring copies and need to have at least

k+1 vertices monitored from outside. Moreover, the p copies in−2Sn
p have only p−1

neighbouring copies. Thus, we must have

(k + 1)pn−2 ≤ (p− k − 1)pn−2 − p .

We infer that k + 1 < p− k − 1 and thus 2k + 2 < p.

Assume now that p ≥ 2k+ 3, we give an explicit construction of a kPD-set that

has radius 3. For S3
p , take the set D = {ijj : i ∈ [p]0, i ≤ j ≤ i+ p − k − 1} where

values are considered modulo p. Then each copy of iS2
p gets all its vertices ijj for

i + p − k − 1 < j ≤ i + p − 1 monitored in P0
k(D) by neighbouring copies jS2

p . As

described earlier, the whole S3
p thus gets monitored at step 2 (see Fig. 3). For larger

n, one can just reproduce this set on each copy wS3
p . �

�

�

A

1

1

0

Type A

�

�

B

1

10

0 3

Type B

Figure 4: Various types of propagation in S2
5 when k = 2.

Lemma 5.5 Let n ≥ 3 and k ∈ [p− 2]. If p < k+1+
√
k + 1, then radP,k(S

n
p ) ≥ 5.

Proof. We prove this lemma by contradiction; assume radP,k(S
n
p ) ≤ 4. Let D be a

minimum kPD-set of Sn
p that has radius 4. Again consider the possible configurations

of propagation within a copy wS2
p containing p−k−1 vertices of D; they are slightly

different (see Fig. 4). Renaming the vertices if necessary, we assume that the vertices

11



in D′ = D∩wS2
p are located in the copies wiS1

p with k < i ≤ p−1. Again, all vertices

of wiS1
p for k < i ≤ p− 1 are in P0

k (D
′). Moreover, in each copy wjS1

p , j ∈ [k + 1]0,

exactly p − k − 1 vertices are in Pt
k(D

′) for t ≥ 1 and, the set D′ does not power

dominate wS2
p by itself, it needs that some vertices be monitored from a neighbouring

S2
p .

As observed in the proof of the previous lemma, if such a configuration gets at

most k vertices monitored by propagation from neighbouring copies of S2
p , and the

earliest is at time t0, then its vertices all get monitored only at step t0+3. Therefore,

this situation may happen in our graph only if t0 = 0. Also, it is required that

w0S1
p ⊂ Pt0+1

k (D), thus that at least p− k− 1 vertices of w0S1
p be in P0

k(D ∩wS2
p).

The vertices in D ∩ wS2
p are thus necessarily the vertices wi0 for k < i ≤ p − 1

(see Fig. 4(A) for an example on S2
5). As a consequence, it means also that this

copy wS2
p may propagate only to p− k − 1 neighbouring copies w′S2

p on step 1 and

to other copies on step 4, when the graph should already be completely monitored.

We call similar copies of S2
p copies of type (A) and remember that they need one

propagation on step 0 and give at most p− k − 1 on step 1.

Consider now the case when a copy of S2
p has at least k + 1 vertices monitored

by neighbouring copies of S2
p (such a configuration can be monitored by step 3 as

shown, e.g., in Fig. 4(B).) We call such a configuration type (B). We remember that

these configurations need k + 1 propagations from neighbouring w′Sn
p and give at

most p− k− 1 propagations, possibly on step 0. Denote by a the number of wS2
p of

type (A) and by b the number of type (B) in our graph. Since every copy of type

(A) needs to have a vertex monitored on step 0 by some copy of type (B), we have

a ≤ (p− k − 1)b . (2)

Moreover, each copy of type (B) needs at least k + 1 propagations from either type

(A) or type (B) that are not already given to a type (A) copy. Since the total

number of propagations required before step 4 must be less than the total number

of propagations given, we get

a+ (k + 1)b ≤ (p− k − 1)a+ (p− k − 1)b (3)

and combining (2) with (3) we get 0 ≤ ((p−k−1)2−(k+1))b. So since b is positive,

we must have (p− k − 1)2 ≥ k + 1 or Sn
p has radius at least 5. �

We conclude simply by proving that no Sn
p with n ≥ 3 and k ∈ [p − 2] has

k-power domination radius greater than 5.

Lemma 5.6 If n ≥ 3 and k ∈ [p− 2], then radP,k(S
n
p ) ≤ 5.

Proof. As observed in the proof of the previous lemma, if a copy wS2
p of type A

has one vertex monitored from an adjacent copy on step t0, it gets fully monitored

12



on step t0+3. So to monitor Sn
p , on each wS2

p we select initial vertices in the power-

dominating set so that it is of type A. We need that each copy gets one vertex

monitored on step 1 by a neighbouring copy and they all can monitor two such

vertices. Arranging the copies so that they monitor vertices of adjacent copies along

a Hamiltonian cycle in Sn−2
p , we easily find a minimum power dominating set with

radius 5. �

6 Concluding remarks

In this paper we have determined the k-power domination number of Sierpiński

graphs and introduced the propagation radius of a graph. We have determined this

radius for all Sierpiński graphs Sn
p except when 2k + 2 ≥ p ≥ k + 1 +

√
k + 1 and

n ≥ 3. In these cases the propagation radius is either 4 or 5. Other conditions than

those from the proof of Lemma 5.5 can impose that the radius is at least 5. With

better counting, one could get further conditions on k and p for the radius to be

4, but we did not find any concise formula. In particular, we do not give here any

reason for the 3-power domination radius of Sn
6 or for the 6-power domination radius

of Sn
10 to be greater than 4, though it can be proved that it is at least 5.
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