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Abstract

In this paper we perform an analytical and numerical study of Extreme Value distri-
butions in discrete dynamical systems. In this setting, recent works have shown how
to get a statistics of extremes in agreement with the classical Extreme Value Theory.
We pursue these investigations by giving analytical expressions of Extreme Value dis-
tribution parameters for maps that have an absolutely continuous invariant measure.
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We compare these analytical results with numerical experiments in which we study
the convergence to limiting distributions using the so called block-maxima approach,
pointing out in which cases we obtain robust estimation of parameters. In regular
maps for which mixing properties do not hold, we show that the fitting procedure
to the classical Extreme Value Distribution fails, as expected. However, we obtain
an empirical distribution that can be explained starting from a different observable
function for which Nicolis et al. [2006] have found analytical results.

1 Introduction

Extreme Value Theory (EVT) was first developed by Fisher and Tippett [1928]
and formalized by Gnedenko [1943] which showed that the distribution of the
block-maxima of a sample of independent identically distributed (i.i.d) vari-
ables converges to a member of the so-called Extreme Value (EV) distribution.
It arises from the study of stochastical series that is of great interest in differ-
ent disciplines: it has been applied to extreme floods [Gumbel, 1941], [Sveins-
son and Boes, 2002], [P. and Hense, 2007], amounts of large insurance losses
[Brodin and Kluppelberg, 2006], [Cruz, 2002]; extreme earthquakes [Sornette
et al., 1996], [Cornell, 1968], [Burton, 1979]; meteorological and climate events
[Felici et al., 2007a], [Felici et al., 2007b],[Vitolo et al., 2009b], [Altmann et al.,
2006], [Nicholis, 1997], [Smith, 1989]. All these events have a relevant impact
on socioeconomic activities and it is crucial to find a way to understand and, if
possible, forecast them [Hallerberg and Kantz, 2008], [Kantz et al., 2006].
The attention of the scientific community to the problem of modeling extreme
values is growing. An extensive account of recent results and relevant applica-
tions is given in Ghil et al. [2011]. Such an interest is mainly due to the fact
that this theory is also important in defining risk factor in a wide class of appli-
cations such as the modeling of financial risk after the significant instabilities in
financial markets worldwide [Gilli and Këllezi, 2006], [Longin, 2000], [Embrechts
et al., 1999], the analysis of seismic and hydrological risk [Burton, 1979], [Mar-
tins and Stedinger, 2000]. Even if the probability of extreme events decreases
with their magnitude, the damage that they may bring increases rapidly with
the magnitude as does the cost of protection against them Nicolis et al. [2006].
From a theoretical point of view, extreme values represent extreme fluctuations
of a system. Very recently, many authors have shown clearly how the statis-
tics of global observables in correlated systems can be related to EV statistics
[Dahlstedt and Jensen, 2001], [Bertin, 2005]. Clusel and Bertin [2008] have
shown how to connect fluctuations of global additive quantities, like total en-
ergy or magnetization , by statistics of sums of random variables in such a way
that it is possible to identify a class of random variables whose sum follows an
extreme value distributions.
The so called block-maxima approach is widely used in EVT since it represents
a very natural way to look at extremes. It consists of dividing the data series
of some observable into bins of equal length and selecting the maximum (or
the minimum) value in each of them [Coles et al., 1999]. When dealing with
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climatological or financial data, since we usually have limited data-set, the main
problem in applying EVT is related to the choice of a sufficiently large statistics
of extremes provided that each bin contains a suitable number of observations.
Therefore a smart balance between number of maxima and observations per
bin is needed [Felici et al., 2007a], [Katz and Brown, 1992], [Katz, 1999], [Katz
et al., 2005].
Recently a number of alternative approaches have been studied. One consists in
looking at exceedance over high thresholds rather than maxima over fixed time
periods. While the idea of looking at extreme value problems from this point of
view is very old, the development of a modern theory has started with Todorovic
and Zelenhasic [1970] that have proposed the so called Peaks Over Threshold
approach. At the same time there was a mathematical development of proce-
dures based on a certain number of extreme order statistics [Pickands III, 1975],
[Hill, 1975] and the Generalized Pareto distribution for excesses over thresholds
[Smith, 1984], [Davison, 1984], [Davison and Smith, 1990].

Since dynamical systems theory can be used to understand features of phys-
ical systems like climate and forecast financial behaviors, many authors have
studied how to extend EVT to these field. When dealing with dynamical sys-
tems we have to know what kind of properties (i.e. stability, degree of mixing,
correlations decay) are related to Gnedenko’s hypotheses and also which observ-
ables we must consider in order to obtain an EV distribution. Furthermore, even
if the convergence is achieved, we should evaluate how fast it is depending on
all parameters and properties used. Empirical studies show that in some cases
a dynamical observable obeys to the extreme value statistics even if the con-
vergence is highly dependent on the kind of observable we choose [Vannitsem,
2007], [Vitolo et al., 2009b], [Vitolo et al., 2009a]. For example, Balakrishnan
et al. [1995] and more recently Nicolis et al. [2006] and Haiman [2003] have
shown that for regular orbits of dynamical systems we don’t expect to find con-
vergence to EV distribution.
The first rigorous mathematical approach to extreme value theory in dynamical
systems goes back to the pioneer paper by P. Collet in 2001 [Collet, 2001]. Col-
let got the Gumbel Extreme Value Law (see below) for certain one-dimensional
non-uniformly hyperbolic maps which admit an absolutely continuous invariant
measure and exhibit exponential decay of correlations. Collet’s approach used
Young towers [Young, 1999], [Young, 1998] and his suggestion was successively
applied to other systems. Before quoting them, we would like to point out that
Collet was able to establish a few conditions (usually called D and D′) and
which have been introduced by Leadbetter [Leadbetter et al., 1983] with the
aim to associate to the stationary stochastic process given by the dynamical
system, a new stationary independent sequence which enjoyed one of the classi-
cal three extreme value laws, and this law could be pulled back to the original
dynamical sequence. Conditions D and D′ require a sort of independence of
the stochastic dynamical sequence in terms of uniform mixing condition on the
distribution functions. Condition D was successively improved by Freitas and
Freitas [Freitas and Freitas, 2008a], in the sense that they introduced a new
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condition, called D2, which is weaker than D and that could be checked directly
by estimating the rate of decay of correlations for Hölder observables 1. We
notice that conditions D2 and D′ allow immediately to get Extreme Value Laws
for absolutely continuous invariant measures for uniformly one-dimensional ex-
panding dynamical systems: this is the case for instance of the 1-D maps with
constant density studied in Sect. 3 below. Another interesting issue of Collet’s
paper was the choice of the observables g’s whose values along the orbit of the
dynamical systems constitute the sequence of events upon which we successively
search for the partial maximum. Collet considered a function g(dist(x, ζ)) of the
distance with respect to a given point ζ, with the aim that g achieves a global
maximum at almost all points ζ in the phase space; for example g(x) = − log x.
Using a different g, Freitas and Freitas [Moreira Freitas and Freitas, 2008] were
able to get the Weibull law for the family of quadratic maps with the Benedicks-
Carlesson parameters and for ζ taken as the critical point or the critical value,
so improving the previous results by Collet who did not keep such values in his
set of full measure.
The latter paper [Moreira Freitas and Freitas, 2008] strongly relies on condition
D2; this condition has also been invoked to establish the extreme value laws
on towers which model dynamical systems with stable foliations (hyperbolic
billiards, Lozi maps, Hénon diffeomorphisms, Lorenz maps and flows). This
is the content of the paper by Gupta, Holland and Nicol [Gupta et al., 2009].
We point out that the observable g was taken in one of three different classes
g1, g2, g3, see Sect. 2 below, each one being again a function of the distance
with respect to a given point ζ. The choice of these particular forms for the
g’s is just to fit with the necessary and sufficient condition on the tail of the
distribution function F (u), see next section, in order to exist a non-degenerate
limit distribution for the partial maxima [Freitas et al., 2009], [Holland et al.,
2008]. The paper Gupta et al. [2009] also covers the easier case of uniformly
hyperbolic diffeomorphisms, for instance the Arnold Cat map which we studied
in Sect. 3.2.
Another major step in this field was achieved by establishing a connection be-
tween the extreme value laws and the statistics of first return and hitting times,
see the papers by Freitas, Freitas and Todd [Freitas et al., 2009], [Freitas et al.,
2010b]. They showed in particular that for dynamical systems preserving an
absolutely continuous invariant measure or a singular continuous invariant mea-

1 We briefly state here the two conditions, we defer to the next section for more details
about the quantities introduced. If Xn, n ≥ 0 is a stochastic process, we define Mj,l ≡
{Xj , Xj+1, · · · , Xj+l} and we putM0,m =Mm. Moreover we set am and bm two normalising
sequences and um = x/am + bm, where x is a real number, cf. next section for the meaning
of these variables. The condition D2(um) holds for the sequence Xm if for any integer l, t,m
we have |ν(X0 > um,Mt,l ≤ um) − ν(X0 > um)ν(Mt,l ≤ um)| ≤ γ(m, t), where γ(m, t) is
non-increasing in t for each m and mγ(m, tm)→ 0 as m→∞ for some sequence tm = o(m),
tm →∞.
We say condition D′(um) holds for the sequence Xm if limk→∞ lim supmm

∑[m/k]
j=1 ν(X0 >

um, Xj > um) = 0. Whenever the process is given by the iteration of a dynamical systems,
the previous two conditions could also be formulated in terms of decay of correlation integrals,
see Freitas and Freitas [2008b], Gupta [2010].
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sure ν , the existence of an exponential hitting time statistics on balls around
ν almost any point ζ implies the existence of extreme value laws for one of the
observables of type gi, i = 1, 2, 3 described above. The converse is also true,
namely if we have an extreme value law which applies to the observables of type
gi, i = 1, 2, 3 achieving a maximum at ζ, then we have exponential hitting time
statistics to balls with center ζ. Recently these results have been generalized
to local returns around balls centered at periodic points [Freitas et al., 2010a].
We would like to point out that the equivalence between extreme values laws
and the hitting time statistics allowed to prove the former for broad classes of
systems for which the statistics of recurrence were known, for instance for ex-
panding maps in higher dimension.

In this work we consider a few aspects of the extreme value theory applied
to dynamical systems throughout both analytical results and numerical exper-
iments. In particular we analyse the convergence to EV limiting distributions
pointing out how robust are parameters estimations. Furthermore, we check
the consistency of block-maxima approach highlighting deviations from theo-
retical expected behavior depending on the number of maxima and number of
block-observation. To perform our analysis we use low dimensional maps with
different properties: mixing maps in which we expect to find convergence to EV
distributions and regular maps where the convergence is not ensured.
The work is organised as follow: in section 2 we briefly recall methods and
results of EVT for independent and identical distributed (i.i.d.) variables and
dynamical systems. In section 3 we explicitly compute theoretical expected dis-
tributions parameter in respect to the observable functions of type gi, i = 1, 2, 3
for map that have constant density measure. Numerical experiments on low di-
mensional maps are presented. In section 4 we show that it is possible to derive
an asymptotic expression of normalising sequences when the density measure
is not constant. As an example we derive the explicit expressions for the Lo-
gistic map. Eventually, in section 5 we repeat the experiment for regular maps
showing that extreme values laws do not follow from numerical experiments.

2 Background on EVT

Gnedenko [1943] studied the convergence of maxima of i.i.d. variables

X0, X1, ..Xm−1

with cumulative distribution (cdf) F (x) of the form:

F (x) = P{am(Mm − bm) ≤ x}

Where am and bm are normalising sequences andMm = max{X0, X1, ..., Xm−1}.
It may be rewritten as F (um) = P{Mm ≤ um} where um = x/am + bm. Such
types of normalising sequences converge to one of the three type of Extreme
Value (EV) distribution if necessary and sufficient conditions on parent distri-
bution of Xi variables are satisfied [Leadbetter et al., 1983]. EV distributions
include the following three families:
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• Gumbel distribution (type 1):

F (x) = exp {−e−x} x ∈ R (1)

• Fréchet distribution (type 2):{
F (x) = 0 x ≤ 0

F (x) = exp
{
−x1/ξ

}
x > 0

(2)

• Weibull distribution (type 3):{
F (x) = exp

{
− (−x)

−1/ξ
}

x < 0

F (x) = 1 x ≥ 0
(3)

Let us define the right endpoint xF of a distribution function F (x) as:

xF = sup{x : F (x) < 1} (4)

then, it is possible to compute normalising sequences am and bm using the
following corollary of Gnedenko’s theorem :
Corollary (Gnedenko): The normalizing sequences am and bm in the conver-
gence of normalized maxima P{am(Mm − bm) ≤ x} → F (x) may be taken (in
order of increasing complexity) as:

• Type 1: am = [G(γm)]−1, bm = γm;

• Type 2: am = γ−1m , bm = 0 or bm = c ·m−ξ;

• Type 3: am = (xF − γm)−1, bm = xF ;

where
γm = F−1(1− 1/m) = inf{x;F (x) ≥ 1− 1/m} (5)

G(t) =

∫ xF

t

1− F (u)

1− F (t)
du, t < xF (6)

and c ∈ R is a constant. It is important to remark that the choice of
normalising sequences is not unique [Leadbetter et al., 1983]. For example for
bm of type 2 distribution it is possible to choose either bm = 0 or bm = c ·m−ξ.
In particular, we will use the last one since it is a more general choice that ensure
the convergence for a much broader class of initial distributions [Beirlant, 2004].
Instead of Gnedenko’s approach it is possible to fit unnormalized data directly
to a single family of generalized distribution called GEV distribution with cdf:

FG(x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ}
(7)
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which holds for 1 + ξ(x − µ)/σ > 0, using µ ∈ R (location parameter) and
σ > 0 (scale parameter) as scaling constants in place of bm, and am [Pickands III,
1968]. ξ ∈ R is the shape parameter also called the tail index: when ξ → 0,
the distribution corresponds to a Gumbel type. When the index is negative, it
corresponds to a Weibull; when the index is positive, it corresponds to a Fréchet.

In order to adapt the extreme value theory to dynamical systems, we will
consider the stationary stochastic process X0, X1, ... given by:

Xm(x) = g(dist(fm(x), ζ)) ∀m ∈ N (8)

where ’dist’ is a Riemannian metric on Ω, ζ is a given point and g is an
observable function, and whose partial maximum is defined as:

Mm = max{X0, ..., Xm−1} (9)

The probability measure will be here an invariant measure ν for the dy-
namical system. As we anticipated in the Introduction, we will use three types
of observables gi, i = 1, 2, 3, suitable to obtain one of the three types of EV
distribution for normalised maxima:

g1(x) = − log(dist(x, ζ)) (10)

g2(x) = dist(x, ζ)−1/α (11)

g3(x) = C − dist(x, ζ)1/α (12)

where C is a constant and α > 0 ∈ R.
These three type of functions are representative of broader classes which are
defined, for instance, throughout equations (1.11) to (1.13) in Freitas et al.
[2009]; we now explain the reasons and the meaning of these choices. First of all
these functions have in common the following properties: (i) they are defined
on the positive semi-axis [0,∞] with values into R ∪ {+∞}; (ii) 0 is a global
maximum, possibly equal to +∞; (iii) they are a strictly decreasing bijection in
a neighborhood V of 0 with imageW . Then we consider three types of behavior
which generalize the previous specific choices:
Type 1: there is a strictly positive function p : W → R such that ∀y ∈ R we
have

lim
s→g1(0)

g−11 (s+ yp(s))

g−11 (s)
= e−y

Type 2: g2(0) = +∞ and there exists β > 0 such that ∀y > 0 we have

lim
s→∞

g−12 (sy)

g−12 (s)
= y−β
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Type 3: g3(0) = D < +∞ and there exists γ > 0 such that ∀y > 0 we have

lim
s→0

g−13 (D − sy)

g−13 (D − s)
= yγ

The Gnedenko corollary says that the different kinds of extreme value laws
are determined by the distribution of F (u) = ν(X0 ≤ u) and by the right end-
point of F , xF . We will see in the next section that the local invertibility of
gi, i = 1, 2, 3 in the neighborhood of 0 together with the Lebesgue’s differenti-
ation theorem (which basically says that whenever the measure ν is absolutely
continuous with respect to Lebesgue with density ρ, the the measure of a ball
Bδ(x0) of radius δ centered around almost any point x0 scales like δρ(x0)), allow
us to compute the tail of F , in fact we have

1− F (u) ∼ ρ(ζ)|Bg−1(u)(ζ)|,

where g is any of the three types of functions introduced in (10) to (12) and |A|
denotes the diameter of the set A. As we said above the tail of F determines
the three limit laws for partial maximum of i.i.d. sequences. In particular
Th. 1.6.2. in Leadbetter et al. [1983] specifies what kind of conditions the
distribution function F must verify to get one specific law: the above type 1,2,3
assumptions are just the translation in terms of the shape of gi of the conditions
on the tail of F .

3 Distribution of Extremes in mixing maps with constant
density measure

Our goal is to use a block-maxima approach and fit our unnormalised data
to a GEV distribution; for that it will be necessary to find a linkage among
am, bm, µ and σ. At this regard we will use Gnedenko’s corollary to compute
normalising sequences showing that they correspond to the parameter we obtain
fitting directly data to GEV distribution.

We derive the correct expression for mixing maps with constant density
measure and the asymptotic behavior for logistic map that is a case of non-
constant density measure.

3.1 Asymptotic sequences
In this section we will consider the case of uniformly hyperbolic maps which
preserve the Lebesgue measure (the density ρ = 1) and satisfy the conditions
D2 and D′, sufficient to get extreme valuers distributions. For the second map,
the algebraic automorphisms of the torus better known as the Arnold cat map,
the existence of extreme value laws follows from the theory developed in Gupta
et al. [2009]. Starting from the definitions provided by Gnedenko we derive as
a novel result the exact expression for the normalising sequences am and bm.
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Case 1: g1(x)= -log(dist(x,ζ)). By equations 8 and 9 we know that:

1− F (u) = 1− ν(g(dist(x, ζ)) ≤ u)

= 1− ν(− log(dist(x, ζ)) ≤ u)

= 1− ν(dist(x, ζ) ≥ e−u)

(13)

and the last line is justified by using Lebesgue’s Differentiation Theorem.
Then, for maps with constant density measure, we can write:

1− F (u) ' ν(Be−u(ζ)) = Ωde
−ud (14)

where d is the dimension of the space and Ωd is a constant. To use Gnedenko
corollary it is necessary to calculate uF

uF = sup{u;F (u) < 1}

in this case uF = +∞.
Using Gnedenko equation 6 we can calculate G(t) as follows:

G(t) =

∫ ∞
t

1− F (u)

1− F (t)
du =

∫ ∞
t

e−ud

e−td
du =

1

d

∫ ∞
td

e−v

e−td
dv =

1

d
(15)

According to the Leadbetter et al. [1983] proof of Gnedenko theorem we can
study both am and bm or γm convergence as:

lim
m→∞

m(1− F{γm + xG(γm)}) = e−x

lim
m→∞

mΩde
−d(γm+xG(γm)) = e−x (16)

then we can use the connection between γm and normalising sequences to
find am and bm.

By equation 5 or using relation 16:

γm '
ln(mΩd)

d

so that:

am = d bm =
1

d
ln(m) +

ln(Ωd)

d

Case 2: g2(x)=dist(x,ζ)−1/α. We can proceed as for g1:

1− F (u) = 1− ν(dist(x, ζ)−1/α ≤ u)

= 1− ν(dist(x, ζ) ≥ u−α)

= ν(Bu−α(ζ)) = Ωdu
−αd

(17)
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in this case uF = +∞.

γm = F−1(1− 1/m) = (mΩd)
1/(αd) (18)

and, as discussed in section 2, using Beirlant [2004] choice of normalising
sequences we expect:

bm = c ·m−ξ

where c ∈ R is a constant.

Case 3: g3(x)=C-dist(x,ζ)1/α. Eventually we compute am and bm for the g3
observable class:

1− F (u) = 1− ν(C − dist(x, ζ)1/α ≤ u)

= 1− ν(dist(x, ζ) ≥ (C − u)α)

= ν(B(C−u)α(ζ)) = Ωd(C − u)αd
(19)

in this case uF = C.

γm = F−1(1− 1/m) = C − (mΩd)
−1/(αd) (20)

For type 3 distribution:

am = (uF − γm)−1, bm = uF ; (21)

3.2 Numerical Experiments
Since we want to show that unnormalised data may be fitted by using the GEV
distribution FG(x;µ, σ, ξ) we expect to find the following equivalence:

am = 1/σ bm = µ

where, clearly, µ = µ(m) and σ = σ(m). This fact can be seen as a lin-
ear change of variable: the variable y = am(x − bm) has a GEV distribution
FG(y;µ = 0, σ = 1, ξ) (that is an EV one parameter distribution with am and bm
normalising sequences) while x is GEV distributed FG(x;µ = bm, σ = 1/am, ξ).

As we said above we now apply the previous considerations to two maps
which enjoy extreme values laws and have constant density: we summarize
below the theoretical results we obtained for all three type of observables. We
have obtained the results in terms of m but, since we fix k = n ·m, the previous
results can be translated in terms of n as follows:

For g1 type observable:

σ =
1

d
µ ∝ 1

d
ln(k/n) (22)
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For g2 type observable:

σ ∝ n−1/(αd) µ ∝ n−1/(αd) (23)

For g3 type observable:

σ ∝ n1/(αd) µ = C (24)

Following Freitas et al. [2009] we obtain the expression for the shape pa-
rameters: ξ = 0 for g1 type , ξ = 1/(αd) for g2 type and ξ = −1/(αd) for g3
type.

In order to provide a numerical test of our results we consider a one-dimensional
and a two dimensional map. The one dimensional map used is a Bernoulli Shift
map:

xt+1 = qxt mod 1 q > 1 ∈ N (25)

with q = 3.

The considered two dimensional map is the famous Arnold’s cat map defined
on the 2-torus by: [

xt+1

yt+1

]
=

[
2 1
1 1

] [
xt
yt

]
mod 1 (26)

A wide description of properties of these maps can be found in Arnold and
Avez [1968] and Hasselblatt and Katok [2003].

We proceed as follows. For each map we run a long simulation up to k it-
erations starting from a given initial condition ζ. Note that the results - as we
tested - do not depend on the choice of ζ. From the trajectory we compute the
sequence of observables g1, g2, g3 as follows dividing it into n bins each contain-
ing m = k/n observations. Then, we test the degree of agreement between the
empirical distribution of the maxima and the GEV distribution according to the
theoretical values presented above. A priori, it is reasonable to assume GEV
as a suitable family of statistical models. For some selected values of n, the
maxima are normalised and fitted to GEV distributions FG(x;µ, σ, ξ) using a
maximum likelihood method which selects values of the model parameters that
produce the distribution most likely to have resulted in the observed data.
All the numerical analysis contained in this work has been performed using
MATLAB Statistics Toolbox functions such as gevfit and gevcdf. These func-
tions return maximum likelihood estimates of the parameters for the generalized
extreme value (GEV) distribution giving 95% confidence intervals for estimates
[Martinez and Martinez, 2002].
As in every fitting procedure, it is necessary to test the a posteriori goodness
of fit. We anticipate that in every case considered, fitted distributions passed,
with maximum confidence interval, the Kolmogorov-Smirnov test described in
Lilliefors [1967]. For illustration purposes, we present in figure 1 an empirical
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pdf and cdf with the corresponding fits.

Once k is set to a given value (in our case k = 107), the numerical simulations
allow us to explore two limiting cases of great interest in applications where the
statistical inference is intrinsically problematic:

1. n is small (m is large), so that we extract only few maxima, each corre-
sponding to a very extreme event.

2. m is small (n is large), so that we extract many maxima but most of those
will not be as extreme as in case 1).

In case 1), we have only few data - of high quality - to fit our statistical
models whereas in case 2) we have many data but the sampling may be spoiled
by the inclusion of data not giving a good representation of extreme events.
We have in general that in order to obtain a reliable fit for a distribution with
p parameters we need 10p independent data [Felici et al., 2007a] so that we
expect that fit procedure gives reliable results for n > 103. As the value of
m determines to which extend the extracted bin maximum is representative of
an extreme , below a certain value mmin our selection procedure will be un-
avoidably misleading. We have no obvious theoretical argument to define the
value of mmin. We expect to obtain good fits throughout the parametric region
where the constraints on n,m are satisfied. Therefore, our flexibility in choosing
satisfying pairs (n,m) increases with larger values of k.

For a g1 type observable function the behavior against n of the three param-
eters is presented in figure 2. According to equation 22 we expect to find ξ = 0.
For relatively small values of n the sample is too small to ensure a good con-
vergence to analytical ξ and confidence intervals are wide. On the other hand
we see deviations from expected value as m < 103 that is when n > 104. For
the scale parameter a similar behavior is achieved and deviations from expected
theoretical values σ = 1/2 for Arnold Cat Map and σ = 1 for Bernoulli Shift
are found when n < 103 or m < 103. Location parameter µ shows a logarithm
decay with n as expected from equation 22. A linear fit of µ in respect to log(n)
is shown with agray line in figure 2. The linear fit computed angular coefficients
K∗ of equation 22 well approximate 1/d: for Bernoulli Shift map we obtain
|K∗| = 1.001± 0.001 while for Arnold Cat map |K∗| = 0.489± 0.001. We find
that ξ values have best matching with theoretical ones with reliable confidence
interval when both n > 103 and m > 103. These results are confirmed even
for g2 type and g3 type observable functions as shown in figures 3a) and 4a)
respectively. We present the fit results for α = 3 but we have done tests for
different α and for fixed n and different α.
For g2 observable function we can also check that µ and σ parameters follow
a power law as described in eq. 23. In the log-log plot in Figure 3b), 3c), we
can see a very clear linear behavior. For the Bernoulli Shift map we obtain
|K∗| = 0.330 ± 0.001 for µ series , |K∗| = 0.341 ± 0.001 for σ in good agree-
ment with theoretical value of 1/3. For Arnold Cat map we expect to find
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K∗ = 1/6, from the experimental data we obtain |K∗| = 0.163 ± 0.001 for µ
and |K∗| = 0.164± 0.001 for σ.
Eventually, computing g3 as observable function we expect to find a constant
value for µ while σ has to grow with a power law in respect to n as expected
from equation 24. As in g2 case we expect |K∗| = 1/(αd) and numerical
results shown in figure 4b), 4c) are consistent with the theoretical one since
|K∗| = 0.323 ± 0.006 for Bernoulli shift map and |K∗| = 0.162 ± 0.006 for
Arnold Cat map.

In all cases considered the analytical behavior described in equation 23 and
24 is achieved and the fit quality improves if n > 103 and m > 103. The g3 type
observable constant has been chosen C = 10. The nature of these lower bound
is quite different:

4 Distributions of Extremes in mixing map with
non-constant density measure

4.1 Asymptotic sequences
The main problem when dealing with maps that have absolutely continuous but
non-constant density measure ρ(ζ) is in the computation of the integral:

ν(Bδ(ζ)) =

∫
Bδ(ζ)

ρ(x)dx (27)

where Bδ(ζ) is the d-dimensional ball of radius δ centered in ζ.
We have to know the value of this integral in order to evaluate F (u) and,
therefore, the sequences am and bm.
As shown in the previous section δ is linked to the observable type: in all cases,
since we substitute u = 1−1/m, δ → 0 means that we are interested in m→∞.
In this limit, a first order approximation of the previous integral is:

ν(Bδ(ζ)) ' ρ(ζ)δd +O(δd+1) (28)

that is valid if we are not in a neighborhood of a singular point of ρ(ζ).

As an example we compute the asymptotic sequences for a logistic map:

xt+1 = rxt(1− xt) (29)

with r = 4. This map satisfies hypothesis described in the analysis per-
formed for Benedicks-Carleson maps in Moreira Freitas and Freitas [2008].

For this map the density of the absolutely continuous invariant measure is
explicit and reads:

ρ(ζ) =
1

π
√
ζ(1− ζ)

ζ ∈ (0, 1) (30)
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So that: ∫
Bδ(ζ)

ρ(ζ)dζ =
2

π

[
arcsin(

√
ζ + δ − arcsin(

√
ζ − δ

]
(31)

where ζ + δ < 1 and ζ − δ > 0. Since Extreme Value Theory effectively
works only if n,m are large enough, the results in eq. 31 can be replaced by a
series expansion for δ → 0:

2

π

[
arcsin(

√
ζ + δ − arcsin(

√
ζ − δ

]
=

1

π

2δ√
ζ(1− ζ)

[
1 + δ2P (ζ) + ...

]
(32)

up to order δ3, where:

P (ζ) =
1

8ζ2
− 2

ζ(1− ζ)
+

2

ζ2(1− ζ)
+

6

ζ2(1− ζ)2
(33)

Using the last two equations we are able to compute asymptotic normalising
sequences am and bm for all gi observables.

Case 1: g1(x)= -log(dist(x,ζ)). For g1 observable functions we set δ = e−ud.
In case of logistic map d = 1. First we have to compute G(t) using equation 15
and the expansion in eq. :

G(t) =

∫∞
t
du(e−u + e−3uP (ζ)

e−t + e−3tP (ζ)
' 1− 2

3
e−2tP (ζ) (34)

We can compute γm, if m >> 1, as follows:

F (γm) ' 1− 1

m
(35)

At the first order in eq. 32 we get

1

m
' 1

π

2e−γm√
ζ(1− ζ)

(36)

so that:

γm ' ln(m) + ln

(
2

π
√
ζ(1− ζ)

)
(37)

Therefore, the sequences am and bm if m >> 1 are:

am ' [G(γm)]−1 ' 1 +
2

3

π2

4m2
ζ(ζ − 1)P (ζ) (38)

bm ' γm ' ln(m) + ln (2ρ(ζ)) (39)
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Case 2: g2(x)=dist(x,ζ)−1/α. We can proceed as for g1 setting δ = (αu)−α,
computing γm we get at the first order in eq. 32:

1

m
' 1

π

2γ−αm√
ζ(1− ζ)

= 2ρ(ζ)(αγm)−α (40)

γm =
1

α

(
1

2mρ(ζ)

)−1/α
(41)

We can respectively compute am and bm as:

am = γ−1m bm = (2mρ(ζ))−ξ (42)

Case 3: g3(x)=C-dist(x,ζ)1/α. As in the previous cases, we compute γm up
to the first order setting δ = [α(C − γm)]α:

1

m
' 1

π

2[α(C − γm)]α√
ζ(1− ζ)

= 2ρ(ζ)[α(C − γm)]α (43)

γm = C − 1

α

(
1

2mρ(ζ)

)1/α

(44)

For type 3 distribution:

am = (uF − γm)−1, bm = uF ; (45)

where uf = C.

4.2 Numerical experiment on the logistic map
Following the same procedure detailed in section 3.2, we want to show the
equivalence between EV computed normalising sequences am and bm and the
parameters of a GEV distribution obtained directly fitting the data even in case
of logistic map that has not constant density measure. Using eq. 38-39 for g1,
we obtain the following theoretical expression:

σ(m, ζ) ' 1 +
2

3

π2

4m2
ζ(ζ − 1)P (ζ) µ(m, ζ) ' ln(m) + ln(2ρ(ζ)) (46)

From eq. 39, for g2 observable type, we write:

σ(m, ζ) ' 1

α
(2mρ(ζ))

1
α µ(m, ζ) ' (2mρ(ζ))

1
α (47)

and in g3 case using eq. 45, we expect to find:

σ(m, ζ) ' 1

α
(2mρ(ζ))−1/α µ(m, ζ) ' C = uF (48)
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Values of ξ are independent on density and, as stated in Freitas’ ξ = 0 for
g1 type , ξ = 1/(αd) for g2 type and ξ = −1/(αd) for g3 type.

In figures 5-7 we presents a numerical test of the asymptotic behavior de-
scribed in equations 46 - 48 on logistic map for d = 1 , a = 3, C = uF = 10,
ζ = 0.3 against the variable n. As shown in previous section, block maxima
approach works well with maps with constant density measure when n and m
are at least 103: In fact, regarding ξ parameter. Significant deviations from the
theoretical value are achieved when n < 1000 or m < 1000 even in the case of
the Logistic Map.
Regarding µ and σ, for g1 observable a linear fit of µ in respect to log(n) give
us |K∗| = 0.999 ± 0.002, while σ shows the same behavior of ξ since the best
agreement with theoretical value σ = 1 is achieved when n,m > 103. In the log-
log plots of figure 6b), 6c) for g2 observable, we can observe again the expected
linear behavior for µ and σ with |K∗| corresponding to 1/(αd). From numerical
fit we obtain |K∗| = 0.3334 ± 0.0007 for µ series and |K∗| = 0.337 ± 0.002 for
σ in good agreement with theoretical value of 1/3. By applying a linear fit to
the log-log plot in figure 7b), the angular coefficient corresponding to σ series
is |K| = 0.323± 0.003 again consistent with the theory.

For a logistic map we can also check the GEV behavior in respect to initial
conditions. If we fix n∗ = m∗ = 103 and fit our data to GEV distribution for
103 different ζ ∈ (0, 1) an asymptotic behavior is reached as shown from the
previous analysis. For g1 observable function we have observed that the first
order approximation works well for all three parameters. Deviation from this
behavior are achieved for ζ → 1 and ζ → 0 as the measure become singular
when we move to these points and we should take in account other terms of
the series expansion. Numerically, we found that deviations from first order
approximation are meaningful only if ζ < 10−3 and ζ > 1 − 10−3. Averaging
over ζ both ξ and σ we obtain < ξ >= 1.000 ± 0.009 and < σ >= 1.00 ± 0.03
where the uncertainties are computed with respect to the estimator. Since
we expect ξ = 0 and σ = 1 at zero order approximation, numerical results
are consistent with the theoretical ones; furthermore, experimental data are
normally distributed around theoretical values.
Asymptotic expansion also works well for g2 observables: we obtain < ξ >=
0.334±0.001 in excellent agreement with theoretical value ξ = 1/3. Eventually,
in g3, averaging ξ over different initial conditions we get < ξ >= −0.334±0.002
that is again consistent to theoretical value -1/3.

5 The case of regular maps

Freitas and Freitas [2008a] have posed the problem of dependent extreme values
in dynamical systems that show uniform quasi periodic motion. Here we try
to investigate this problem numerically. We have used a one-dimensional and a
bi-dimensional discrete map. The first one is the irrational translation on the
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torus defined by:

xt+1 = xt + β mod 1 β ∈ [0, 1] \Q (49)

And for the bidimensional case, we use the so called standard map:

yt+1 = yt +
λ

2π
sin(2πxt) mod 1; xt+1 = xt + yt+1 mod 1. (50)

with λ = 10−4. For this value of λ, the standard map exhibits a regular
behavior and it is not mixing, as well as torus translations. This means that
these maps fail in satisfying hypothesis D2 and D′ and moreover they do not
enjoy as well an exponential hitting time statistics. About this latter statistics,
it is however known that it exists for torus translation and it is given by a par-
ticular piecewise linear function or a uniform distribution depending on which
sequence of sets Ak is considered [Coelho and De Faria, 1996]. In a similar way,
a non-exponential Hitting Time Statistics (HTS) is achieved for standard map
when λ << 1 as well as for a skew map, that is a standard map with λ = 0
[Buric et al., 2005]. Therefore we expect not to obtain a GEV distribution of
any type using gi observables.

We have pointed out that the observable functions choice is crucial in order
to observe some kind of distribution of extreme values when we are dealing
with dynamical systems instead of stochastic series. Nicolis et al. [2006] have
shown how it is possible to obtain an analytical EV distribution which does not
belong to GEV family choosing a simple observable: they considered the series
of distances between the iterated trajectory and the initial condition. Using the
same notation of section 2 we can write:

Ym(x = f tζ) = dist(f tζ, ζ) M̂m = min{Y0, ...Ym−1}

For this observable they have shown that the cumulative distribution F (x) =
P{am(M̂m − bm) ≤ x} of a uniform quasi periodic motions is not smooth but
piecewise linear (Nicolis et al. [2006], figure 3). Furthermore slop changes of
F (x) can be explained by constructing the intersections between different iter-
ates of equation 49. F (x) must correspond to a density distribution continuous
obtained as a composition of box functions: each box must be related to a
change in the slope of F (x).

The numerical results we report below confirm that for the maps 49 and
50 the distributions of maxima for various observables cannot be fitted with a
GEV since they are multi modal. We recall that the return times into a sphere
of vanishing radius do not have a spectrum, if the orbits have the same fre-
quency, whereas a spectrum appears if the frequency varies continuously with
the action, as in the standard map for λ close to zero [Hu et al., 2004]. Since
the EV statistics refers to a single orbit, no change due to the local mixing,
which insures the existence of a return times spectrum [Hu et al., 2004], can be
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observed. Considering that the GEV exists when the system is mixing and does
not when it is integrable, one might use the quality of fit to GEV as a dynamical
indicator, for systems which exhibit regions with different dynamical properties,
ranging from integrable to mixing as it occurs for the standard map when λ is
order 1. Indeed we expect that in the neighborhood of a low order resonance,
where the omoclinic tangle of intersecting separatrices appears, a GEV fit is
possible. Preliminary computations carried out for the standard map and for
a model with parametric resonance confirm this claim, that will be carefully
tested in the near future.

Using the theoretical framework provided in Nicolis et al. [2006] we check
numerically the behavior of maps described in eq. 49-50 analysing EV distribu-
tions for gi observable functions. Proceeding as in section 3 for mixing maps,
we try to perform a fit to GEV distribution starting with different initial condi-
tions ζ, a set of different α values and (n,m) combinations. In all cases analysed
the Kolmogorov Smirnov test fails and this means that GEV distribution is not
useful to describe the behavior of this kind of statistics. This result is in agree-
ment with Freitas et al. [2010b] but we may find out which kind of empirical
distribution is obtained.

Looking in details at Mm histograms that correspond to empirical density
distributions, they appear always to be multi modal and each mode have a well
defined shape: for g1 type observable function modes are exponential while, for
g2 and g3, their shape depends on α value of observable function. Furthermore,
the number of modes and their positions are highly dependent on both n,m and
initial conditions.
Using Nicolis et al. [2006] results it is possible to understand why we obtain this
kind of histograms: since density distribution of M̂m is a composition of box
functions, when we apply gi observables we modulate it changing the shape of
the boxes. Therefore, we obtain a multi modal distribution modified according
to the observable functions gi.
An example is shown in figure 8 for standard map: the left figures correspond
to the histogram of the minimum distance obtained without computing gi ob-
servable and reproduce a composition of box functions. The figures in the right
show how this distribution is modified by applying g1 observable to the series
of minimum distances. We can see two exponential modes, while the third is
hidden in the linear scale but can be highlighted using a log-scale. The up-
per figures are drawn using n = 3300, m = 3300, the lower with n = 10000,
m = 1000.

6 Concluding Remarks

EVT was developed to study a wide class of problems of great interest in different
disciplines: the need of modeling events that occur with very small probability
comes from the fact that they can affect in a strong way several socioeconomic
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activities: floods, insurance losses, earthquakes, catastrophes. A very extensive
account of EVT applications has been recently given in Ghil et al. [2011]. EVT
was applied on limited data series using the block-maxima approach facing the
problem of having a good statistics of extreme values retaining a sufficient num-
ber of observation in each bin. Often, since no theoretical a priori values of
GEV parameters are available for this kind of applications, we may obtain a
biased fit to GEV distribution even if tests of statistical significance succeed.
The recent development of an extreme value theory in dynamical systems give
us the theoretical framework to test the consistency of block-maxima approach
when analytical results for distribution parameters are available. This theory
relies on the global properties of the dynamical systems considered (such as the
degree of mixing or the decay rate of the Hitting Time Statistics) but also on
the observable functions we chose.

Our main finding is that a block-maxima approach for GEV distribution
is totally equivalent to fit an EV distribution after normalising sequences are
computed. To prove this we have derived analytical expressions for am and bm
normalising sequences, showing that µ and σ of fitted GEV distribution can
replace them. This approach works for maps that have an absolutely continu-
ous invariant measure and retain some mixing properties that can be directly
related to the exponential decay of HTS. Since GEV approach does not require
the a-priori knowledge of the measure density that is instead require by the EV
approach, it is possible to use it in many numerical applications.

Furthermore, if we compare analytical and numerical results we can study
what is the minimum number of maxima and how big the set of observations
in which the maximum is taken has to be. To accomplish this goal we have
analysed maps with constant density measure finding that a good agreement
between numerical and analytical value is achieved when both the number of
maxima n and the observations per bin m are at least 103. We remark that
the fits have passed Kolmogorov Smirnov test with maximum confidence interval
even if n < 103 or < m < 103 so that parametric or non parametric tests are not
the only thing to take in account when dealing with extreme value distributions:
if maxima are not proper extreme values (which means m is not large enough)
the fit is good but parameters are different from expected values. The lower
bound of n can be explained using the argument that a fit to a 3-parameters
distribution needs at least 103 independent data to give reliable informations.
Therefore, we checked that in case of non-constant absolutely continuous den-
sity measure the asymptotic expressions used to compute µ and σ works when
we consider n and m of order 103. For logistic map the numerical values of
parameters we obtain averaging over different initial conditions are totally in
agreement with the theoretical ones. In regular maps, as expected, the fit to a
GEV distribution is unreliable. We obtain a multi modal distribution, that, for
the analyzed maps, is the result of a composition of modes in which the shape
depends on observable types. This behavior can be explained pointing out that
this kind of systems have not an exponential HTS decay and therefore have no
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EV law for observables of type gi.

To conclude, we claim that we have provided a reliable way to investigate
properties of extreme values in mixing dynamical systems which may satisfy
mixing conditions (like D2 and D′), finding an equivalence among am, bm, µ
and σ behavior for absolutely continuous measures. In our future work we intend
to address the case of singular measure. Recently the theorem was generalised
to the case of non smooth observations and therefore it holds also with non ab-
solutely continuous invariant probability measure [Freitas et al., 2010b]. In this
case we expect the same for all the procedure described here. Understanding
the extreme values behavior for singular measures will be crucial to apply pro-
ficiently this analysis to operative geophysical models since in these case we are
always dealing with singular measures. In this way we will provide a complete
tool to study extreme events in complex dynamical systems used in geophysical
or financial applications.
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Fig. 1: Left: g1 observable empirical histogram and fitted GEV pdf. Right: g1
observable empirical cdf and fitted GEV cdf. Logistic map, n = 104,
m = 104
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Fig. 2: g1 observable, ζ ' 0.51. a) ξ VS log10(n); b) σ VS log10(n); c) µ VS
log(n). Right: Bernoulli Shift map. Left: Arnold Cat Map. Dotted lines
represent computed confidence interval, gray lines represent linear fits
and theoretical values.
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Fig. 3: g2 observable, ζ ' 0.51. a) ξ VS log10(n); b) log10(σ) VS log10(n);
c) log10(µ) VS log10(n). Right: Bernoulli Shift map. Left: Arnold Cat
Map. Dotted lines represent computed confidence interval, gray lines
represent linear fits and theoretical values.
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Fig. 4: g3 observable, ζ ' 0.51. a) ξ VS log10(n); b) log10(σ) VS log10(n);
c) log10(µ) VS log10(n). Right: Bernoulli Shift map. Left: Arnold Cat
Map. Dotted lines represent computed confidence interval, gray lines
represent linear fits and theoretical values.
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Fig. 5: g1 observable, ζ = 0.31. a) ξ VS log10(n); b) σ VS log10(n); c) µ
VS log(n). Logistic map. Dotted lines represent computed confidence
interval, gray lines represent linear fits and theoretical values.
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Fig. 6: g2 observable, ζ = 0.3. a) ξ VS log10(n); b) log10(σ) VS log10(n); c)
log10(µ) VS log10(n). Logistic map. Dotted lines represent computed
confidence interval, gray lines represent linear fits and theoretical values.
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Fig. 7: g3 observable, ζ = 0.3. a) ξ VS log10(n); b) log10(σ) VS log10(n); c)
log10(µ) VS log10(n). Logistic map. Dotted lines represent computed
confidence interval, gray lines represent linear fits and theoretical values.
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Fig. 8: Histogram of maxima for g1 type observable function, standard map,
x0 = y0 =

√
2 − 1. Left: series of min(dist(f tζ, ζ)). Right: series of

g1 = − log(min(dist(f tζ, ζ))). a) n = 3300, m = 3300. b) n = 10000,
m = 1000.
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