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Sébastien Poncet
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Abstract

This investigation deals with the effects of slip, magnetic field and non-Newtonian
flow parameters on flow and heat transfer of an incompressible, electrically conduct-
ing fourth grade fluid past an infinite porous plate subject to suction and blowing,
known as the Blasius flow problem. The heat transfer analysis has been carried out
for two heating processes, namely, when the plate is assumed to be at higher temper-
ature than the fluid, and in the second case, the plate is assumed to be insulated.
The order of the resulting differential equations exceeds the available adherence
boundary conditions due to the presence of the higher order material derivatives of
the strain tensor in the constitutive relation for the fourth grade fluid. The system of
highly non-linear differential equations is solved using a fourth order Runge-Kutta
method along with a shooting method for moderate values of the flow and heat
transfer parameters. The effective Broyden’s technique has been adopted in order
to improve the initial guesses and to satisfy the boundary conditions at infinity. The
combined effects of the non-Newtonian flow parameters and slip on the momentum
and thermal boundary layers have been discussed in details. An exceptional cross-
overs is obtained in the velocity profile in presence of slip. The fourth grade fluid
parameter is found to increase the momentum boundary layer thickness, whereas
the slip parameter substantially decreases it. Similarly, the non-Newtonian fourth
grade fluid parameters and the slip have opposite effects on the thermal boundary
layer thickness.
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1 Introduction

Despite their applications in many industrial processes, the boundary layer
flow of higher order fluid of differential type, namely the fourth grade fluid
here, has drawn the attention of only few researchers during the last few
decades. The main reason is that the constitutive equation of the fourth grade
fluid is very complex involving a wide number of parameters. Moreover, the
order of the differential equation corresponding to the momentum equation is
exceptionally large, and exceeds the number of available boundary conditions,
even in the simplest boundary layer flow past a flat plate. Renardy [1] has
shown that such fluids are the last to have a stable state of rest. They have
been considered in few other configurations such as plane Poiseuille [2,3] or
Couette [4] flows or recently, in an asymmetric channel [5].

The unsteady and steady flows of a fourth grade fluid, subject to a transverse
uniform magnetic field past a porous plate has been investigated by Hayat
et al. [6]. The boundary layer approximation resulted in a highly nonlinear
differential equation of order six corresponding to the momentum equation
with only two adherence boundary conditions. The finite difference method
has been adopted to solve the sixth order nonlinear differential equation by
augmenting four extra asymptotic boundary conditions. Hayat et al. [7] have
studied the unsteady flow of a fourth grade fluid past a porous plate. They
have successively reduced the order and number of independent variables of
the resulting partial differential equations using Lie point symmetries. Subse-
quently, Sajid et al. [8] have studied the steady flow of a fourth grade fluid
past a plate with suction and injection velocities at the surface of the plate.
The homotopy analysis method (HAM) is used to find the solution of the
fifth order highly nonlinear differential equation with two available bound-
ary conditions. Hayat et al. [9] have used the HAM method to investigate
the influence of the heat transfer on the flow of a fourth grade fluid past a
porous plate. The unsteady MHD flow of a fourth grade fluid due to an os-
cillating plate with suction and blowing has been investigated numerically by
Wang and Wu [10]. The corresponding sixth order nonlinear partial differen-
tial equation has been solved by finite difference technique after augmenting
four asymptotic boundary conditions. Recently, Marinca et al. [11] have used
optimal homotopy asymptotic method to solve the resulting highly nonlinear
momentum equation with no-slip boundary condition.

The foremost reason which motivated for the present study is the nonlinearity
and the order of the differential equation corresponding to the momentum
equation due to the flow of a fourth grade fluid. The order of the resulting
differential equation exceeds drastically from the available adherence boundary
conditions due to the presence of the higher order material derivatives of
the strain tensor in the constitutive relation for the fourth grade fluid. The
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literature survey reveals that in the aforementioned studies, respective authors
[6–10] have augmented additional boundary conditions at infinity. However,
these are relatively weak and physically plausible. Few other interesting results
from the literature survey, which arouse a curiosity to consider the MHD flow
and heat transfer of a fourth grade fluid with partial slip boundary condition
are as follows. Hayat et al. [6] have reported that in presence of the magnetic
field, the boundary layer thickness decreases with an increase in the fourth
grade fluid parameter, and the magnetic field has a substantial effect on the
boundary layer thickness. The conclusions of the study of the steady flow
of a fourth grade fluid past a porous plate by Sajid et al. [8] reveal that
there does not exist a solution in the case of injection and the boundary
layer thickness is rapidly decreased with an increase in the fourth grade fluid
parameter for all values of the suction parameter exceeding one. Moreover,
the recent study [9] of the flow and heat transfer of a fourth grade fluid past
a porous plate depicts that the thermal boundary layer thickness increases
with an increase in the fourth grade fluid parameter. We can cite also the
recent contribution of Islam et al. [3], who investigated the steady flow of
fourth-grade fluid in a infinite plane Poiseuille channel with slippage using the
optimal HAM. They highlighted that this technique provides more satisfactory
results than the homotopy perturbation technique.

Hayat et al. [12] considered partial slip effects on the flow and heat transfer
characteristics of a third grade fluid past a porous plate using the homotopy
analysis method. Nadeem et al. [13] studied the effects of partial slip on a
fourth-grade fluid with variable viscosity contained in a stationary cylinder.
Analytic solutions of velocity and temperature have been developed and dis-
cussed for the Reynolds and Vogels models. The present paper is the extension
of the recent work of Sahoo [14], who investigated the flow and heat transfer of
an electrically conducting third grade fluid past an infinite plate with partial
slip. It deals in the present case with the numerical study of the slip flow and
heat transfer of an incompressible, electrically conducting fourth grade fluid
past an infinite porous plate subject to suction and blowing. The heat trans-
fer analysis has been carried out for two heating processes, namely, when the
plate is assumed to be at higher temperature than the fluid, and in the second
case, the plate is assumed to be insulated. To the best of our knowledge, no
attention has been given to the effects of partial slip on the MHD boundary
layer flow and heat transfer of a fourth grade fluid over a flat plate. Even,
the hydrodynamic boundary layer flow and heat transfer of a fourth grade
fluid with slip boundary condition is not discussed so far. However, some
non-Newtonian fluids like polymer melts exhibit macroscopic wall slip, which
makes the no-slip condition fully inappropriate. It is noteworthy to point out
that the quantitative behavior of higher grade fluids is strongly dependent on
the choice of the material parameters. At the present time, there appears to be
no experimental data determining these parameters, particularly the material
parameters in the theory of fourth grade fluids. The present investigation is a
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step towards understanding the effects of the slip parameter on the flow and
heat transfer of a fourth grade fluid.

This paper is divided as follows: in Section 2, the problem is mathematically
formulated to get a system of ordinary differential equations with appropriate
boundary conditions and is solved using an effective second order numerical
scheme in Section 3. The effects of the flow parameters (partial slip, heat
transfer, non newtonian parameters, suction/injection velocity) on a Blasius
flow of a fourth grade fluid are discussed in details in Section 4 before some
concluding remarks in Section 5.

2 Formulation of the problem

We consider the steady two-dimensional flow of an incompressible fourth grade
fluid past an infinite porous plate (infinite in the x− direction), coinciding with
the plane y = 0. The flow far away from the plate is uniform, and is in the
direction x parallel to the plate. A transverse uniform magnetic field (0, B0, 0)
(Fig. 1) has been applied at the surface of the plate and the surface admits
partial slip.

B0

y

x

0v

U

Fig. 1. A sketch of the Blasius flow problem.

Thus, we seek velocity and temperature fields under the form:

V = u(y)i + v(y)j (1)

θ = θ(y) (2)

where u and v are the components of the velocity in the x and y directions
respectively and θ denotes the temperature.
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2.1 Flow analysis

Neglecting the body force, the equations of motion and continuity for an elec-
trically conducting, incompressible fluid write:

ρ
dV

dt
= ∇ ·T + J×B (3)

∇ ·V = 0 (4)

where d/dt denotes the temporal material derivative, ρ is the density of the
fluid assumed to be constant, T is the Cauchy stress for an incompressible
homogeneous fluid of grade four, and J is the electric current. The term due
to the Lorentz force (J ×B) is simplified by making some assumptions valid
for small magnetic Reynolds numbers and no displacement current [15]: the
physical quantities are kept constant, the magnetic field is perpendicular to
the velocity field, the induced magnetic field remains small compared to the
applied magnetic one and the electrical field is assumed to be zero.

Under the consideration of the flow, it follows from (1) and (4) that:

v = −V0 (5)

where V0 > 0 is the suction velocity and V0 < 0 is the injection velocity. V0 is
considered as being constant.

The Cauchy stress T for an incompressible fourth grade fluid has the consti-
tutive equation (see in [5] for example):

T =− pI + µA1 + α1A2 + α2A1
2

+ β1A3 + β2(A2A1 + A1A2) + β3(trA1
2)A1

+ γ1A4 + γ2(A3A1 + A1A3) + γ3A2
2 + γ4(A2A1

2 + A1
2A2)

+ γ5(trA2)A2 + γ6(trA2)A1
2 + [γ7(trA3) + γ8tr(A2A1)]A1

(6)

where I is the identity tensor. The coefficient µ is the coefficient of viscos-
ity (kg/m/s). α1 and α2 are the second order material constants (kg/m),
β1, . . . , β3 the third order material constants (kg.s/m) and γ1, . . . , γ8 the fourth
order material constants (kg.s2/m). The first to fourth order Rivlin-Ericksen
tensors Ai (i = 1, . . . , 4) are defined by the recursive relation:
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A0 = I (7)

An =
dAn−1

dt
+ An−1∇V + (∇V)TAn−1, n ≥ 1 (8)

where (∇V)T is the transpose of ∇V.

Now substituting (1) and (5) in the constitutive equation (6) for the fourth
grade fluid, we obtain the following physical components of the Cauchy stress
tensor T:

Txx = −p+α2

(
du

dy

)2

−2β2V0
du

dy

d2u

dy2
+2γ2V

2
0

du

dy

d3u

dy3
+γ3V

2
0

(
d2u

dy2

)2

+2γ6

(
du

dy

)4

(9)

Txy = µ
du

dy
− α1V0

d2u

dy2
+ β1V

2
0

d3u

dy3
+ 2(β1 + β3)

(
du

dy

)3

− γ1V
3
0

d4u

dy4

− (6γ2 + 2γ3 + 2γ4 + 2γ5 + 6γ7 + 2γ8)V0

(
du

dy

)2d2u

dy2

(10)

Tyy =− p + (2α1 + α2)
(

du

dy

)2

− 2V0(3β1 + β2)
du

dy

d2u

dy2
+ 6γ1V

2
0

d

dy

(
du

dy

d2u

dy2

)

+ 2(γ1 + γ2)V
2
0

d3u

dy3

du

dy
+ γ3V

2
0

(
d2u

dy2

)2

+ 2(2γ3 + 2γ4 + 2γ5 + γ6)
(

du

dy

)4

(11)

Tzz = −p (12)

Txz = Tzy = 0 (13)

Txy = Tyx, Txz = Tzx, Tyz = Tzy (14)

Now, the three scalar components of the momentum equation (3), in view of
Eqn. (5), become:

6



−ρV0
du

dy
=

∂Txx

∂x
+

∂Txy

∂y
+

∂Txz

∂z
− σB2

0u (15)

0 =
∂Txy

∂x
+

∂Tyy

∂y
+

∂Tyz

∂z
+ σB2

0V0 (16)

0 =
∂Txz

∂x
+

∂Tyz

∂y
+

∂Tzz

∂z
(17)

where σ is the electrical conductivity.

Inserting the above stress components in Eqns. (15)- (17), we obtain:

µ
d2u

dy2
+ ρV0

du

dy
− α1V0

d3u

dy3
+ β1V

2
0

d4u

dy4
+ 6(β2 + β3)

(
du

dy

)2d2u

dy2
− γ1V

3
0

d5u

dy5

− 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)V0
d

dy

[(
du

dy

)2d2u

dy2

]
− σB2

0u =
∂p̂

∂x
(18)

σB2
0V0 =

∂p̂

∂y
(19)

0 =
∂p̂

∂z
(20)

where the modified pressure p̂ is is given by:

p̂ = −Tyy =p− (2α1 + α2)
(

du

dy

)2

+ 2V0(3β1 + β2)
du

dy

d2u

dy2
− 6γ1V

2
0

d

dy

(
du

dy

d2u

dy2

)

− 2(γ1 + γ2)V
2
0

d3u

dy3

du

dy
− γ3V

2
0

(
d2u

dy2

)2

− 2(2γ3 + 2γ4 + 2γ5 + γ6)
(

du

dy

)4

(21)

Eqn. (20) indicates that p̂ is not a function of z. On eliminating the pressure
gradient from (18) and (19) by cross differentiation, we finally obtain:

−ρV0
d2u

dy2
=µ

d3u

dy3
− σB2

0

du

dy
− α1V0

d4u

dy4
+ β1V

2
0

d5u

dy5
+ 6(β2 + β3)

d

dy

[(
du

dy

)2d2u

dy2

]

− γ1V
3
0

d6u

dy6
− 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)V0

d2

dy2

[(
du

dy

)2d2u

dy2

]

(22)
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Equation (22) is the stationary form of the one used by Wang and Wu [10].
The appropriate partial slip boundary conditions are:

u(0) = λ1Txy

∣∣∣∣
y=0

u(y) → U∞ as y →∞ (23)

where λ1 is the slip factor and U∞ is the mainstream velocity.

By introducing the following non-dimensional quantities, with ν the kinematic
viscosity of the fluid,

u =
u

U∞
, y =

U∞y

ν
, V 0 =

V0

U∞
,

Mn =
νσB2

0

ρU2∞
, α1 =

α1U
2
∞

ρν2
, β1 =

β1U
4
∞

ρν3
, γ1 =

γ1U
6
∞

ρν4
,

β =
6(β2 + β3)U

4
∞

ρν3
, γ = 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)

U6
∞

ρν4
(24)

the boundary value problem (22) takes the form:

Mn
du

dy
− V0

d2u

dy2
− d3u

dy3
+ α1V0

d4u

dy4
− β1V

2
0

d5u

dy5
+ γ1V

3
0

d6u

dy6
= β

[
2
du

dy

(
d2u

dy2

)2

+
(

du

dy

)2d3u

dy3

]
− γV0

[
2
(

d2u

dy2

)3

+ 6
du

dy

d2u

dy2

d3u

dy3
+

(
du

dy

)2d4u

dy4

]

(25)

and the boundary conditions (23) become:

u = λ
[
du

dy
− V0α1

d2u

dy2
+ V 2

0 β1
d3u

dy3
+

β

3

(
du

dy

)3

− V 3
0 γ1

d4u

dy4
− V0γ

(
du

dy

)2d2u

dy2

]
at y = 0

u → 1 as y →∞ (26)

where λ is the non-dimensional slip factor indicating the relative importance of
the partial slip, and for simplicity, the bars of the non-dimensional quantities
have been omitted. Mn is the magnetic parameter and α1, β1, γ1, β and γ are
the non-Newtonian flow parameters.
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2.2 Heat transfer analysis

We now turn our attention to the energy equation subject to two different sets
of boundary conditions. In the first instance, we assume that the plate is at
a temperature higher than the fluid. For the second case, we assume that the
plate is insulated. Neglecting the radiant heating, the energy equation can be
written as:

ρcp
dθ

dt
= κ∇2θ + T.∇V (27)

where cp is the mass specific heat (J/K/kg) and κ the thermal conductivity
(kg.m/s3/K). Since the velocity and temperature depend only on y, using
Eqns. (1) and (2) in the above energy equation (27), we get:

−ρcpV0
dθ

dy
= κ

d2θ

dy2
+ Txy

du

dy
(28)

The boundary conditions depend on the following two heating processes.

2.2.1 Constant surface temperature

In this case, the appropriate boundary conditions are:

θ(0) = θw,

θ(y) → θ∞ as y →∞ (29)

where θw is the wall temperature and θ∞ is the temperature of the ambient
fluid.

Using the non-dimensional temperature θ = θ−θ∞
θw−θ∞

, the non-dimensional quan-
tities (24) and the expression for Txy from Eqn. (10) in the energy equa-
tion (28), we obtain the following non-dimensional highly non-linear differen-
tial equation:
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d2θ

dy2
+ PrV0

dθ

dy
+ PrEc

[(
du

dy

)2

− α1V0
d2u

dy2

du

dy
+ β1V

2
0

d3u

dy3

du

dy
+ β

(
du

dy

)4

− γV0

(
du

dy

)3d2u

dy2
− γ1V

3
0

d4u

dy4

du

dy

]
= 0

(30)

where Pr = µcp

κ
is the Prandtl number and Ec = U2∞

cp(Tw−T∞)
is the Eckert

number and bars have been suppressed.

The boundary conditions for θ are:

θ(0) = 1,

θ → 0 as y →∞ (31)

2.2.2 Insulated surface

In this case, the relevant boundary conditions are:

dθ

dy

∣∣∣
y=0

= 0,

θ(y) → θ∞ as y →∞ (32)

Again, using the non-dimensional temperature g = θ−θ∞
θw−θ∞

, the non-dimensional
quantities (24) and the expression for Txy from Eqn. (10) in the energy equa-
tion (28), we obtain the following highly non-linear differential equation:

d2g

dy2
+ PrV0

dg

dy
+ PrEc

[(
du

dy

)2

− α1V0
d2u

dy2

du

dy
+ β1V

2
0

d3u

dy3

du

dy
+ β

(
du

dy

)4

− γV0

(
du

dy

)3d2u

dy2
− γ1V

3
0

d4u

dy4

du

dy

]
= 0

(33)

which is same as Eqn.(30) and all the other parameters are the same as before.
Bars have been omitted.
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The boundary conditions for g are:

dg

dy

∣∣∣∣
y=0

= 0,

g → 0 as y →∞ (34)

3 Numerical solution of the problem

The system of highly non-linear differential equations (25) and (30) subject to
boundary conditions (26) and (31), and the system of equations (25) and (33)
subject to boundary conditions (26) and (34) are solved using a shooting
method along with the fourth order Runge-Kutta method for different mod-
erate values of the flow and heat transfer parameters. The effective Broyden’s
technique has been adopted in order to improve the initial guesses and to sat-
isfy the boundary conditions at infinity. Moreover, it eases the computations
by avoiding to compute the Jacobian matrix in each integration step. In fact,
the above system of differential equations are highly non-linear, whose order
is much more higher than the available known boundary conditions, which
debars the use of the finite difference method without augmenting asymptotic
boundary conditions at infinity [6,10]. It is noteworthy to mention that the
shooting technique in calculating process does not require the entire starting
boundary conditions, instead it only needs to match with the other end of the
boundary condition to add amendment to its starting boundary conditions.
Thus, it can process higher order differential equation problem that lacks of
sufficient boundary conditions. Despite of few shortcomings of the shooting
method, we found the shooting method quite suitable and aesthetically pleas-
ing for the present investigation.

The semi-infinite integration domain y ∈ [0,∞) is replaced by a finite domain
y ∈ [0, y∞). In fact, y∞ usually depends upon the physical parameters of the
problem and its value needs to be adjusted as the values of the parameters
change. In practice, y∞ should be chosen sufficiently large so that the numerical
solution closely approximates the terminal boundary conditions at ∞. Here,
y∞ has been fixed to 10.

The above systems of differential equations are converted into an equivalent
initial value problem in order to use the fourth order Runge-Kutta method.
For the sake of brevity, here we have explained the solution procedure for the
system (25) and (30) subject to boundary conditions (26) and (31) concisely.
The solution procedure for the system (25) and (33) subject to boundary
conditions (26) and (34) is just similar.
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To reduce the equations to equivalent first order system, we set:

u = z1,
du

dy
= z2,

d2u

dy2
= z3,

d3u

dy3
= z4,

d4u

dy4
= z5,

d5u

dy5
= z6,

θ = z7,
dθ

dy
= z8, (35)

to finally get:

z′1 = z2, z1(0) = λ[s1 − α1V0s2 + β1V
2
0 s3 +

β

3
s3
1 − γ1V

3
0 s4 − γV0s

2
1s2]

z′2 = z3, z2(0) = s1

z′3 = z4, z3(0) = s2

z′4 = z5, z4(0) = s3

z′5 = z6, z5(0) = s4

z′6 = −Mnz2 + V0z3 + z4 − α1V0z5 + β1V
2
0 z6 + β[2z2z

2
3 + z2

2z4]

− γV0[2z
3
3 + 6z2z3z4 + z2

2z5], z6(0) = s5

z′7 = z8, z7(0) = 1

z′8 = −PrV0z8 − PrEc[z
2
2 − α1V0z3z2 + β1V

2
0 z4z2 + βz4

2 − γV0z
3
2z3 − γ1V

3
0 z2z5],

z8(0) = s6. (36)

Here, the prime indicates differentiation with respect to y. The essence of
this method is to reduce the boundary value problem to an equivalent ini-
tial value problem and then use a shooting numerical technique to guess
si, i = 1, 2, . . . 6, until the terminal boundary conditions z1 = 1, z7 = 0
are satisfied at y = y∞. Because of the non-linearities, which appear in the
differential equations, the solution by the above method has been iterated and
with reasonably close initial guesses to start the iterations, the convergence to
the actual values within an accuracy of O(10−6) is attained after only 9 to 11
iterations.

4 Results and discussion

Keeping in view of a proliferation of the number of parameters, we have re-
stricted the discussions of the obtained results to the effects of emerging im-
portant flow parameters α1, β, γ, V0, Mn, Pr, Ec, and the newly introduced
slip parameter λ on the velocity and temperature fields. It is found that β, β1,
and similarly γ, γ1 have similar effects on the velocity and temperature fields.
Further, one can refer the works of Hayat et al. [6,9] and Sajid et al. [8] for a
precise discussion with the conventional no-slip boundary conditions.
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As a preliminary test [16] to check the accuracy of the solution, it may be
noted that for the no-slip and non magnetic case, at y = 0, Eqn. (25) reduces
to:

V0
d2u

dy2
− d3u

dy3
+ α1V0

d4u

dy4
− β1V

2
0

d5u

dy5
+ γ1V

3
0

d6u

dy6
− β

[
2
du

dy

(
d2u

dy2

)2

+
(

du

dy

)2d3u

dy3

]
+ γV0

[
2
(

d2u

dy2

)3

+ 6
du

dy

d2u

dy2

d3u

dy3
+

(
du

dy

)2d4u

dy4

]∣∣∣∣
y=0

= 0.

(37)

For all solutions computed for different ranges of the flow parameters, the left
hand side of Eqn. (37) is found to be less than 10−4.

The variations of the non-dimensional velocity u with different flow parame-
ters have been plotted in Figs. 2-7 for β1 = 1 and γ1 = 1. Fig. 2 depicts that
in presence of slip, as the normal stress coefficient α1 increases from zero, the
velocity increases near the surface and then starts decreasing away from the
surface of the plate, resulting in a ‘cross-over’ in the profile. It is noteworthy to
mention that such a cross-over is absent for the no-slip case [9]. Figs. 3 and 4
show that velocity decreases, or in other words, the momentum boundary layer
thickness increases with an increase in the non-Newtonian fluid parameters β
and γ respectively. These findings are in agreement with those reported by
Hayat et al. [9] for the flow past a porous flat plate or by Islam et al. [3]
for a plane Poiseuille flow. In general, the fourth grade non-Newtonian fluid
exhibits a thicker boundary layer than the Newtonian fluid, and increasing
the higher order material parameters of non-Newtonian fluid causes further
thickening of the boundary layer. Fig. 5 shows the variation of u with the non-
dimensional suction velocity. It is again interesting to find that in presence of
slip, as the suction increases, the velocity near the plate increases, and then
decreases gradually. This results in a cross-over in the velocity profile. How-
ever, in absence of slip, such a cross-over in not found, as reported by Sajid
et al. [8] and Hayat et al. [9]. Fig. 6 reveals that an increase in the magnetic
interaction parameter Mn increases the velocity throughout the domain of in-
tegration. The effect of slip on the velocity profile, when other flow parameters
are kept constant, can be seen from Fig. 7. As was expected, an increase in
slip results in an increase in the velocity near the surface of the plate. The
velocity approaches towards the free stream value 1 with an increase in the
slip, and flow behaves as though it were inviscid.

Another interesting quantity is the skin-friction coefficient at the wall. It is
related to the wall shear stress, given by the Eqn. (10), which in the dimen-
sionless form becomes:
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Txy|y=0 =
[
du
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−V0α1

d2u

dy2
+V 2

0 β1
d3u

dy3
+

β

3

(
du

dy

)3

−V 3
0 γ1

d4u

dy4
−V0γ

(
du

dy

)2d2u

dy2

]

y=0

(38)

The effect of the fourth grade fluid parameter γ on the non-dimensional wall
shear stress Txy|y=0 is clear from Fig 8. It shows that Txy|y=0 increases, resulting
in an increase in the momentum boundary layer thickness, with an increase
in γ. On the other hand, as was expected, Txy|y=0 decreases rapidly with an
increase in the slip parameter λ (Fig 9), indicating a substantial decrease in
the momentum boundary layer thickness.

Figs. 10-21 indicate the effects of different emerging flow parameters on the
non-dimensional temperature profiles θ(y) and g(y) for the constant surface
temperature and the insulated wall cases, when β1 = γ1 = 1, Pr = 3, and
Ec = 0.5. Figs 10-12 respectively depict that even in presence of slip, an in-
crease in the non-Newtonian parameters α1, β and γ increase the temperature
θ(y). These findings are in agreement with those reported by Hayat et al. [9].
The effect of the fourth garde fluid parameter γ on θ is not prominent through-
out the domain of integration, as shown in Fig. 12. Figs. 13-15 show that the
temperature, and hence the thermal boundary layer thickness, decreases with
an increase in the suction, magnetic parameter and slip parameter respectively.
The suction has a prominent effect on the temperature profile. Figs. 16-21 de-
pict the effects of various flow parameters on the non-dimensional temperature
g(y) for the insulated wall case. It is clear that all the flow parameters have
similar effects of θ(y) and g(y). Fig. 21 shows that the slip has a substantial
effect on the thermal boundary layer for the insulated wall case.

The dimensionless surface temperature gradient θ′(0) in the constant surface
temperature case, and the dimensionless surface temperature g(0) in the in-
sulated wall case against different flow parameters have been tabulated in
Table 1. It is clear that the shear thickening parameter β decreases the mag-
nitude of the rate of heat transfer θ′(0), when the other parameters are kept
constant. It can be of interest to find that the heat transfer rate increases with
γ in presence of comparatively large value (λ = 2) of the slip parameter. The
slip parameter λ increase the rate of heat transfer at the surface of the plate.
Moreover, it is observed that for constant Ec, the value of |θ′(0)| increases
with Pr, since the thermal boundary layer thickness δT decreases with Pr due
to the estimate δT ∼ 1√

Pr
. Apparently, the surface temperature g(0) in the

insulated wall case increases with Ec, when other flow parameters are kept
constant.
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5 Conclusions

Flow and heat transfer of an electrically conducting fourth grade fluid past
an infinite plate with partial slip boundary condition, subject to uniform suc-
tion has been considered in this paper. Due to the presence of higher order
material derivatives of the strain tensor in the constitutive equation of the
fourth grade fluid, the momentum equation gives rise to a highly nonlinear
differential equation of order six with only two adherence boundary conditions.
The resulting system of differential equations with inadequate boundary con-
ditions has been solved by the shooting method along with the fourth order
Runge-Kutta method and the Broyden’s method. The use of the Broyden’s
method as a zero-finding algorithm has enhanced the efficiency of the shoot-
ing technique by reducing the computational time. The combined effects of
the emerging non-Newtonian flow parameters and slip on the momentum and
thermal boundary layers have been discussed elaborately and shown graphi-
cally. It is interesting to find the exceptional cross-overs in the velocity profile
in the presence of slip. The fourth grade fluid parameter γ increases the mo-
mentum boundary layer thickness, whereas the slip parameter substantially
decreases it. Similarly, the non-Newtonian fourth grade fluid parameters and
the slip have opposite effects on the thermal boundary layer thickness.

The present study will be extended in a close future to take into account
additional effects such as the dependance of the slip velocity on the normal
stress, Joule heating in the energy equation or the thermal slip condition. As
the shooting method limited the present investigation to moderate values of
the flow parameters, a more effective and suitable numerical technique would
be also suitable to see the effects of higher values of the fourth grade and slip
parameters on the Blasius flow problem.

References

[1] M. Renardy. On the domain space for constitutive laws in linear viscoelasticity.
Arch. Rat. Mech. Anal., 85(1):21–26, 1984.

[2] T. Hayat, R. Naz, and S. Abbasbandy. On flow of a fourth-grade flud with heat
transfer. Int. J. Numer. Meth. Fluids, (67):2043–2053, 2011.

[3] S. Islam, Z. Bano, I. Siddique, and A.M. Siddiqui. The optimal solution for the
flow of a fourth-grade fluid with partial slip. Comput. Math. Applic., 61:1507–
1516, 2011.

[4] R.A. Shah, S. Islam, and A.M. Siddiqui. Couette and Poiseuille flows for fourth
grade fluids using optimal homotopy asymptotic method. World Appl. Sci. J.,
9(11):1228–1236, 2010.

15



[5] O.U. Mehmood, N. Mustapha, and S. Shafie. Heat transfer on peristaltic flow
of fourth grade fluid in inclined asymmetric channel with partial slip. Appl.
Math. Mech. - Engl. Ed., DOI: 10.1007/s10483-012-1624-6.

[6] T. Hayat, Y. Wang, and K. Hutter. Flow of a fourth grade fluid. Math. Models
Meth. Appl. Sci., 12(6):797–811, 2002.

[7] T. Hayat, A.H. Kara, and E. Momoniat. The unsteady flow of a fourth-grade
fluid past a porous plate. Math. Comp. Model., 41:1347–1353, 2005.

[8] M. Sajid, T. Hayat, and S. Asghar. On the analytic solution of the steady flow
of a fourth grade fluid. Phys. Letters A, 335(1):18–26, 2006.

[9] T. Hayat, S. Noreen, and M. Sajid. Heat transfer analysis of the steady flow of
a fourth grade fluid. Int. J. Thermal Sci., 47(5):591–599, 2008.

[10] Y. Wang and W. Wu. Unsteady flow of a fourth grade fluid due to an oscillating
plate. Int. J. Non-Linear Mech., 42(3):432–441, 2007.

[11] V. Marinca, N. Herisanu, C. Bota, and B. Marinca. An optimal homotopy
asymptotic method applied to the steady flow of a fourth-grade fluid past a
porous plate. Appl. Maths. Letter, 22:245–251, 2009.

[12] T. Hayat, M. Asif Farooq, T. Javed, and M. Sajid. Partial slip effects on the
flow and heat transfer characteristics in a third grade fluid. Nonlinear Analysis:
Real World Applications, 10(2):745–755, 2009.

[13] S. Nadeem, T. Hayat, S. Abbasbandy, and M. Ali. Effects of partial slip on
a fourth-grade fluid with variable viscosity: An analytic solution. Nonlinear
Analysis: Real World Applications, 11(2):856–868, 2010.

[14] B. Sahoo. Flow and heat transfer of an electrically conducting third grade fluid
past an infinite plate with partial slip. Meccanica, 45(3):319–330, 2010.

[15] J.A. Shercliff. A text book of magnetohydrodynamics. Pergamon Press, Oxford,
1965.

[16] V.K. Garg and K.R. Rajagopal. Stagnation point flow of a non-Newtonian
fluid. Mech. Res. Comm., 17:415–421, 1990.

16



0 2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

y

u
(y

)

α
1
=0.0

α
1
=3.0

α
1
=6.0

α
1
=9.0

Fig. 2. Variation of u with α1 at
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α1 β γ V0 Mn λ Pr Ec θ′(0) g(0)
0.1 -3.826486 0.043378
0.3 1.0 2.0 2.0 1.0 1.0 2.0 1.0 -3.827067 0.043233
0.5 -3.827638 0.043090

0.5 -2.840175 0.053275
1.0 1.5 2.0 1.0 1.0 1.0 3.0 0.5 -2.839138 0.053621

2.5 -2.838103 0.053966

1.0 -0.490230 0.026147
2.0 1.0 1.5 0.5 1.0 2.0 1.0 0.3 -0.490232 0.026142

2.0 -0.490235 0.026137

1.0 -0.492547 0.021544
3.0 2.0 1.0 3.0 0.5 1.0 3.0 0.5 -0.503001 0.000777

5.0 -0.503356 0.000071

0.1 -0.935282 0.064760
3.0 1.0 2.0 1.0 0.3 1.0 3.0 0.5 -0.969405 0.030639

0.5 -0.969405 0.030639

1.0 -2.848080 0.050640
4.0 2.0 2.0 1.0 1.0 2.0 3.0 0.5 -2.949012 0.016996

3.0 -2.974725 0.008425

1.0 -1.958481 0.020760
3.0 1.0 2.0 2.0 1.0 1.0 2.0 0.5 -3.916961 0.020759

3.0 -5.875442 0.020757

0.5 -3.973168 0.006708
1.0 3.0 2.0 2.0 1.0 2.0 2.0 1.5 -3.919504 0.020124

2.0 -3.865840 0.033540
Table 1
Variations of θ′(0) and g(0) with different flow parameters.
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