N

N

Setting up clusters of computing units to process several
data streams efficiently
Daniel Millot, Christian Parrot

» To cite this version:

Daniel Millot, Christian Parrot. Setting up clusters of computing units to process several data streams
efficiently. PPAM 2013: 10th International Conference on Parallel Processing and Applied Mathe-
matics, Sep 2013, Warsaw, Poland. hal-00975841

HAL Id: hal-00975841
https://hal.science/hal-00975841

Submitted on 9 Apr 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00975841
https://hal.archives-ouvertes.fr

Setting up clusters of computing units
to process several data streams efficiently

Daniel Millot and Christian Parrot

Telecom sudParis - Institut Mines-Telecom - France
{Daniel.Millot, Christian.Parrot}@mines-telecom.fr

Abstract. Let us consider an upper bounded number of data streams tmbe p
cessed by a Divisible Load application. The total worklogdimknown and the
available speeds for communicating and computing may beypadriori esti-
mated. This paper presents a resource selection methodithgaiat maximizing
the throughput of this processing. From a set of processiiitg linked by a net-
work, this method consists in forming an optimal set of masterkers clusters.
Results of simulations are presented to assess the effiadéisis method exper-
imentally. Before focusing on the proposed resource delectethod, the paper
comes back on the adaptive scheduling method on which éseli

Keywords: adaptive scheduling, parallel processing, master-wariatel, load
balancing, heterogeneous context, dynamic context

1 Introduction and related works

We consider an application that processes data acquiretdeasns, during an a priori
unknown time-lapse. The throughput of the streams is siggptzsbe unlimited. Each
data stream is arbitrarily associated to one processingimmrder to be processed.
We assume that each data stream can be split into chunks &sasnmeecessary for
the scheduling and that each chunk can be processed indeybnaf the others. Such
applications, that can be found in many different domain2],look like a Divisible
Load application [3], but we assume that the total workleadiknown.

Each processing unit which acquires a data stream cantspfiow into chunks and
distribute the chunks to be processed to other computatiibs, wia a network. Each unit
which receives a load can process it and send back the rdstdtpocessing; as a lot
of data parallel applications [4, 5]. We assume that the canioation speeds are high
enough, in relation to the computation speeds, make thaigreof this application to
benefit from an execution in parallel.

According to the master-workers paradigm, the procesaiitg which distribute the
load act as masters and the computation units which do tleegsmg act as workers [6].
Besides, we assume that the computation units have an teditbuffering capability,
unlike [7]. The resources, for both communicating and pseirey, can be heterogeneous
as for [8, 9] and the durations of communicating and proogsaichunk are supposed
to be affine with respect to the chunk size.

Let us assume that the available communication speediglaléetomputation speeds
and latencies that characterize these resources, andeteihexecution parameters in
the sequel, may be inaccurately specified; only estimatdseaxecution parameters are
a priori available to the scheduler.

We assume that computation can overlap communication. \Wsiader a 1-port bi-
directional communication model between master and werkenis model allows a

communication from master to worker to overlap a commuidodtom worker to mas-
ter. But, with such a communication model, only one commation from, or to, one
processing unit (master or worker) can be performed at theestéme. This feature
fits in with the behavior of message passing communicatidmsrwmessages are big
enough [10].

We call "round" a sequence of consecutive actions leadiagrtaster to feed all the
workers once and collect the corresponding results. As @tretthe unawareness of
the total workload, the minimization of the makespan is isgible and the scheduling
must proceed in an iterative way, as the workload flows inré&foee the scheduling has
to be multi-round.

The processing of each data stream can be split into thresph@he start-up phase
begins when the master starts to send the very first chunk torkewand ends when
each worker has received a chunk to process. Then begingrétaening phase which
ends when the last data item in the stream has been acquited byaster. Eventually,
the cleanup phase begins and it lasts until the master helsedahe very last result of
processing o each worker.

When the cleanup phase begins, the total workload happéems kmown and the
makespan can be minimized by making the workers complete woek simultane-
ously [11]. In order to reduce as much as possible the costmfrtunication between
workers to reallocate the chunks so as to balance their rengdbad, when the cleanup
phase begins, it is convenientto upper-bound the worklgsaepancy between workers
during the streaming phase. A usual way to do that is to makapi®tically periodic
the distribution of the chunks, during the streaming phabés strategy has the extra-
advantage of facilitating the reduction of the risk of cantiens when workers compete
to communicate with the master [12].

Later on in this paper, we will consider that the start-upadion is negligible com-
pared to the streaming phase duration; unlike [13, 14]. Egéiinacy of this assump-
tion increases with the ratio of the total workload to thedldiéstributed at the very first
round. Under this assumption it is reasonable to focus ostteaming phase and to aim
at maximizing the throughput during this period.

In order to iteratively adjust the schedule to the possibéecuracy of the specifi-
cation of the execution parameter (and possibly even to tlagiation over time), it is
relevant to arbitrarily set the frequency of the successteps of this adaptation. The
higher this frequency, in other words, the smaller the clain&s, the faster the adapta-
tion; but unfortunately the longer the time wasted in latescWe want the adjustment
of the schedule for the next round to be based only on the merasmt of durations like
those of communicating or processing of the previous roundged, this measurement
is the best benchmark to estimate the actual value of theiémagarameters.

Based on these remarks, the AS4DR (Adaptive SchedulingiétriButed Resources)
method [15] automatically adapts the schedule to both: #terbgeneity of the workers
and the poorness of the estimation of the execution parasadst, it deals with only
one data stream, processed by only one master-workersipfatl his method sets the
chunk size for each worker at each round by assuming thakéimigon parameters for
the next round will be identical to the one of the previoustu etasy, ; be the size of
the chunk sent to a worker w for round_et ~ andoy, ; be respectively the wanted and
the measured time durations between the start of the seaflanghunk of sizey,, ; and
the end of the reception of the corresponding result by th&tenal he basic idea of the

AS4DR multi-round method is to adapi, ; according to:
Qy i = ozw_,iflL fori > 1. 1)

Ow.i—
It has been proved [12] that with a mljvlii—;)lort communicatinadel and linear costs
for computations and communications, an asymptotic pargchedule can be installed
without knowing the execution parameters. This result cgeavith an heterogeneous
but steady-state context. Unfortunately this approactegeas idleness of the workers
between the processing of successive chunks, while thean®dommunicate with their
master. Taking over this principle, AS4DR prevents thisdkaf idleness by making
computation overlap communication. The asymptotic pécigdof the schedule with
AS4DR remains when the costs for computations and commiimisaare affine. With
the aid of the estimate of the execution parameters andid#fe launch of the AS4DR
scheduler, a step called CIP (for Contentions and IdlenesgeRtion) determines a
value forr, large enough to involve without contention all the workiets the schedul-
ing [15]. It has been proved that AS4DR maximizes the CP&ieficy of the workers
in a heterogeneous but steady-state context [16]. Testhéve been performed ex-
perimentally assess these theoretical results, whendenisj a single master-workers
platform. More, other tests have shown that AS4DR can atiepg¢hedule to not only
the poorness of the estimates, but to the variation overdiftiee execution parameters
as well [17]. But using an evermore increasing amount ofussss makes the increase
of the value ofr ultimately impossible, without reconsidering the hypaileaccording
to which the workload for a round is negligible with respexthe total workload. Sec-
tion 2 reminds the way AS4DR schedules when considering omdydata stream and
only one master-workers platform.

To overcome this scaling-up difficulty, the constraint whimounds the number of
data stream to one can be relaxed. Let M be an upper bound afutin@er of data
streams. In this new context the preliminary step CIP isaegd by another one which,
for a given value ofr, selects workers to form master-workers clusters so that co
tentions are avoided. So, AS4DR is able to install an asytiggperiodic schedule for
each data stream which, in the absence of contentions thamed, prevents the idle-
ness of the workers; with the exception of latencies. Théoehaf the value of depends
on several criteria. Of course, to reduce as much as poskibtane wasted in latencies,
the value ofr should be as large as possible. But, on the other hand, tHeesmgahe
faster the adaptation of the schedule to the poorness ofstiraate of the execution
parameters and also the more balanced the remaining wdrkktsveen workers when
the cleanup phase begins. When the execution parametgrevertime, the value of
7 should be smaller than the smallest steady state periodn\tfireupper bound M of
the number of data streams is big enough with respect to thdariof available work-
ers, all workers can be involved into the processing. Inc¢hie, as all workers are fully
used, the global throughputis maximum ; for a given value @n the contrary, if some
workers are not selected (because of their lesser profitatut the global throughput),
the throughput is not necessarily maximum, but the selestatters are fully used.
Section 3 presents this preliminary step. Finally, we cotelin Section 4.

2 Presentation of the AS4DR method

To allow the overlapping between communication and contjmutathe AS4DR sched-
uler splits each chunk it has to deliver to a worker into twbawnks. So sending sub-
chunks of arbitrarily chosen sizes, ; andé., ;1 to each worker w for the first round,

the AS4DR scheduler then sends to worker w, for each roume subchunks ands
of respective sized,, ; andd, i, such that: du, ; + dow,i = Qi
Let 6,, denotes the constant ratio betwegp; andca, ;. From estimates of the execu-
tion parameters, a preliminary step (for instance CIP) setnd (o, 1, Ow) ;
0<w<N-1

where N denotes the number of workers. The roufiod worker w is composed of three
phases: transmission in a row of the data from master to wddkesubchunks and
§, worker computation on the received data, transmissionriwaof the computation
result from worker to master for subchunkands. It is worth noticing that the result
corresponding to th& subchunk of some round is returned to the master just after th
result corresponding to thiesubchunk of the next round has itself been returned. Let
us denoteCW_,i the measured time spent to process the subchwfkound i andf,, the
latency of computation, for worker w, We define
Cwi = hw | op)

O
When the communications between master and workers arergani-free, and if the
workload is set with the aid of (1) and (2), then the effectiueation of the rounds lin-
early converges to for any worker; whatever the initial (strictly positive) wdoad. So,
the schedule established according to the AS4ADR methodliestvithin the meaning
of Lyapounov and, in addition, is asymptotically stable][16

Besides, there exists [16] a lower bound and an upper bcﬁ@j‘jﬁ:andegﬁx such
that, in the absence of contentions, AS4DR method preveetsiteness between the
processing of two successive subchunks, if and onBjif:, > 6y, > 07, Vi.

To prevent contentions, the instant each worker accesst®etmaster is set far
enough from the instants the others access too, by introguthe delaysi,, before
posting the very first subchunk to each worker w. Figure Isitiates the model of

Uw,i =

round i-1 round i

- - d,‘ - -
0 S] & | ¢ | [|

R[R T [R[R
1 | S [T ¢ ¢ | [|

R|R | R[R
2 | €] [¢]
R|R[R|R
3 1 ¢ [€ ¢]
R[R& R[R&
time

Fig. 1: Contention-free asymptotic schedule

asymptoticr-periodic (thus round-robin) schedule we are seeking, wie#. Let us
define the delayl,:

dw = (1 + \y) max (Dw,l 4Dy 1, Re1 + R_W) (modulo N); 3)

where:)\,, stands for a positive constant factor (the greater the imacy of the estimate

of the execution parameters, the greatgy, D,, (resp.Dy,, Ry, andR,,) denotes an a
priori estimate of the time spent to communicate ghdata (resps data,s result ands

result), for worker w. These durations can be computed \uigthelp of a priori estimates
of the execution parameters [16].

Besides, the time intervats, should allow all the workers to be served during the
firstround, i.e. within & period. Thu1\51’ tlo prevent contention, it is sufficient thaerify:

S dy < @
w=0

3 Resource selection for AS4DR in a multiple data streams caext

3.1 Method
Let WV be the set of all available workers. L, v, equals one if the worker w is selected
in the cluster m, and,, ., equzl%/}§1zero otherwise. As one worker can belong to one

cluster at most, Z Xmw <1, VweWw. (5)
m=0 M-1
Let T be the global throughput, T = Z Z Xm0 (6)

m=0 weW
wheret,,, the potential throughput of worker w in the absence of idrbetween the
f

processing of any successive subchunks, verifigs = (1 — 2 | Fy;
T
whereF, andf,, respectively denote the available computation speed ancaimputa
tion latency, of worker w. In order to prevent contentionsd ahus to make the use of
AS4DR possible, we have seen (4) that necessarily,
D duXmw < Tm, VO<m<M-1; 7)

wherer,, is the \Yv%ﬁ}ted duration for the rounds of cluster m. To form taoc$elus-
ters which maximizes the global throughput, when consigl data streams at most,
we want to find(xm,w)0<m<M_LWGW that maximizes T, given by (6), subject to con-
straints (7) and (5). This problem looks like a Multiple Kisapgk problem. But as the
value ofr;,, cannot be set a priori, since it depends on the workers seldot clus-
ter m, the same wanted duratieris set for the rounds of all clusters. This choice has
the advantage of upper bounding the load discrepancy bettieedifferent clusters
uniformly.

Besides, the time lag,,, defined by (3), depends on the worker w-1, the one that
precedes w in the round robin distribution for the clustefclhw belongs to. As this
worker w-1 is a priori unknown, we need to reformulate the fipleé Knapsack problem
to make the weight for worker w be independent from worker. Wk that, let us tighten

up the constraints of the problem. We defihg as follows: .
R - Dax = max (DW + DW) ,
dyw = (14 A\y) max (Dmax, Rimax + RW) ; Where ey

Rmax = m%ﬁw.
o we
As d,, is smaller thanl,,, the feasible space defined by the following constraints:

Y deXmw <7, VO<m<M-1, (8)
wew
is a subspace of the one previously defined by (7). So, théetigldl problem we have
to solve now is: finc{xm7w)0<m<M_1,W6W that maximizes T, given by (6), subject to
constraints (8) and (5). T R
Unfortunately, the coefficients,, d,, andr are not positive integers, like for the
classical Multiple Knapsack problem. To overcome this ¢ashplication, the resource

selection problem is reformulated. According to the maetmuamber representation,,

dy, andr are rational numbers. So, in order to make the problem beuftated like a
Multiple Knapsack problem, (6) can be multiplied by the teasmmon multiple of the
denominators oft.,), Whereas, (8) can be multiplied by the least common multiple
of the denominators dfdy) ., andr. This new problem can be solved in a classical
way by a Multiple Knapsack method. If the whole set of workeappens to be selected
to participate in the processing, then the solution of thédbfem maximizes the global
throughput; for a given wanted duration for the round©f course, as the presented
method to select the workers is based on the underlying stihgdnethod: AS4DR,
nothing allows one to claim that the global throughput isimpt if only a part of the
whole set of workers happens to be selected. Of course, #xésts a value of M big
enough to make all the workers be ultimately involved inte ithedule. Because of
the successive transformations of the resource seleatidrgm, the number of actually
formed clusters is possibly no more minimal (but still sreathan M).

The next section is devoted to the experimental assessrhtm esource selection
method. The method described in [18] has been chosen to thawdultiple Knapsack
problem posed by the resource selection.

3.2 Experimental assessment

All the simulations, which results are presented in thisiesachave been conducted with
the SimGrid framework [19]. We consider 10 s¢fg), ., Of values for the execution
parameters of the workers, given (speeds in bytes/secahldimcies in seconds) inTa
ble 1. Each of these sets is randomly a priori allocated tovi@®ers among the 1000
available workers. Let us denoté? (resp.BY) the available communication speed of

computationjcommunicatiofcommunicatiomumbe
master — w;|master «+— w;| of 50]0.0

speedlatency speedlatency| speedlatency |workerg 51]0.1]
So[1.0e+01.0e-2|1.0e+61.0e-2 |1.0e+61.0e-2 | 100 5,]0.2
S1/1.0e+21.0e-1{1.0e+71.0e-3 |1.0e+71.0e-3 | 100 55]0.3
S2[1.0e+11.0e-3|1.0e+§1.5e-2 |1.0e+§1.5e-2 | 100 54]0.4
S3|1.0e+31.0e-2|1.0e+91.0e-2 |1.0e+91.0e-2 | 100 55]0.5
S4(1.0e+01.0e-3|1.0e+61.0e-2 |1.0e+61.0e-2 | 100 6/0.6
S5|1.0e+21.0e-1/1.0e+71.0e-3 |1.0e+71.0e-3 | 100 5,10.7]
Se|1.0e+11.0e-4/1.0e+§1.0e-2 |1.0e+§1.0e-2 | 100 5/0.8
S7|1.0e+31.0e-2|1.0e+91.0e-2 |1.0e+91.0e-2 | 100 59]0.9
Sg|1.0e+01.0e-3|1.0e+61.0e-3 |1.0e+61.0e-3 | 100
S9|1.0e+21.0e-2|1.0e+11.0e-2 |1.0e+71.0e-2 | 100 Table 2: Dynamicity

Table 1: Reference values values

the link from the master to worker w (resp. from worker w to thaster). To maké',,
BP andBR varying over time, in a way that facilitates the correlatafrthe variations
with their effects on the scheduling, each of these paramess only take two values.
According to the 10 profile&Py), ., ., of variation shown in Figure JF,,, BY, BR)
alternatively takes the reference value (in Table(t}w)¢, (BY),.;» (BY),.), and
the perturbed value((1 —) (Fy),.¢, (1 —0c) (BY),.;» (1—6) (BY),.); where
0 takes a strictly positive value given in Table 2. Each pra§ileandomly allocated to

Po I."."
PL Il i I i
P2 n I | I
Ps | I | R I
P4
Ps i i |
Pg i | 1] I
P)] — | [
Ps LT
Pg —‘" I."
0 100 300 500 700 900 1100 1300 1500 1700 1900

Fig. 2: Perturbed execution parameter as a function of timsgconds)

100 workers. In this context, the coefficieqtcharacterizes the variations of the execu
tion parameters and is called “dynamicity” in the sequethwi, the amplitude of the
variation of the execution parameters is maximum, whettdasninimum (steady state
context) withdy. For each simulation, the dynamicity is the same for all tloekears.

Figure 3 shows the variation of the global throughput (irelsydecond) as a function
of M, the upper bound of the number of data streams. For edcie v M, the total
number of selected workers is given. The execution paraméte this simulation are
those of Table 1; dynamicity equalg, and the a priori estimate of the execution pa-
rameters equals their real values. As best workers aretsdligcpriority, the greater the
number of workers involved in the scheduling, the lower tieréase of the throughput.

Figure 4 represents the mean value of the measured durdiinasconds) of the
very first roundso, for all selected workers, as a function of the elapsed timeaéc-
onds), whenr equals 100 seconds, in steady state context (dynamdgityEor this
experiment, the initial workload is set to a value that ccudde resulted from a com-
putation based on poor estimates of the execution parasndteis initial workload is
set to -80% of the load computed with the aid of the real exenyiarameters; those
of Table 1, when the latency for computation, for all the weoek is set to: 0.1, 0.5 and
0.9, successively. Figure 4 shows the convergence towaafshe mean value of.
As expected, the smaller the processing latencies, therfdst adaptation of to 7.
Figure 4 illustrates the adaptation of the workload to therpess of the estimation of
the execution parameters.

Although the throughput remains the ultimate performandeator, the throughput
does not highlight the rate of time really spentin processlinus, let us defin€PU.g
CPU idleness
elapsed time

Figure 5 illustrates that the way to set the value afust depend on the computation
latency; as long as these latencies are not negligible caedpar.This simulation has
been performed in steady state context (dynamidgy=with the full knowledge of the
execution parameters of Table 1, but the computation laerfor all the workers are

the CPU-efficiency: CPUg =1—

T
7000 496 workers e wotkets
248 workers
6000 /
5000
4000 124 workers
3000
2000 62 workers
1000 31-worker
throughput ——
12 4 8 16 32 M
Fig. 3: Throughput as a function of the upper bound of the nremobdata streams: M
Omean
100 T
2:/4
90 -

N
.
S
A
J

20100 200 300 400 500 600 700 800 900 1000 time
Fig. 4: Mean value of as a function of elapsed time
CPUgg

computation latency = 0.1 —e—
computation latency = 0.5 —&—
comgutation Iatgncy = 0.9‘ —a—

100%

95% \\

90%

85%

80% computation latency = 0.00 —e— |
computation latency = 0.01 —=—
corqpulation I‘alency = 9.10 —&‘—

1 2 4 8 16 32 64 128 256 512 1024 T

Fig. 5: CPU.g as a function of-, when dynamicity =,

replaced by the values: 0.0, 0.01 and 0.1, successivelyré&g also reminds one that,
according to the value of the computation latency, therstexin optimal value for.

The existence of such an optimal value is due to a comproreisegen two necessities.

It is necessary to make as great as possible in order to minimize the time wasted in
latencies; by reducing the number of rounds. On the othed fthe smaller the value of

7, the earlier the worker starts to process.

In Figure 6 we can see that the higher the dynamicity, thelemaimust be. Figure 6
also confirms that, even in a dynamic context, the smaligr the higher the effects on
the efficiency of the time wasted in latencies are. This satioh has been performed
with several values of dynamicity, with the execution paggans of Table 1, but the CPU
latencies foE7 all the workers were replaced by the valu€safd 0.01, successively.

PUetr T T T
100% [1
5 80,|01, 02, 03

95% \;\\:\N N ba
o0% \\\ \ \\' %

85% \

36

4

///

80% N
5% \

70%

N

C

AN
™

o8

4

65%

60%

computation latency = 0.00 —&—

computation latency = 0.01 —e— S
55% L 1 L 9

1 2 4 8 16 32 T

Fig. 6: CPU.g as a function of-, for several values of the dynamicity

4 Conclusion

This paper addresses the problem of setting up clusterstefdgeneous distributed
resources to process several data streams of a Divisiblé apglication. As the total
workload is unknown, a very first workload, correspondinghe wanted duration for
the very first roundr, must be a priori set from estimates of the characterisfitke
resources. To facilitate the contention prevention, thetecduration for all the rounds
and for all workers has been arbitrarily setrtoFor the moment the value efis em
pirically set, according to both the poorness of the a pmstimate of the execution
parameters and the frequency of their possible variatian tme. If only a part of the
whole set of available computation units are involved if® $cheduling, then we can
only claim that the selected computation units are fullydusighe whole set of available
processing units are involved into the scheduling, therptiesented method succeeds
in maximizing the global throughput, for an a priori set \@alof 7. Compared to us-
ing pure hardware performance figures, such as bandwidtliPtr f@2quency to adapt
the workload at each round, the method has the extra adwnfagking into account
characteristics of the software such as algorithmic corityle

The way to adapt the workload at each round generates a risktability, when the
execution parameters vary over time. A study of the stglilitthe method should lead
to tighten up the way is set and should help to design new patterns of adaptatitreof
chunksize.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. C.Lee, M.Hamdi: Parallel image processing applicatioa hnetwork of workstation. Parallel
Computing21(137-160) (1995)

. D.Altilar, Y.Paker: An optimal scheduling algorithm fstream based parallel video process-
ing. Proceedings of the 18th International Symposium on@gar and Information Sciences
(ISCIS’03), Springer-Verlag (2003) 731-738

. T.G.Robertazzi: Tenreasons to use divisible load théBEE ComputeB6(5)63-68) (2003)

. D.Altilar, Y.Paker: An optimal scheduling algorithm fparallel video processing. Proceed-
ings of the International Conference on Multimedia Compyitind Systems, IEEE Comput-
ing Society Press (1998)

. L.Dong, V.Bharadwaj, C.C.Ko: Efficient movie retrievdtategies for movie-on-demand
multimedia services on distributed networks. Multimediaols and Application20(2)
(2003) 99-133

. O.Beaumont, H.Casanova, A.Legrand, Y.Robert, Y.Yarahe8uling divisible loads on star
and tree networks: results and open problems. |IEEE Transaain Parallel and Distributed
Systemsl6(3) (Mar. 2005) 207-218

. M.Drozdowski, P.Wolniewicz: Optimizing divisible loatheduling on heterogeneous stars
with limited memory. European Journal of Operational Resea72(2) (2006) 545-559

. A.L.Rosenberg, R.C.Chiang: Toward understanding bgtareity in computing. Proceeding
of the 24th International Parallel and Distributed ProtesSymposium (IPDPS’10). Vol-
ume 1., IEEE Computing Society Press (April 2010) 1-10

. O.Beaumont, L.Marchal, Y.Robert: Scheduling divisilolads with return messages on het-

erogeneous master-worker platforms. Lecture Notes in QoenfScienc&769(2005) 498—

507

T.Saif, M.Parashar: Understanding the behavior anfibymeance of non-blocking commu-

nications in mpi. Proceedings of the 9th international ERas Conference (Euro-Par 2004),

Springer-Verlag (2004) 173-182

V.Bharadwaj, D.Ghose, V.Mani, Robertazzi, T.. Schedubivisible loads in parallel and

distributed systems. IEEE Computing Society Press (1996)

M.Drozdowski: Selected problems of scheduling tasksuitiprocessor computing systems.

PhD thesis, Instytut Informatyki Politechnika Poznandkaznan (1997)

V.Bharadwaj, D.Ghose, V.Mani: Multi-installment loddtribution in tree networks with

delays. IEEE Transactions on Aerospace and ElectronieBst1(2) (1995) 555-567

Y.Yang, H.Casanova: Extensions to the multi-instafitre@gorithm: Affine costs and output

data transfers. Technical Report Tech. Rep. CS2003-07>. bf Computer Science and

Engineering, University of California, San Diego (July 200

D.Millot, C.Parrot: Scheduling on unspecified hetermgmis distributed resources. Proceed-

ing of the 25th International Symposium on Parallel and ritisted Processing Workshops

(IPDPSW’11). Volume 1., IEEE Computing Society Press (MagD) 45-56

D.Millot, C.Parrot: Fundamental results on the AS4DRestuler. Technical Report RR-

11005-INF, TELECOM sudParis, Evry(France) (December 2011

D.Millot, C.Parrot: Some tests of adaptivity for the AB2 scheduler. Proceedings of the

41th International Conference on Parallel Processing RICB, IEEE Computing Society

Press (September 2012) 323-331

D.Pisinger: An exact algorithm for large multiple knagls problems. European Journal of

Operational Researctl4(3) (1999) 528 — 541

H.Casanova, A.Legrand, M.Quinson: Simgrid: a genedaméwork for large-scale dis-

tributed experiments. Proceedings of the 10th Internati@onference on Computer Model-

ing and Simulation (ICCMS’10), IEEE Computing Society Rréiglarch 2008) 126-131

