
HAL Id: hal-00975841
https://hal.science/hal-00975841v1

Submitted on 9 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Setting up clusters of computing units to process several
data streams efficiently
Daniel Millot, Christian Parrot

To cite this version:
Daniel Millot, Christian Parrot. Setting up clusters of computing units to process several data streams
efficiently. PPAM 2013 : 10th International Conference on Parallel Processing and Applied Mathe-
matics, Sep 2013, Warsaw, Poland. �hal-00975841�

https://hal.science/hal-00975841v1
https://hal.archives-ouvertes.fr

Setting up clusters of computing units
to process several data streams efficiently

Daniel Millot and Christian Parrot

Telecom sudParis - Institut Mines-Telecom - France
{Daniel.Millot, Christian.Parrot}@mines-telecom.fr

Abstract. Let us consider an upper bounded number of data streams to be pro-
cessed by a Divisible Load application. The total workload is unknown and the
available speeds for communicating and computing may be poorly a priori esti-
mated. This paper presents a resource selection method thataims at maximizing
the throughput of this processing. From a set of processing units linked by a net-
work, this method consists in forming an optimal set of master-workers clusters.
Results of simulations are presented to assess the efficiency of this method exper-
imentally. Before focusing on the proposed resource selection method, the paper
comes back on the adaptive scheduling method on which it relies.

Keywords: adaptive scheduling, parallel processing, master-workermodel, load
balancing, heterogeneous context, dynamic context

1 Introduction and related works
We consider an application that processes data acquired as streams, during an a priori
unknown time-lapse. The throughput of the streams is supposed to be unlimited. Each
data stream is arbitrarily associated to one processing unit in order to be processed.
We assume that each data stream can be split into chunks as small as necessary for
the scheduling and that each chunk can be processed independently of the others. Such
applications, that can be found in many different domains [1, 2], look like a Divisible
Load application [3], but we assume that the total workload is unknown.

Each processing unit which acquires a data stream can split the flow into chunks and
distribute the chunks to be processed to other computation units, via a network. Each unit
which receives a load can process it and send back the result of its processing; as a lot
of data parallel applications [4, 5]. We assume that the communication speeds are high
enough, in relation to the computation speeds, make the execution of this application to
benefit from an execution in parallel.

According to the master-workers paradigm, the processing units which distribute the
load act as masters and the computation units which do the processing act as workers [6].
Besides, we assume that the computation units have an unlimited buffering capability,
unlike [7]. The resources, for both communicating and processing, can be heterogeneous
as for [8, 9] and the durations of communicating and processing a chunk are supposed
to be affine with respect to the chunk size.

Let us assume that the available communication speeds, available computation speeds
and latencies that characterize these resources, and that we call execution parameters in
the sequel, may be inaccurately specified; only estimates ofthe execution parameters are
a priori available to the scheduler.

We assume that computation can overlap communication. We consider a 1-port bi-
directional communication model between master and workers. This model allows a

communication from master to worker to overlap a communication from worker to mas-
ter. But, with such a communication model, only one communication from, or to, one
processing unit (master or worker) can be performed at the same time. This feature
fits in with the behavior of message passing communications when messages are big
enough [10].

We call "round" a sequence of consecutive actions leading the master to feed all the
workers once and collect the corresponding results. As a result of the unawareness of
the total workload, the minimization of the makespan is impossible and the scheduling
must proceed in an iterative way, as the workload flows in. Therefore the scheduling has
to be multi-round.

The processing of each data stream can be split into three phases. The start-up phase
begins when the master starts to send the very first chunk to a worker and ends when
each worker has received a chunk to process. Then begins the streaming phase which
ends when the last data item in the stream has been acquired bythe master. Eventually,
the cleanup phase begins and it lasts until the master has received the very last result of
processing o each worker.

When the cleanup phase begins, the total workload happens tobe known and the
makespan can be minimized by making the workers complete their work simultane-
ously [11]. In order to reduce as much as possible the cost of communication between
workers to reallocate the chunks so as to balance their remaining load, when the cleanup
phase begins, it is convenient to upper-bound the workload discrepancy between workers
during the streaming phase. A usual way to do that is to make asymptotically periodic
the distribution of the chunks, during the streaming phase.This strategy has the extra-
advantage of facilitating the reduction of the risk of contentions when workers compete
to communicate with the master [12].

Later on in this paper, we will consider that the start-up duration is negligible com-
pared to the streaming phase duration; unlike [13, 14]. The legitimacy of this assump-
tion increases with the ratio of the total workload to the load distributed at the very first
round. Under this assumption it is reasonable to focus on thestreaming phase and to aim
at maximizing the throughput during this period.

In order to iteratively adjust the schedule to the possible inaccuracy of the specifi-
cation of the execution parameter (and possibly even to their variation over time), it is
relevant to arbitrarily set the frequency of the successivesteps of this adaptation. The
higher this frequency, in other words, the smaller the chunksizes, the faster the adapta-
tion; but unfortunately the longer the time wasted in latencies. We want the adjustment
of the schedule for the next round to be based only on the measurement of durations like
those of communicating or processing of the previous rounds. Indeed, this measurement
is the best benchmark to estimate the actual value of the execution parameters.

Based on these remarks, the AS4DR (Adaptive Scheduling for Distributed Resources)
method [15] automatically adapts the schedule to both: the heterogeneity of the workers
and the poorness of the estimation of the execution parameters. But, it deals with only
one data stream, processed by only one master-workers platform. This method sets the
chunk size for each worker at each round by assuming that the execution parameters for
the next round will be identical to the one of the previous round. Letαw,i be the size of
the chunk sent to a worker w for roundi. Let τ andσw,i be respectively the wanted and
the measured time durations between the start of the sendingof a chunk of sizeαw,i and
the end of the reception of the corresponding result by the master. The basic idea of the

AS4DR multi-round method is to adaptαw,i according to:

αw,i := αw,i−1

τ

σw,i−1

for i > 1. (1)

It has been proved [12] that with a multi-port communicationmodel and linear costs
for computations and communications, an asymptotic periodic schedule can be installed
without knowing the execution parameters. This result can cope with an heterogeneous
but steady-state context. Unfortunately this approach generates idleness of the workers
between the processing of successive chunks, while the workers communicate with their
master. Taking over this principle, AS4DR prevents this kind of idleness by making
computation overlap communication. The asymptotic periodicity of the schedule with
AS4DR remains when the costs for computations and communications are affine. With
the aid of the estimate of the execution parameters and, before the launch of the AS4DR
scheduler, a step called CIP (for Contentions and Idleness Prevention) determines a
value forτ , large enough to involve without contention all the workersinto the schedul-
ing [15]. It has been proved that AS4DR maximizes the CPU-efficiency of the workers
in a heterogeneous but steady-state context [16]. Tests that have been performed ex-
perimentally assess these theoretical results, when considering a single master-workers
platform. More, other tests have shown that AS4DR can adapt the schedule to not only
the poorness of the estimates, but to the variation over timeof the execution parameters
as well [17]. But using an evermore increasing amount of resources makes the increase
of the value ofτ ultimately impossible, without reconsidering the hypothesis according
to which the workload for a round is negligible with respect to the total workload. Sec-
tion 2 reminds the way AS4DR schedules when considering onlyone data stream and
only one master-workers platform.

To overcome this scaling-up difficulty, the constraint which bounds the number of
data stream to one can be relaxed. Let M be an upper bound of thenumber of data
streams. In this new context the preliminary step CIP is replaced by another one which,
for a given value ofτ , selects workers to form master-workers clusters so that con-
tentions are avoided. So, AS4DR is able to install an asymptotic periodic schedule for
each data stream which, in the absence of contentions thus obtained, prevents the idle-
ness of the workers; with the exception of latencies. The choice of the value ofτ depends
on several criteria. Of course, to reduce as much as possiblethe time wasted in latencies,
the value ofτ should be as large as possible. But, on the other hand, the smaller τ , the
faster the adaptation of the schedule to the poorness of the estimate of the execution
parameters and also the more balanced the remaining workload between workers when
the cleanup phase begins. When the execution parameters vary over time, the value of
τ should be smaller than the smallest steady state period. When the upper bound M of
the number of data streams is big enough with respect to the number of available work-
ers, all workers can be involved into the processing. In thiscase, as all workers are fully
used, the global throughput is maximum ; for a given value ofτ . On the contrary, if some
workers are not selected (because of their lesser profitability for the global throughput),
the throughput is not necessarily maximum, but the selectedworkers are fully used.
Section 3 presents this preliminary step. Finally, we conclude in Section 4.

2 Presentation of the AS4DR method
To allow the overlapping between communication and computation, the AS4DR sched-
uler splits each chunk it has to deliver to a worker into two subchunks. So sending sub-
chunks of arbitrarily chosen sizesα̇w,1 andα̈w,1 to each worker w for the first round,

the AS4DR scheduler then sends to worker w, for each roundi, two subchunkṡs ands̈
of respective sizeṡαw,i andα̈w,i, such that: α̇w,i + α̈w,i = αw,i.

Let θw denotes the constant ratio betweenα̇w,i andαw,i. From estimates of the execu-
tion parameters, a preliminary step (for instance CIP) setsτ and (αw,1, θw)

0≤w≤N−1

;

where N denotes the number of workers. The roundi for worker w is composed of three
phases: transmission in a row of the data from master to worker for subchunkṡs and
s̈, worker computation on the received data, transmission in arow of the computation
result from worker to master for subchunksṡ and s̈. It is worth noticing that the result
corresponding to thës subchunk of some round is returned to the master just after the
result corresponding to thės subchunk of the next round has itself been returned. Let
us denotėCw,i the measured time spent to process the subchunkṡ of round i andfw the
latency of computation, for worker w. We define

σw,i ≡
Ċw,i − fw

θw
+ 2fw. (2)

When the communications between master and workers are contention-free, and if the
workload is set with the aid of (1) and (2), then the effectiveduration of the rounds lin-
early converges toτ for any worker; whatever the initial (strictly positive) workload. So,
the schedule established according to the AS4DR method is stable within the meaning
of Lyapounov and, in addition, is asymptotically stable [16].

Besides, there exists [16] a lower bound and an upper bound:θmin
w,i andθmax

w,i such
that, in the absence of contentions, AS4DR method prevents the idleness between the
processing of two successive subchunks, if and only if,θmax

w,i+1 ≥ θw ≥ θmin
w,i+1, ∀i.

To prevent contentions, the instant each worker accesses tothe master is set far
enough from the instants the others access too, by introducing time delaysdw before
posting the very first subchunk to each worker w. Figure 1 illustrates the model of

round iround i−1

time

ττ
d0

d1

d2

d3

0

1

2

3

R̈ R̈

R̈

R̈

R̈

Ḋ D̈

Ḋ D̈ Ḋ D̈

R̈

Ḋ D̈ Ḋ D̈

R̈

R̈

Ḋ D̈Ḋ D̈

Ċ

Ṙ Ṙ

C̈ C̈

Ċ

Ṙ Ṙ

C̈

Ċ

Ṙ

C̈

Ċ

Ṙ Ṙ

C̈

C̈

C̈

Ṙ

Ḋ D̈

C̈ Ċ

Ċ

Fig. 1: Contention-free asymptotic schedule

asymptoticτ -periodic (thus round-robin) schedule we are seeking, whenN=4. Let us
define the delaydw:

dw ≡ (1 + λw)max
(

Ḋw−1 + D̈w−1, R̈w−1 + Ṙw

)

(modulo N); (3)

where:λw stands for a positive constant factor (the greater the inaccuracy of the estimate

of the execution parameters, the greaterλw), Ḋw (resp.D̈w, Ṙw andR̈w) denotes an a
priori estimate of the time spent to communicate theṡ data (resp.̈s data,ṡ result and̈s

result), for worker w. These durations can be computed with the help of a priori estimates
of the execution parameters [16].

Besides, the time intervalsdw should allow all the workers to be served during the
first round, i.e. within aτ period. Thus, to prevent contention, it is sufficient thatτ verify:

N−1
∑

w=0

dw ≤ τ. (4)

3 Resource selection for AS4DR in a multiple data streams context
3.1 Method
LetW be the set of all available workers. Letxm,w equals one if the worker w is selected
in the cluster m, andxm,w equals zero otherwise. As one worker can belong to one

cluster at most,
M−1
∑

m=0

xm,w ≤ 1, ∀w ∈ W . (5)

Let T be the global throughput, T =
M−1
∑

m=0

∑

w∈W

twxm,w; (6)

wheretw, the potential throughput of worker w in the absence of idleness between the

processing of any successive subchunks, verifies: tw =

(

1− 2
fw
τ

)

Fw;

whereFw andfw respectively denote the available computation speed and the computa-
tion latency, of worker w. In order to prevent contentions, and thus to make the use of
AS4DR possible, we have seen (4) that necessarily,

∑

w∈W

dwxm,w ≤ τm, ∀ 0 ≤ m ≤M− 1; (7)

whereτm is the wanted duration for the rounds of cluster m. To form a set of clus-
ters which maximizes the global throughput, when considering M data streams at most,
we want to find(xm,w)0≤m≤M−1,w∈W

that maximizes T, given by (6), subject to con-
straints (7) and (5). This problem looks like a Multiple Knapsack problem. But as the
value ofτm cannot be set a priori, since it depends on the workers selected for clus-
ter m, the same wanted durationτ is set for the rounds of all clusters. This choice has
the advantage of upper bounding the load discrepancy between the different clusters
uniformly.

Besides, the time lagdw, defined by (3), depends on the worker w-1, the one that
precedes w in the round robin distribution for the cluster which w belongs to. As this
worker w-1 is a priori unknown, we need to reformulate the Multiple Knapsack problem
to make the weight for worker w be independent from worker w-1. For that, let us tighten

up the constraints of the problem. We define
◦

dw, as follows:

◦

dw ≡ (1 + λw)max
(

Dmax, R̈max + Ṙw

)

; where

Dmax ≡ max
w∈W

(

Ḋw + D̈w

)

,

R̈max ≡ max
w∈W

R̈w.

As dw is smaller than
◦

dw, the feasible space defined by the following constraints:
∑

w∈W

◦

dwxm,w ≤ τ, ∀ 0 ≤ m ≤ M− 1, (8)

is a subspace of the one previously defined by (7). So, the tightened problem we have
to solve now is: find(xm,w)0≤m≤M−1,w∈W

that maximizes T, given by (6), subject to
constraints (8) and (5).

Unfortunately, the coefficientstw,
◦

dw andτ are not positive integers, like for the
classical Multiple Knapsack problem. To overcome this lastcomplication, the resource

selection problem is reformulated. According to the machine number representation,tw,
◦

dw andτ are rational numbers. So, in order to make the problem be formulated like a
Multiple Knapsack problem, (6) can be multiplied by the least common multiple of the
denominators of(tw)w∈W whereas, (8) can be multiplied by the least common multiple
of the denominators of(dw)w∈W andτ . This new problem can be solved in a classical
way by a Multiple Knapsack method. If the whole set of workershappens to be selected
to participate in the processing, then the solution of this problem maximizes the global
throughput; for a given wanted duration for the roundsτ . Of course, as the presented
method to select the workers is based on the underlying scheduling method: AS4DR,
nothing allows one to claim that the global throughput is optimal if only a part of the
whole set of workers happens to be selected. Of course, thereexists a value of M big
enough to make all the workers be ultimately involved into the schedule. Because of
the successive transformations of the resource selection problem, the number of actually
formed clusters is possibly no more minimal (but still smaller than M).

The next section is devoted to the experimental assessment of the resource selection
method. The method described in [18] has been chosen to solvethe Multiple Knapsack
problem posed by the resource selection.

3.2 Experimental assessment

All the simulations, which results are presented in this section, have been conducted with
the SimGrid framework [19]. We consider 10 sets(Sk)0≤k≤9

of values for the execution
parameters of the workers, given (speeds in bytes/second and latencies in seconds) in Ta-
ble 1. Each of these sets is randomly a priori allocated to 100workers among the 1000
available workers. Let us denote,BD

w (resp.BR
w) the available communication speed of

computation communicationcommunicationnumber
master −→ wi master←− wi of

speedlatency speedlatency speedlatency workers
S0 1.0e+01.0e-2 1.0e+61.0e-2 1.0e+61.0e-2 100
S1 1.0e+21.0e-1 1.0e+71.0e-3 1.0e+71.0e-3 100
S2 1.0e+11.0e-3 1.0e+81.5e-2 1.0e+81.5e-2 100
S3 1.0e+31.0e-2 1.0e+91.0e-2 1.0e+91.0e-2 100
S4 1.0e+01.0e-3 1.0e+61.0e-2 1.0e+61.0e-2 100
S5 1.0e+21.0e-1 1.0e+71.0e-3 1.0e+71.0e-3 100
S6 1.0e+11.0e-4 1.0e+81.0e-2 1.0e+81.0e-2 100
S7 1.0e+31.0e-2 1.0e+91.0e-2 1.0e+91.0e-2 100
S8 1.0e+01.0e-3 1.0e+61.0e-3 1.0e+61.0e-3 100
S9 1.0e+21.0e-2 1.0e+71.0e-2 1.0e+71.0e-2 100

Table 1: Reference values

δ0 0.0
δ1 0.1
δ2 0.2
δ3 0.3
δ4 0.4
δ5 0.5
δ6 0.6
δ7 0.7
δ8 0.8
δ9 0.9

Table 2: Dynamicity
values

the link from the master to worker w (resp. from worker w to themaster). To makeFw,
BD

w andBR
w varying over time, in a way that facilitates the correlationof the variations

with their effects on the scheduling, each of these parameters can only take two values.
According to the 10 profiles(Pk)0≤k≤9

of variation shown in Figure 2,
(

Fw, B
D
w, B

R
w

)

alternatively takes the reference value (in Table 1):
(

(Fw)ref ,
(

BD
w

)

ref
,
(

BR
w

)

ref

)

, and
the perturbed value:

(

(1− δk) (Fw)ref , (1− δk)
(

BD
w

)

ref
, (1− δk)

(

BR
w

)

ref

)

; where
δk takes a strictly positive value given in Table 2. Each profileis randomly allocated to

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

0 100 300 500 700 900 1100 1300 1500 1700 1900

Fig. 2: Perturbed execution parameter as a function of time (in seconds)

100 workers. In this context, the coefficientδk characterizes the variations of the execu-
tion parameters and is called “dynamicity” in the sequel; with δ9 the amplitude of the
variation of the execution parameters is maximum, whereas it is minimum (steady state
context) withδ0. For each simulation, the dynamicity is the same for all the workers.

Figure 3 shows the variation of the global throughput (in bytes/second) as a function
of M, the upper bound of the number of data streams. For each value of M, the total
number of selected workers is given. The execution parameters for this simulation are
those of Table 1; dynamicity equalsδ0, and the a priori estimate of the execution pa-
rameters equals their real values. As best workers are selected in priority, the greater the
number of workers involved in the scheduling, the lower the increase of the throughput.

Figure 4 represents the mean value of the measured durations(in seconds) of the
very first rounds:σ, for all selected workers, as a function of the elapsed time (in sec-
onds), whenτ equals 100 seconds, in steady state context (dynamicity=δ0). For this
experiment, the initial workload is set to a value that couldhave resulted from a com-
putation based on poor estimates of the execution parameters. This initial workload is
set to -80% of the load computed with the aid of the real execution parameters; those
of Table 1, when the latency for computation, for all the workers, is set to: 0.1, 0.5 and
0.9, successively. Figure 4 shows the convergence towardsτ of the mean value ofσ.
As expected, the smaller the processing latencies, the faster the adaptation ofσ to τ .
Figure 4 illustrates the adaptation of the workload to the poorness of the estimation of
the execution parameters.

Although the throughput remains the ultimate performance indicator, the throughput
does not highlight the rate of time really spent in processing. Thus, let us defineCPUeff

the CPU-efficiency: CPUeff ≡ 1−
CPU idleness

elapsed time
.

Figure 5 illustrates that the way to set the value ofτ must depend on the computation
latency; as long as these latencies are not negligible compared toτ .This simulation has
been performed in steady state context (dynamicity=δ0), with the full knowledge of the
execution parameters of Table 1, but the computation latencies for all the workers are

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32

31 workers

62 workers

124 workers

248 workers

496 workers
992 workers

throughput

M

T

Fig. 3: Throughput as a function of the upper bound of the number of data streams: M

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

computation latency = 0.1
computation latency = 0.5
computation latency = 0.9

time

σmean

τ

Fig. 4: Mean value ofσ as a function of elapsed time

80%

85%

90%

95%

100%

1 2 4 8 16 32 64 128 256 512 1024

computation latency = 0.00
computation latency = 0.01
computation latency = 0.10

τ

CPUeff

Fig. 5:CPUeff as a function ofτ , when dynamicity =δ0

replaced by the values: 0.0, 0.01 and 0.1, successively. Figure 5 also reminds one that,
according to the value of the computation latency, there exists an optimal value forτ .
The existence of such an optimal value is due to a compromise between two necessities.
It is necessary to makeτ as great as possible in order to minimize the time wasted in
latencies; by reducing the number of rounds. On the other hand, the smaller the value of
τ , the earlier the worker starts to process.

In Figure 6 we can see that the higher the dynamicity, the smaller τ must be. Figure 6
also confirms that, even in a dynamic context, the smallerτ is, the higher the effects on
the efficiency of the time wasted in latencies are. This simulation has been performed
with several values of dynamicity, with the execution parameters of Table 1, but the CPU
latencies for all the workers were replaced by the values: 0.0 and 0.01, successively.

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 4 8 16 32

computation latency = 0.00
computation latency = 0.01

δ0, δ1, δ2, δ3
δ4

δ5

δ6

δ7

δ8

δ9

τ

CPUeff

Fig. 6:CPUeff as a function ofτ , for several values of the dynamicity

4 Conclusion
This paper addresses the problem of setting up clusters of heterogeneous distributed
resources to process several data streams of a Divisible Load application. As the total
workload is unknown, a very first workload, corresponding tothe wanted duration for
the very first round:τ , must be a priori set from estimates of the characteristics of the
resources. To facilitate the contention prevention, the wanted duration for all the rounds
and for all workers has been arbitrarily set toτ . For the moment the value ofτ is em-
pirically set, according to both the poorness of the a prioriestimate of the execution
parameters and the frequency of their possible variation over time. If only a part of the
whole set of available computation units are involved into the scheduling, then we can
only claim that the selected computation units are fully used. If the whole set of available
processing units are involved into the scheduling, then thepresented method succeeds
in maximizing the global throughput, for an a priori set value of τ . Compared to us-
ing pure hardware performance figures, such as bandwidth or CPU frequency to adapt
the workload at each round, the method has the extra advantage of taking into account
characteristics of the software such as algorithmic complexity.

The way to adapt the workload at each round generates a risk ofinstability, when the
execution parameters vary over time. A study of the stability of the method should lead
to tighten up the wayτ is set and should help to design new patterns of adaptation ofthe
chunksize.

References

1. C.Lee, M.Hamdi: Parallel image processing application in a network of workstation. Parallel
Computing21(137-160) (1995)

2. D.Altilar, Y.Paker: An optimal scheduling algorithm forstream based parallel video process-
ing. Proceedings of the 18th International Symposium on Computer and Information Sciences
(ISCIS’03), Springer-Verlag (2003) 731–738

3. T.G.Robertazzi: Ten reasons to use divisible load theory. IEEE Computer36(5)(63-68) (2003)
4. D.Altilar, Y.Paker: An optimal scheduling algorithm forparallel video processing. Proceed-

ings of the International Conference on Multimedia Computing and Systems, IEEE Comput-
ing Society Press (1998)

5. L.Dong, V.Bharadwaj, C.C.Ko: Efficient movie retrieval strategies for movie-on-demand
multimedia services on distributed networks. Multimedia Tools and Applications20(2)
(2003) 99–133

6. O.Beaumont, H.Casanova, A.Legrand, Y.Robert, Y.Yang: Scheduling divisible loads on star
and tree networks: results and open problems. IEEE Transactions on Parallel and Distributed
Systems16(3) (Mar. 2005) 207–218

7. M.Drozdowski, P.Wolniewicz: Optimizing divisible loadscheduling on heterogeneous stars
with limited memory. European Journal of Operational Research172(2) (2006) 545–559

8. A.L.Rosenberg, R.C.Chiang: Toward understanding heterogeneity in computing. Proceeding
of the 24th International Parallel and Distributed Processing Symposium (IPDPS’10). Vol-
ume 1., IEEE Computing Society Press (April 2010) 1–10

9. O.Beaumont, L.Marchal, Y.Robert: Scheduling divisibleloads with return messages on het-
erogeneous master-worker platforms. Lecture Notes in Computer Science3769(2005) 498–
507

10. T.Saif, M.Parashar: Understanding the behavior and performance of non-blocking commu-
nications in mpi. Proceedings of the 9th international Euro-Par Conference (Euro-Par 2004),
Springer-Verlag (2004) 173–182

11. V.Bharadwaj, D.Ghose, V.Mani, Robertazzi, T.: Scheduling divisible loads in parallel and
distributed systems. IEEE Computing Society Press (1996)

12. M.Drozdowski: Selected problems of scheduling tasks inmultiprocessor computing systems.
PhD thesis, Instytut Informatyki Politechnika Poznanska,Poznan (1997)

13. V.Bharadwaj, D.Ghose, V.Mani: Multi-installment loaddistribution in tree networks with
delays. IEEE Transactions on Aerospace and Electronic Systems31(2) (1995) 555–567

14. Y.Yang, H.Casanova: Extensions to the multi-installment algorithm: Affine costs and output
data transfers. Technical Report Tech. Rep. CS2003-0754, Dept. of Computer Science and
Engineering, University of California, San Diego (July 2003)

15. D.Millot, C.Parrot: Scheduling on unspecified heterogeneous distributed resources. Proceed-
ing of the 25th International Symposium on Parallel and Distributed Processing Workshops
(IPDPSW’11). Volume 1., IEEE Computing Society Press (May 2011) 45–56

16. D.Millot, C.Parrot: Fundamental results on the AS4DR scheduler. Technical Report RR-
11005-INF, TELECOM sudParis, Évry(France) (December 2011)

17. D.Millot, C.Parrot: Some tests of adaptivity for the AS4DR scheduler. Proceedings of the
41th International Conference on Parallel Processing (ICPP’12), IEEE Computing Society
Press (September 2012) 323–331

18. D.Pisinger: An exact algorithm for large multiple knapsack problems. European Journal of
Operational Research114(3) (1999) 528 – 541

19. H.Casanova, A.Legrand, M.Quinson: Simgrid: a generic framework for large-scale dis-
tributed experiments. Proceedings of the 10th International Conference on Computer Model-
ing and Simulation (ICCMS’10), IEEE Computing Society Press (March 2008) 126–131

